Automatic Generation Control Using Genetic Algorithm

G K Joshi*, Sumit Mathur** and Sanjay Mathur***

*Principal and Professor, Institute of Engg. & Technology, Alwar (Raj.) – 301030, India
**Senior Faculty Marwar Engg. College & Research Centre, Jodhpur (Raj.), 342001, India
***Senior Faculty Marwar Engg. College & Research Centre, Jodhpur (Raj.), 342001, India

Abstract
The generation control is becoming increasingly important in view of increased load demand & reducing generating resources. The increasing load demands are posing serious threats to reliable operation of power systems. This is because the increasing load demand lead to lowering of turbine speed (N_s) & therefore reduction of frequency (f) of output voltage of the generator. The healthy operation of generators feeding powers to various types of load is filled with challenges as the generating resources are coaping up to keep pace with increasing load demand. Under the situation a great care is needed in maintaining load under the size of generating capacities on the one hand and also maintaining healthy and undamaged operation of generators on the other hand. Working singularly or in parallel with other unit. The healthy and undamaged operation of generator needs the control of the following parameters

• Frequency to be maintained constant i.e. at 50 Hz,
• the tie line power to be maintained between specified limits and
• the economic operation of the generators.

If the above parameters are maintained with in desired limits the generation control is said to be most effective. Being inspired to know the strategies for obtaining above controls, the present work has considered a two area problem of generation and have developed a programmable logic, which gives the control strategies for automatic generation control.

Key words:
Reproduction, Crossover, Mutation, Genetic Algorithm, AGC, Frequency, Tie Line power flow, Economic Operations and Governor.

1. Introduction

There are many reasons, which justify that frequency of the power systems be maintained constant at 50 Hz [8]. The most serious effect of Subnormal frequency is on the operation of thermal power plants. With reduced frequency the blast by ID & the FD fan decreases, as a result of which the generation also decreases & thus it becomes a cumulative action & may result in complete shut-down of the plant if corrective measures like load Shedding is not taken up well in time. Load shedding is done with the help of under frequency relay, which automatically disconnects at a relatively higher frequency & vice-versa. This justifies the need for constant speed.

Further to meet the changes in load demand in particular area. The tie line load frequency controller adjusts the frequency to a particular value, for a given tie line power flow or tie line loading. This in turn decides the size of power which any particular generator in the interconnected system to raise its output for meeting the load demand in any area at the interconnected system. It is therefore necessary to maintain the power flow through tie line to some correct value. If the power flow is not maintained at predetermined value, it will cause any particular generator to give power output beyond its capacity to meet the increased load demand for restoration of normal frequency. As a result there is every possibility that the generator may over exert & get damaged. It is therefore always necessary to maintain a tie-line load bias. This is achieved through load frequency controller, which adjusts the operating frequency for a given tie line load bias power level. This in turn provides a great safety provider to costly generators [20]. It is therefore necessary to maintain the tie line power flow to some correct value. The tie line power works as governor characteristic for maintaining constant frequency at desired power demand in an interconnected system. It takes into account the changes in load that takes place in a load area irrespective at the power generator, which is feeding the load. Also the economic load dispatch is one of the vital criteria that needs to be satisfied for economic operation of any power station. This justifies the need for tie line control.

Studies have revealed that the economic operation when the multi generators in a particular area is feeding the load demand, requires all the units
maintain the ratio of increment in fuel supply to increment in power output should be equal i.e.

\[\frac{dF_1}{dP_1} = \frac{dF_2}{dP_2} = \ldots = \frac{dF_n}{dP_n} = \lambda \]

This condition is required to be achieved for most economical operation of power system. This needs proper allocation of loads to all the generators working to meet the entire load demand. Thus it can be concluded that the generation control is needed to ensure the power system stability. This justifies the need of economic operation generators.

2. Problem

It is aimed to develop a programmable logic, which leads control of

1. Frequency,
2. Tie line power and
3. Economic load dispatch, within prescribed limits, when they fail to be in such limits due to abnormal changes in loading. However the necessity of Automatic Generation Control is realized.

3. Solution

A system, which issues command of control action to ensure

1. Frequency control,
2. Tie line power control and
3. Economic load dispatch,

has been developed using a programmable logic and genetic algorithm. Also the same when tested gives better results over the mathematical approach.

