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Summary 
The particle swarm optimizer (PSO) is a stochastic, population-
based optimization technique that can be applied to a wide range 
of applications. This paper presents a random time variable PSO 
algorithm, called the PSO-RTVIWAC, introducing random time-
varying inertia weight and acceleration coefficients to 
significantly improve the performance of the original algorithms. 
The PSO-RTVIWAC method originates from the random inertia 
weight (PSO-RANDIW) and time-varying acceleration 
coefficients (PSO-TVAC) methods. Through the efficient control 
of search and convergence to the global optimum solution, the 
PSO-RTVIWAC method is capable of tracking and optimizing in 
the highly nonlinear dynamic local positioning systems. 
Experimental results are compared with three previous PSO 
approaches from the literatures, showing that the new optimizer 
significantly outperforms previous approaches. Simply 
employing a few particles and iterations, a reasonable good 
positioning accuracy is obtained with the PSO-RTVIWAC 
method. This property makes the PSO-RTVIWAC method 
become more attractive since the computation efficiency is 
improved considerably, i.e. the computation can be completed in 
an extremely short time, which is crucial for the real-time local 
positioning systems. Our experiments on the PSO-RTVIWAC to 
track and optimize the tag position have demonstrated that it is 
especially effective in dealing with optimization functions in the 
nonlinear dynamic environments. 
Key words: 
inertia weight, acceleration coefficients, particle swarm, time of 
arrival, local positioning. 

1. Introduction 
Local environments present opportunities for a rich set of 
position-aware applications such as navigation tools for 
humans and robots, interactive virtual games, resource 
discovery, asset tracking, position-aware sensor 
networking etc. Typical local positioning systems require 
better accuracy than what global positioning system (GPS) 
or other outdoor positioning systems can provide. Further, 
the typical local positioning systems require different 
types of information such as physical space, position and 
orientation [1-5].   
Usually the local positioning systems operate in harsher 
environments that impede RF propagation. Besides, local 
positioning systems call for a smaller coverage area, often 
limited to a single organization compared to a typical 

outdoor system. Therefore, several research groups have 
developed a number of positioning technologies 
specifically tailored for local positioning systems. Some 
groups have developed 802.11-based positioning systems 
and discovered that such systems have fundamental limits 
resulted in a median positioning error of 3 m [6]. Bekkali 
[32] investigated an indoor positioning system for RFID 
tagged objects, which use two RFID Readers with 
unknown location and landmarks to achieve positioning 
error of 0.5 m. The UbiSense systems use a small number 
of UWB base stations and UWB transmitters carried by 
mobile users [7]. This system provides very precise 
position information (0.15 m accuracy) for specialized 
applications that operate in highly controlled environments. 
A configuration of local positioning systems with base 
stations (locators) and the device to be located (tag) is 
shown in Fig. 1. In Fig. 1 (a) the exact solution can be 
obtained for two dimensional positioning with three 
locators based on the time of arrival (TOA) measurements. 
However, in the real-world applications the measured 
distance error Ed is ineluctable, as depicted in Fig. 1 (b). 
The area highlighted by the bold line is the uncertain 
region, which is dominated primarily by the measured 
distance error Ed. Most of existing local positioning 
systems have measured distance errors on the order of 0.1 
m to several meters. It is impossible to remove this error 
from the real-world applications. Usually they are 
considered as noises. The exact solution of tag position is 
difficult to be achieved under this environment. The local 
positioning systems are identified as highly nonlinear 
dynamic systems with numerous noises. There are several 
ways in which systems change over time [11]. First, the 
tag position in search space can change. Second, in the 
multidimensional system, the variation of position may 
occur on one or more dimensions, either independently or 
simultaneously. Third, the noises change at any time. 
Fourth, the locator position may change.  
In local positioning systems the optimization algorithm is 
indispensable to convert the measured distances R to tag 
position, as shown in Fig. 1. If the optimization is good 
enough, then it is sufficient [11]. By good enough it means 
the accuracy requirements are satisfied reasonably well, 
computation finishes within an acceptable time and used 
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available resources in efficient way [27]-[29]. Obviously, 
if more time is given, the optimization algorithm probably 
performs better. However, in the real-time local 
positioning systems, it is highly expected to evaluate a 
solution in a very short time. 