4. Steps of solution

1. Collection of data from sub-station.
2. Development of software for implementation of proposed controls.
3. Testing of software and its comparison with mathematical approach

5. Why Genetic Algorithm

- The genetic algorithm is preferred over traditional methods because they work with coding and are free from limitations like continuity, derivation and unimodality.
- It provides a model free approximation of the problem and has proved to be best technique in obtaining the best solutions.
- Genetic algorithm searches from population of point rather then a single point. It is known as build as well as robust tool for maxima.
- Genetic algorithm use payoff information not derivation or other auxiliary knowledge.
- Genetic algorithm use probabilistic transmission rules instead of deterministic ones. Therefore it can search a non-convex area to find the global optimum.

6. Working of GA

GAs work from a rich database of points simultaneously (a population of strings), climbing many peaks in parallel; thus, the probability of finding a false peak is reduced over methods that go from point to point[10]. The mechanics of a simple genetic algorithm involves nothing more complex than to copy strings and swap partial strings. The explanation of why this simple process works is subtle and yet it is extremely powerful. Simplicity of operation and the power of the effect (speed and accuracy) are two of the main attractions of genetic algorithms. A simple genetic algorithms that yields good results in many practical problems is composed of three operators [5]
1. Reproduction
2. Crossover
3. Mutation

Reproduction is a process in which individual strings are selected according to their objective function value f (biologists call this function - the fitness function). Intuitively, we can think of the function f as some measure of profit, utility, or goodness that we want to maximize. Selecting strings according to their fitness values means that strings with a higher value have a higher probability of contributing offspring to the next generation.

After reproduction, crossover proceeds in two steps. First, members of the newly reproduced strings in the mating pool are mated at random. Second, each pair of strings undergoes crossover as follows: an integer position k along the string is selected uniformly at random between 1 and the string length less one \([1, l-1]\). Two new strings are created by swapping all characters between position k+1 and l inclusively. Mutation plays a decidedly secondary role in the operation of genetic algorithms.

Mutation is needed because, despite the fact that reproduction and crossover search and recombine existent
notions, occasionally they may lose some potentially useful genetic material. The mutation operation involves periodically selecting one individual at random, selecting one position on the chromosome string and transposing it from 0 to 1 or vice-versa. Mutation restores diversity but does not provide a logical approach to optimization. Its use should be restricted to situations where a local minimum (or maxima) has trapped the algorithm and a new population member is required to trigger the crossover operation on to a better result. Fig. 1 shows the general flow chart for GA.

Step 9: Select a pair of chromosomes for mating from the current population. Parent chromosomes are selected with a probability related to their fitness. Highly fit chromosomes have a higher probability of being selected for mating than less fit chromosomes.

Step 10: Create a pair of offspring chromosomes by applying genetic operators crossover and mutation.

Step 11: Place the created offspring chromosomes in the new population.

Step 12: Repeat Step 9 until the size of the new chromosome population becomes equal to the size of the initial population, N.

Step 13: Replace the initial (parent) chromosome population with the new (offspring) population.

Step 14: Go to Step 8, and repeat the process until the termination criterion is satisfied.

Check the feasibility of the solution corresponding to the satisfaction of the equality constraint.

7. Illustration

Fuel inputs for generators G1&G2 of AREA 1, G3&G4 of AREA 2 are given below

Area 1

- $F_1 = 0.2P_1^2 + 40P_1 + 120$ Rs. per hour
- $F_2 = 0.25P_2^2 + 30P_2 + 150$ Rs. per hour

Area 2

- $F_3 = 0.15P_3^2 + 30P_3 + 90$ Rs. per hour
- $F_4 = 0.2P_4^2 + 25P_4 + 120$ Rs. per hour

Maximum generating capacity of G1&G2 is 100MW each & of G3& G4 is 60MW each. Max. & Min. Load on each generator of AREA 1 is 100 MW & 25MW respectively. Max. & Min. Load on each generator of AREA 2 is 60MW & 10MW respectively. Transmission losses are neglected. Assume that tie line power flow is from area1 to AREA 2 & of 10MW constantly. To determine the control action, load allocation to individual generator and most economical cost of generation for economic load dispatch, when the system frequency, tie line power is changed due to changes in load as per case I and II. System frequency is scheduled at 50Hz, so $\omega_{\text{sched}} = 314.16$ rad.

Case I: At time: 14 Hrs.

Parameters

- ω_{actual}
- $P_{\text{tie actual}}$
- $\Delta \omega$
- ΔP_{tie}
- ω_{sched}

Step 6: Define a fitness function to measure the performance, or fitness, of an individual chromosome in the problem domain. The fitness function establishes the basis for selection of chromosomes that will be mated together during reproduction.