 
The basic way to estimate the position via the measured 
distances may be by directly solving a set of nonlinear 
equations. For an over-determined system with redundant 
measurements, Taylor Series Expansion (TSE) [8] may be 
used to iteratively produce a solution to the position 
estimate. However, to maintain good convergence, the 
TSE method requires a quite accurate initial position 
estimate which is often difficult to be obtained in some 
practical applications.  
The Particle Swarm Optimization (PSO) algorithm is a 
new sociologically inspired stochastic optimization 
algorithm introduced by Kennedy and Eberhart in 1995 
[10]. The PSO algorithm is easy to implement, has few 
parameters, and has been shown to converge faster than 
traditional techniques like GA for a wide variety of 
benchmarks. The PSO algorithm can produce better results 

in a faster, cheaper way, compared with other methods. 
Years ago, PSO has been successfully applied in many 
research and application areas. 
However, like other heuristic algorithms, PSO process is 
time consuming. For many real-world applications, PSO 
can run for days, even when it is executed on a high 
performance workstation. The computation time must be 
reduced to fulfill the hard real-time requirements of the 
local positioning systems. The most straightforward way is 
to use a small particle number and iterations. In PSO 
research, it is quite common to limit the number of 
particles to the range of 20 to 60. The maximum number 
of iterations may change for various applications, from 
100 to several thousands. The optimization algorithm is 
necessary to be as fast as possible to complete the 
computation within a very short time. Considering above 
concerns, in this paper a new concept PSO algorithm is 
introduced to track and optimize in the local positioning 
systems. The main objective of this development is to 
reduce the computation time of PSO algorithms. 
Meanwhile, the tag positions are evaluated with 
reasonable accuracy. The concept of random time variable 
inertia weight and acceleration coefficients (PSO-
RTVIWAC) is introduced, which is motivated by the 
PSO-RANDIW and PSO-TVAC concepts [15].  
The rest of this paper is organized as follows. In Section 2, 
three significant previous developments to the original 
PSO methodology are summarized. These methods are 
used as the comparative measure of performance of our 
novel development in this paper. In Section 3, the 
proposed new extension to PSO algorithm, called the 
PSO-RTVIWAC, is introduced. Then the position estimate 
using PSO-RTVIWAC and its process are explained in 
Section 4 and 5, respectively. The experimental settings 
are explained in the Section 6. In Section 7, the PSO-
RTVIWAC method is applied to investigate its ability to 
find the tag position in the local positioning systems. The 
experimental results in comparison with three previous 
developments are presented. Section 8 comprises the 
summary and conclusions of this study. 

2. Previous Work on the PSO Algorithm 

2.1 PSO-TVIW 
Shi and Eberhart [17] introduced the concept of inertia 
weight to the original version of PSO, in order to balance 
the local and global search during the optimization process. 
Shi and Eberhart [18] have found a significant 
improvement in the performance of the PSO method with 
a linearly varying inertia weight over the generations. The 
mathematical representation of this concept is briefly 
illustrated as follows [19]:  

     
(a) 

  
(b) 

Fig. 1. (a) The general positioning under the idea environment 
and (b) positioning under the noisy environment 
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(1) A population of particles with random positions and 
velocities is initialized in the search space.  
(2) For each particle evaluate the optimization fitness 
function Fi. Then two comparisons are executed. Firstly 
compare current particle's fitness evaluation with fitness 
evaluation of particle's local best position. If current value 
is better, then set fitness evaluation equal to the current 
value and the local best position equal to the current 
position in search space. Secondly compare fitness 
evaluation with fitness evaluation of the population's 
global best position. If current value is better than the 
previous value of fitness evaluation, then reset to the 
current particle's array index and value. 
(3) In standard PSO, the velocity and position of the 
particle i are updated based on following equations:  
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where c1 and c2 are the acceleration constants, r1, r2, r3 and 
r4 are uniformly distributed random numbers between 0 

and 1, the current iteration is t, the maximum number of 
iterations is T and the inertia weight ω is decreased 
linearly from maximum value ωmax to minimum value ωmin 
during T.  
Experience showed that when using inertia weight, the 
maximum velocity factor Vmax could simply be set to the 
value of the dynamic range of each variable. This 
limitation is sometimes necessary to keep the particle from 
oscillating too fast around a region without adequately 
exploring it. In this way, there is no longer the need of a 
complicated strategy for setting Vmax. 
Through empirical studies, Shi and Eberhart [18] have 
observed that the optimal solution is improved by varying 
the value of inertia weight from 0.9 at the beginning to 0.4 
at the end of the search for most applications. This version 
of PSO is referred to as time-varying inertia weight factor 
method (PSO-TVIW) in the following sections. 
As depicted in Fig. 2 (a) and (b), in the PSO-TVIW the 
inertia weight is set to decrease linearly from 0.9 to 0.4 
during the iterations and two acceleration coefficients are 
fixed at 2. However, Sugant [23] in his experiment 
suggested that the acceleration coefficients should not be 
equal to 2 all the time. 

     
(a) 

 
(b) 

 
Fig. 2. (a) The inertia weight and (b) the acceleration 

coefficients in the PSO-TVIW 
 

  
(a) 

  
(b) 

 
Fig. 3. (a) The inertia weight and (b) the acceleration 

coefficients in the PSO-TVAC  
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2.2 PSO-TVAC 
The acceleration coefficients c1 and c2 are usually set to 
the same value which is c1=c2=2. However, taking into 
account the adaptive step size of the algorithm, it is not 
suitable to set the acceleration coefficients to be constant. 
According to Ratnaweera et al. [15], the time-varying 
acceleration coefficients method (PSO-TVAC) controls 
the local search and convergence to the global optimum 
solution. They suggested this method to be run with time-
varying acceleration coefficients given as: 

iif c
MAXITR

iterccc 1111 )( +−=                            (6) 

iif c
MAXITR

iterccc 2222 )( +−=                            (7) 

where c1i, c1f, c2i, and c2f are constants, iter is the current 
iteration number and MAXITR is the maximum number of 
iterations. This method runs with a TVIW factor as given 
in (5). 
As shown in Fig. 3 (a) and (b), c1 is recommended to 
change from 2.5 to 0.5 and c2 changing from 0.5 to 2.5, 
over the full range of the search [15]. Under this 
development, the cognitive component is reduced and the 

social component is increased, by changing the 
acceleration coefficients with time. With a large cognitive 
component and small social component at the beginning, 
particles are allowed to move around the search space. 
Conversely, a small cognitive component and a large 
social component allow the particles to converge to the 
global optima in the latter part of the optimization. 
 

2.3 PSO-RANDIW 
Eberhart and Shi [11] have found that the PSO-TVIW 
concept is not very effective for tracking dynamic systems. 
Angeline [30] indicated that for some dynamic functions, 
self-adaptation is effective while for others it is 
detrimental. He uses three types of dynamics: linear, 
circular, and random. Back [31] used the same three types 
of dynamics as Angeline. His results indicate that self-
adaptation ofvariance as utilized in a (μ,λ)-evolution 
strategy is an effective method for tracking dynamic 
environments. Instead, considering the dynamic nature of 
real-world applications, Eberhart and Shi [11] have 
proposed a random inertia weight factor for tracking 
dynamic systems. In this development, the inertia weight 

 
(a) 

 
(b) 

 
Fig. 4. (a) The inertia weight and (b) the acceleration 

coefficients in the PSO-RANDIW 
 

  
(a) 
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(b) 

 
Fig. 5. (a) The inertia weight and (b) the acceleration 

coefficients in the PSO-RTVIWAC 
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factor is set to change randomly according to the 
following equation: 