Step 7: Randomly generate an initial population of chromosomes of size N: x_1, x_2, \ldots, x_N

Step 8: Calculate the fitness of each individual chromosome: $f(x_1), \ldots, f(x_N)$
Case II: At time: 18 Hrs.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>State</th>
<th>ω (rad.)</th>
<th>P_{tie} (MW)</th>
<th>Total Load (MW)</th>
<th>Load on A1 (MW)</th>
<th>Load on A2 (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Conditions</td>
<td>314.1</td>
<td>10</td>
<td>190</td>
<td>110</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Actual Condition</td>
<td>301.6</td>
<td>5</td>
<td>195</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

8. Result Comparison

CASE I
Cost from mathematical approach =7706.19 Rs. /hour
=7706.19*24Rs./day
=184948.56 Rs. /day
Cost from Genetic Algorithm approach =7639.24 Rs. /hour
=7639.24*24Rs./day
=183341.76 Rs. /day
Net Saving per day
=184948.56-183341.76
=1606.8 Rs.
Net saving per year
=1606.8*365
=586482 Rs.

CASE II
Cost from mathematical approach
=3178.82 Rs. /hour
=3178.82*24 Rs. /day
=76291.68 Rs. /day
Cost from Genetic Algorithm approach =3169.24 Rs. /hour
=3169.24*24 Rs. /day
=74806.08 Rs. /day
Net Saving per day
=76291.68-74806.08
=1485.6 Rs.
Net Saving per year
=1485.6*365
=542244 Rs.
9. Conclusion

The Present research work has been aimed to provide comprehensive control strategy for generators working in a particular area, so that the conditions caused by unusual changes in load is met by the generators without becoming inoperative. The out comes of the present work are:

- A programmable logic has been developed and tested for varying load conditions to ensure automatic generation control.
- The three parameters viz frequency (f), tie line power flow (P_{tie}) & economic load dispatch have been maintained within prescribed limits without shutdown of generators under varying load conditions.
- The control strategies have been presented in the algorithm as well as flow chart form. This has given a rich base for development of programmable logic.
- The results have been obtained by mathematical as well as programmable logic control. On comparison it is proved that the present approach leading to an annual saving of Rs. 586482/year and Rs. 542244/year.
- The concept of genetic algorithm has been applied to obtain economic load dispatch conditions. This goes a long way in improving the economy, as the solution provided by it is global one viz a viz the local one as provided by the mathematical approach.

10. Future Scope

Using the techniques of soft computing and artificial intelligence it is possible to improve the smartness and reliability of controls to be exercised for automatic generation control. Hope the work would appeal the present and prospective researchers in the area.

References

19. José Luis Rodriguez-Amenedo, Santiago

Sanjay Mathur did his B.E. in Electrical Engineering from Sant Shri Gajanand Maharaj College Sahagaon under Amravati University in 1998 and M.E. from M.B.M Engg. College in 2005. Presently he is working as a senior lecturer in M.E.C.R.C., Jodhpur, Rajasthan, India. His area of interests are Circuit Analysis, Economic Operation of Generators, Artificial Intelligence, C & C++ language, and Electrical Machines. He has authored a book titled “Concepts of C”. He is also technical consultant of Techlab Instruments & Kushal Global Ltd.

G K Joshi did his B.E., M.E. and Ph.D. in Electrical Engineering from M.B.M. Engineering college Jodhpur. He has worked till now as a lecturer, Sr. lecturer, reader, professor and Principal of Engineering College I.E.T. Alwar. He has guided 12 M.E. dissertations, 15 M.E. seminars, 35 technical papers in national, international conferences and journals. Prof. Joshi is a technical paper reviewer of Institution of Engineers (I). He is a fellow of Institution of Engineers (I). He is a life member of ISTE. He has completed many projects under U.G.C. and AICTE grants and established a high voltage lab of 400KV standard with non-destructive testing facilities. His area of research is residual life estimation of dielectrics, applications of soft computing viz. fuzzy, neuro, GA, evolutionary algorithm to practical problems. His subjects of interest are high voltage engineering, pattern recognition, instrumentation, power systems and electrical machines. He is presently guiding 4 Ph. D. scholars and 5 M.E. students dissertations. He is presently organizing an IEEE sponsored International Conference on “Recent Applications of Soft Computing in Engineering & Technology” RASIEET-07 at IET Alwar (Raj.) on 22-23 Dec 2007.

Sumit Mathur did his B.E. in Electrical Engineering from Sant Shri Gajanand Maharaj College Sahagaon under Amravati University in 2001 and M.E. from M.B.M Engg. College in 2008. Presently he is working as a senior lecturer in M.E.C.R.C., Jodhpur, Rajasthan, India. His area of interests are Circuit Analysis, Automatic Generation Control, Genetic Algorithm and Fuzzy Logic. He is also technical consultant of Techlab Instruments.