2
5.0 rand
+=ω                                                         (8) 

where rand is a uniformly distributed random number 
within the range of 0 and 1. When random inertia weight 
factor method is used the acceleration coefficients are kept 
constant at 1.494, as shown in Fig. 4 (a) and (b).  
This version of PSO is referred as random inertia weight 
factor method (PSO-RANDIW) in the following sections. 
It has been identified in many applications that the PSO-
RANDIW method achieved a reasonably good solution for 
most of the functions. The errors are less than what 
obtained by either Angeline or Back [11]. PSO-RANDIW 
performs better than PSO-TVAC in both unimodal and 
multimodal functions [15]. Therefore, this method is 
selected to compare the effectiveness of the novel PSO 
strategies introduced in this paper.  
 

3. The Proposed PSO-RTVIWAC Algorithm 
Early developments in PSO have provided many effective 
approaches in optimizing static applications. However, a 
lot of real-world applications are always recognized as 
nonlinear dynamic systems. Many real-world systems 
change state continuously. These changes result in a 
requirement for frequent, sometimes almost continuous, re-
optimization. Clearly a PSO algorithm designed to be used 
in a real-world dynamic system is supposed to be tested in 
an environment most closely resembling the real-world 
situation [11], [25]. The local positioning systems are 
identified as nonlinear dynamic systems. First, in these 
applications the actual tag position in the search space 
changes over time. Since the position of the optimizer is 
moving through the search space, the optimization 
algorithm is expected to track it over time. Second, the 
objective function is inherently imprecise. The measured 
distance error Ed makes it difficult to approximate the 
optimization position in the search space.  
In general, PSO results in global solutions even in high–
dimensional and multimodal spaces. In contrast, there are 
not many experimental results about its behavior in the 
presence of noise, i.e. the performance of the method 
when noise is inserted into the fitness function and the 
landscape is continuously changing. In practical 
applications, most of methods can detect just sub–optimal 
solutions of the objective function. In many cases these 
sub–optimal solutions are acceptable but there are 
applications where a high-speed computation is not only 
desirable but also indispensable. Moreover, in many 
applications there are imprecise values for the input data 
as well as for the fitness function. Therefore, the 
development of robust and efficient PSO methods for 

dynamic environments is a subject of considerable 
ongoing research. 
The motivation of new developed PSO concept in this 
paper is to achieve an acceptable accuracy in the local 
positioning systems, simply employing a small particle 
number and iterations. Benefit from the small number of 
particle and iterations, the computation time will be 
reduced to fulfill the rigid real-time conditions. Through 
the efficient control of search and convergence to the 
global optimum solution, the PSO-RTVIWAC method is 
capable of tracking and optimizing in the highly nonlinear 
dynamic local positioning systems. 
Previously, a linearly decreasing inertia weight or 
acceleration coefficients, often decreasing from 0.9 to 0.4 
during a run is used in PSO-TVIW and PSO-TVAC 
concepts. When tracking a nonlinear dynamic system, 
however, it is hard to predict whether exploration (a larger 
inertia weight value) or exploitation (a smaller inertia 
weight) will be better at any given time. Simply decrease 
of these parameters linearly is proved unsuccessful in the 
dynamic systems. 
Through empirical studies with some of the well-known 
benchmarks, it has been identified that the PSO-RANDIW 
method shows rapid convergence in the early stages of the 
optimization process and can find a good solution with great 
accuracy in the non-stationary environments. A new 
concept of PSO, motivated by the PSO-RANDIW and PSO-
TVAC, is proposed in this paper. As shown in Fig. 5 (a) and 
(b), as a new parameter automation strategy for the PSO 
concept, the time variable inertia weight and acceleration 
coefficients that randomly vary roughly within a linear 
range are introduced. The inertia weight is decreased 
linearly from ωmax to minimum value ωmin, multiplied by a 
random value r5. It means the inertia weight randomly 
varies within the shadow area, as shown in the Fig. 5 (a). 
The acceleration coefficients c1 and c2 change from cmax to 
cmin, multiplied by the other random numbers. The 
modifications of ω, c1, c2, xt+1 and yt+1 are mathematically 
represented as follows: 
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where r6, r5, r7 and r8 are uniformly distributed random 
numbers between 0 and 1. This version of PSO is referred 
to as time-varying inertia weight factor and acceleration 
coefficients method (PSO-RTVIWAC) in the following 
sections. 
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The research work done by Clerc [19], [24] indicates that 
use of a constriction factor k may be necessary to insure 
convergence of the particle swarm algorithm. It is used to 
prevent the particles from exploring too far away into the 
search space since always applies a damping effect to the 
oscillation size of each particle over time [20]-[23].  
The objective of PSO-TVAC is to enhance the global 
search in the early part of the optimization and to 
encourage the particles to converge toward the global 
optima at the end of the search. By changing the 
acceleration coefficients with time, the cognitive 
component is reduced and the social component is 
increased. However, in local positioning systems the 
positioning error is dominated by the measured distance 
error Ed, after the global search arrives the uncertain area 
as illustrated in Fig. 1 (b). A fast global search in the early 
stage is more attractive than convergence toward the 
global optima to find the optimum solution during the 
latter stage. Highly dynamic environments favor greater 
values for these parameters, which gives rise to faster-
moving particles that are able to track a fast moving 
optimum better [26].  
With above modification, a significant improvement of the 
optimum value and the rate of convergence are observed, 
compared with three previous PSO concepts. The PSO-
RTVIWAC method shows significantly quick 
convergence to a good solution, employing a small 
number of particles and iterations. The experimental 
results are presented and discussed in following sections. 

4. Position Estimate using PSO-RTVIWAC 

The general idea of position estimate is explained in Fig.6. 
In Fig.6 (a), there is a square room with side length L. As 
an example, four locators (locator0, locator1, locator2 
and locator3) are deployed in this room. Coordinates of 
locators (X0, Y0), (X1, Y1), (X2, Y2) and (X3, Y3) are 
predetermined.  
The distances between locators and tag are measured in 
TOA technique. As an initial condition, these distances 
expressed as R0, R1, R2 and R3 are obtained through 
measurement. Tag position (x, y) is unknown at this stage. 
Above situation is system input conditions.  
The measured distance between tag and locator m is 
expressed as: 

( ) ( ) rdEyYxXR dmmm *22 +−+−=                          (16) 
 

where (x, y) is an assumed coordinate of the tag, (Xm, Ym) 
is the coordinates of locator m, Ed is the maximum value 
of measured distance error, which is shown in Fig. 1 (b),  
and rd is an uniformly distributed random number 
between 0 and 1.  

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 6. General idea of position estimate using PSO-

RTVIWAC: (a) distance measured in TOA technique, (b) 
position estimated in PSO-RTVIWAC and (c) estimated 

results and error 
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Based on above assumption, system process for searching 
the position of tag is performed as follows. The PSO-
RTVIWAC is used to estimate tag position, as illustrated 
in Fig.6 (b). Three particles are deployed into the room 
randomly: particle0 (x0, y0), particle1 (x1, y1) and particle2 
(x2, y2). The distances between particles and locators are 
calculated. For instance, the distance between particle2 
and locator0 is D2,0. These particles move to the tag based 
on the PSO-RTVIWAC concept. The detailed process is 
presented in the next section.   
Finally, the particles stop around the tag which is shown in 
Fig.6 (c). Global best position (pgx, pgy) is considered as 
the tag position. It is the system output information. The 
position error between tag and global best position is Ep. If 
a reasonable good Ep is achieved only using a few 
particles and iterations, the benefit of PSO-RTVIWAC is 
demonstrated. 

5. The Process of Position Estimate 

Figure 7 shows estimation process in the PSO-RTVIWAC 
method. More detailed process and its practical 
performance are discussed in this section. 

5.1 System Initialization     

This system is initialized as shown in Fig.7 (a). Locators 
are deployed in the certain position of a square room. Tag 
is deployed randomly. The number of locators is set to 
nine in this example. The coordinates of nine locators are 
(0, 0), (0, 5), (0, 10), (5, 0), (5, 5), (5, 10), (10, 0), (10, 5) 
and (10, 10) (unit: meter). Distances between tag and 
locators are measured as defined in equation (16). 

5.2 Estimation Process in the PSO-RTVIWAC   

In the second step, the program uses the PSO-RTVIWAC 
method to estimate tag position. 
(1) In this stage as explained in Fig.7 (b), the particle 
swarm is initialized. These particles are deployed in the 
room with random positions and velocities.  
(2) The program calculates the distance between particle i 
and locator m:  

( ) ( )22
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t
immi yYxXD −+−=  (17) 

(3) The optimization fitness function of particle i at t is 
expressed as: 

( ) ( )∑
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1

2
,

m
mmii RDtF  (18) 

Fi(t) is the key point of this program. If the optimization 
fitness function Fi is small, the distance between the 
particle i and tag is short. When Fi is zero, particle i 
reaches the position of tag.  

   
 (a) 

  
(b) 

  
(c) 

 
Fig. 7. Position estimate using PSO-RTVIWAC: (a) 

system initialization, (b) estimation process and (c) 
estimated results and error 
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From previous iteration tp to current iteration tc, the 
position of particle i is determined based on a velocity 
defined before. For particle i, compare current Fi(tc) with 
fitness evaluation Fi(tp) which is corresponding to local 
best position (plx, ply) at previous loop. If Fi(tc) is smaller 
than Fi(tp), current position for particle i is recognized as 
new “local best position”. Otherwise, the local best 
position is kept as it is. The comparisons are performed 
over entire particle swarm. Then compare every Fi(tc) with 
fitness evaluation Fi(tp) for global best position (pgx, pgy). 
Find the smallest value among them. That is recognized as 
new “global best position”. 

5.3 Estimated Results and Error     

In the third step, the program is completed after T. As 
explained in Fig.6 (c) and Fig.7 (c), all particles converge 
into the global best position (pgx, pgy). This position is the 
optimal solution estimated using PSO-RTVIWAC, which 
is considered as system output. The position error Ep is 
defined as: 

( ) ( )22 ypxpE gygxp −+−=                            (19) 

6. Experimental Settings 

6.1 Benchmark    

In this section the performance of PSO-RTVIWAC is 
evaluated and compared with three previous methods. 
Simulations are executed over one thousand runs to find 
the global minimum in the search space. The position of 
tag is randomly placed in each run. The average position 
error Ep,average is expressed as: 

( ) 1000
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The Ep.average is used to evaluate the performance of each 
PSO concept. 

6.2 Population Size  

It is quite common in PSO research to limit the number of 
particles to the range 20 to 60 [12]–[14]. Van den Bergh 
and Engelbrecht [20] suggested that even though there is a 
slight improvement of the optimal value with increasing 
swarm size, it increases the number of function 
evaluations to converge to an error limit. This is generally 
true in terms of performance, but not in terms of cost. 
More particles would search more space, and a solution 
would then be found sooner. However, as the population 
increases, each iteration represents a greater cost. First, 
more particles rise the initialization time. Second, a large 
number of particles call upon the evaluation function. 

Then more particles increase the computation time 
remarkably. In order to fulfill the hard real-time conditions, 
the particle number must be reduced as much as possible. 
Therefore, all experiments are carried out with four 
different population sizes: 10, 15, 20 and 25.  

6.3 The Maximum Number of Iterations 

A very small error may be achieved if significantly more 
iterations are required. However such small value is not 
necessary in most real-world wireless positioning systems 
since the measured distance error is much large than the 
evaluate errors. An evaluate error of 0.01 m is sufficient. 
Moreover, for the real-time systems, the computation time 
is not acceptable if more iterations are applied. The 
iterations should be reduced in order to finish the 
computations within a very short time. Then in this paper 
the maximum number of iterations is selected as 20 and 50. 

6.4 Population Initialization 

Since the optimization function used in this paper may 
have the global minimum at or close to the origin of the 
search space, the initial population is randomly distributed 
in the entire search space. This method is used to observe 
the performance of the each PSO concept introduced in 
this paper. A dynamic range of 50 m is used in all 
dimensions. Generally in PSO methods the maximum 
velocity of a particle is limited, in order to eliminate 
excessive searching outside the predefined search space. 
The maximum velocity is limited to the upper value of the 
dynamic range. 

7. Experimental Results 

For all simulations, the inertia weight factor is set to 
change from 0.9 to 0.4 over the generations. The 
performance of the PSO-RTVIWAC method is then 
observed in comparison with the PSO-TVIW, PSO-TVAC 
and PSORANDIW methods. Results are presented in 
Tables. 

7.1 The Maximum number of iterations is set to 20 

Table 1 summarizes the average positioning error Ep,average 
as the search space is set to a dimension of 50 m × 50 m. 
Initially, in the Table 1, it is seen that the PSO-RTVIWAC 
method achieves the smallest average positioning error 
Ep,average under any particle number. In four PSO concepts, 
the average positioning error Ep,average evaluated by PSO-
TVIW is worst. The average positioning error Ep,average 
evaluated by PSO-RANDIW is smaller than what the 
PSO-TVIW and PSO-TVAC concepts produce. The 
average positioning error Ep,average is substantially 
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improved by the PSO-RTVIWAC method. Second, the 

experimental results also indicate the effect of particle 
number on the optimum solution. As the particle number 
is increased from 10 to 25, for the PSO-TVIW, PSO-
TVAC and PSO-RANDIW methods, the average 
positioning error Ep,average are reduced by 50 %. However, 
it is reduced by 75 % with the PSO-RTVIWAC method. 
For example, from the table above, it is clearly shown that 
Ep,average for PSO-TVAC is reduced from 0.605 m to 0.303 
m and 0.106 m to 0.0255 m for PSO-RTVIWAC. 
Obviously, if the particle number is increased, a 
significant improvement of convergence rate is observed 
with the PSO-RTVIWAC method. 

7.2 The Maximum number of iterations is set to 50 

In the Table 2, the maximum number of iterations is set to 
50. Since more iterations are applied, the average 
positioning error Ep,average is decreased in each PSO 
concept. Apparently the PSO-RTVIWAC method achieves 
the smallest average positioning error Ep,average, compared 
with other methods under any particle number. If the 
particle number is set to 10 and the maximum number of 
iterations is set to 50 (500 evaluations), an error of 
0.00603 m is achieved by the PSO-RTVIWAC method, 

which is sufficient for the current local positioning 

systems. However, in other PSO concepts, more 
evaluations are necessary to achieve the similar 
positioning accuracy. For example, an error of 0.00799 m 
is accomplished by the PSO-RANDIW method, using 
1250 evaluations (25*50). It means that to achieve the 
same order of the accuracy, the computation time 
consumed by the PSO-RANDIW method is 2.5 times of 
what the PSO-RTVIWAC method used.  
From all above experimental results it is summarized that, 
for local positioning systems, the introduction of PSO-
RTVIWAC has significantly improved the optimum 
solution, compared with other PSO strategies. If the 
particle number is increased, the PSO-RTVIWAC method 
accomplishes more improvement on the optimum solution, 
which is especially desirable in the local positioning 
systems. The computation efficiency is highly improved, 
i.e. the computation can be finish in an extremely short 
time. As a result, simply employing a few particles and 
iterations, the position can be obtained with reasonable 
good accuracy. On the other hand, an improvement of 
convergence rate is observed with the PSO-RTVIWAC 
method. Such an attractive property is significant for the 
real-time applications. Consistent performance has been 

Table 1. The average positioning error Ep,average produced with 20 iterations in a dimension of 50 m × 50 m 
 

 Particle number Side length (m) Max. number of 
iteration Ep,average (m) 

PSO-TVIW 
PSO-TVAC 

PSO-RANDIW 
PSO-RTVIWAC 

10 
10 
10 
10 

50 
50 
50 
50 

20 
20 
20 
20 

8.00E-01 
6.05E-01 
3.02E-01 
1.06E-01 

PSO-TVIW 
PSO-TVAC 

PSO-RANDIW 
PSO-RTVIWAC 

15 
15 
15 
15 

50 
50 
50 
50 

20 
20 
20 
20 

6.08E-01 
4.55E-01 
2.17E-01 
4.40E-02 

PSO-TVIW 
PSO-TVAC 

PSO-RANDIW 
PSO-RTVIWAC 

20 
20 
20 
20 

50 
50 
50 
50 

20 
20 
20 
20 

5.15E-01 
3.64E-01 
1.68E-01 
2.94E-02 

PSO-TVIW 
PSO-TVAC 

PSO-RANDIW 
PSO-RTVIWAC 

25 
25 
25 
25 

50 
50 
50 
50 

20 
20 
20 
20 

4.43E-01 
3.03E-01 
1.44E-01 
2.55E-02 
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observed with the PSO-RTVIWAC method, for all 
experimental settings considered in this investigation. 

8. Conclusions 

In this paper a novel random time-varying inertia weight 
and acceleration coefficients (PSO-RTVIWAC) method is 
described aiming to improve the performance of track and 
optimize in the local positioning systems.  
The local positioning systems are identified as nonlinear 
dynamic systems with numerous noises. They consist of 
two distinct characteristics: First, the actual position of tag 
in the search space changes over time so that the 
optimization algorithm is expected to track it over time. 
Second, the objective function is inherently imprecise 
because the measured distance error Ed makes it very 
difficult to approximate the precise position in the search 
space. An effective algorithm is essential to track and 
optimize the tag position. This algorithm needs to meet the 
accuracy requirements reasonably well and complete the 
computation in a very short time.   
In this paper, the PSO-RTVIWAC concept is introduced 
to efficiently control the search and converge to the global 

optimum solution. Experimental results are compared with 
three previous PSO approaches, showing that the new 
optimizer significantly outperforms previous approaches. 
A significant improvement of the convergence rate is 
observed with PSO-RTVIWAC method. It means that the 
particle number and iterations can be reduced to a small 
value while accomplishing an acceptable positioning 
accuracy simultaneously. Therefore, through the PSO-
RTVIWAC method, the computation time can be reduced 
to a great extent, which is crucial in the real-time local 
positioning systems. The experimental results indicate that 
PSO-RTVIWAC is a particularly efficient method for 
tracking and optimizing in the nonlinear dynamic local 
positioning systems. 
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Table 2. The average positioning error Ep,average produced with 50 iterations in a dimension of 50 m × 50 m 
 

 Particle number Side length (m) Max. number of 
iteration Ep,average (m) 

PSO-TVIW 
PSO-TVAC 

PSO-RANDIW 
PSO-RTVIWAC 

10 
10 
10 
10 

50 
50 
50 
50 

50 
50 
50 
50 

2.02E-01 
1.03E-01 
2.25E-02 
6.03E-03 

PSO-TVIW 
PSO-TVAC 

PSO-RANDIW 
PSO-RTVIWAC 

15 
15 
15 
15 

50 
50 
50 
50 

50 
50 
50 
50 

1.47E-01 
7.42E-02 
1.39E-02 
3.26E-03 

PSO-TVIW 
PSO-TVAC 

PSO-RANDIW 
PSO-RTVIWAC 

20 
20 
20 
20 

50 
50 
50 
50 

50 
50 
50 
50 

1.15E-01 
5.83E-02 
9.57E-03 
1.55E-03 

PSO-TVIW 
PSO-TVAC 

PSO-RANDIW 
PSO-RTVIWAC 

25 
25 
25 
25 

50 
50 
50 
50 

50 
50 
50 
50 

9.88E-02 
4.73E-02 
7.99E-03 
1.25E-03 
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