
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

79

Developing Service Oriented Enterprise by Composing Web Services
Based on Context

Sodki Chaari1, Khouloud Boukadi2, Chokri Ben Amar3, Frédérique Biennier1 and Joël Favrel1

(1) INSA of Lyon, France, (2) EMSE of Saint-Etienne, France, (3) ENI of Sfax, Tunisia

Summary
Service Oriented Enterprise (SOE) is a dynamic and temporary
collaboration between autonomous Web services. Web services
are selected and composed to form an inter-enterprise business
process. Web services selection is based usually on functional
criteria. However, in the case of SOE there is a need to consider
more pragmatic criteria such as context parameters. In the present
work we propose a Framework for SOE creation which enables
the selection of Web services based on contextual parameters.
We extend the WS-Policy standard to describe the different
categories of context parameters we consider. In order to enhance
Web service selection and to improve the manageability of a high
number of Web services, we use the community concept in order
to gather specific domain Web services. The proposed
Framework uses abstract templates called Goal templates to
insure an abstract description of required Web services. Goal
templates gather both functional and contextual parameters used
to select suitable services.

Key words:
Web service, Service Oriented Enterprise, Context, enterprise
collaboration.

1. Introduction

The Web has grown from a simple repository and sharing
of information to a big platform for service provision. Web
services are gradually taking root following the
convergence of business and government efforts to making
the Web the primary medium of interactions[10, 28]. In
addition, the maturity of XML based Web service
standards, such as WSDL and SOAP, are driving the great
adoption of Web services technologies [16, 30]. This trend
is motivating a paradigm shift in enterprise structure: from
the traditional single entity to a collaboration of Web
services. Web services provided from several autonomous
enterprises in different locations will be identified,
selected and composed together to achieve tasks, provide
information, transact business, and take action on behalf of
users.

We refer to these inter-organizational composed services
as a Service Oriented Enterprises (SOE). Authors in [14]
define the SOE as a dynamic and temporary collaboration
between several autonomous Web services which provide
collectively a value added service to a final users which
can be individuals or enterprises. The SOE is created on
demand, by discovering the "right" component Web
services that meet the inter-organizational business goals
and tailored to satisfy the customers' needs. We refer to
this process as Web service composition problem, which
requires both inter- and intra-organizational business
processes be composed in a coordinated manner.

The XML standards languages such as WSDL, UDDI,
RDF [1], DAML-S [33], and OWL-S [25], facilitate the
Web service selection and their composition as a Service
Oriented Enterprise. However, all these standards allow
the discovery and composition of Web services based on
syntactic and semantic description [2]. We believe that,
based on these two descriptions we are not enabled to
achieve a fully automated Web Service composition. In
fact, we need to consider more pragmatic rules to make a
decision whether a specific Web service can be used as
participant in the service oriented enterprise. These
pragmatic rules include for example the geographical and
temporal constraints imposed by the Web service, the
quality of service, cost, payment methods, etc. These
pragmatic parameters characterize contexts on which Web
services and the fully Service Oriented Enterprise evolve.

We attempt in this present work to enhance web service
selection and composition in a SOE scenario with a
particular focus on contextual parameters. We present a
context-based Web services community framework for
service based enterprise collaboration. The final objective
of this proposal is to look into the role of context and
community in framing the automatic creation of the
Service Oriented Enterprise. The main contribution in this
paper is summarized in the following points:

i. We extend the WS-Policy framework by adding new
components to enable a structured presentation and an
easy processing of context policies.

Manuscript received June 5, 2008.
Manuscript revised June 20, 2008.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

80

ii. In order to enhance Web service selection and to
improve the manageability of a high number of Web
services, we develop a set of communities by gathering
related Web services. Every community exposes a set
of generic methods related to the Web service domain
as well as a set of generic context parameters which are
relevant to this community.

iii. We introduce the concept of Goal Template used as an
abstract description of an activity in the collaborative
business process (the SOE process). It will be
considered as a mean to structure the request of Web
service regarding to particular activity in the SOE
process. This will contain the requirements (functional
and context) which must be verified by the selected
Web service.

The remainder of this paper is organized as follows.
Section 2 suggests a motivating example in order to
underline the usefulness of context parameters in the
composition process. In section 3, we detail the context
categories we propose. Section 4 addresses the problem of
context parameters representation and introduces the WS-
Policy standard as support to such representation. The
Framework for the SOE establishing is exposed in section
5. Next, section 6 gives a non exhaustive overview of
related works. Then, some implementation features are
presented in section 7. Finally a conclusion and future
work are presented.

2. Motivating example

To illustrate the problem, let's consider the case of a
stuffed Toy Manufacturer (TM) who receives an order
from a large supermarket wishes to order a large quantity
of stuffed toys. Providing stuffed toys consists in sewing
woolen felt, stuffing polyester fiber filling, adding fabric
and buttons according to individual toy designs. Once the
order is received, the TM proceeds to establish a
collaborative business process in order to fill the stuffed
toy order. The collaborative process consists in providing
raw material and patterns to the sewing partner. Once the
raw materials are received, the aforementioned sewing
partner begins manufacturing stuffed animals. In parallel,
the TM must procure a supplier for the toy boxes in which
the stuffed toys are to be placed. Finally, a firm is selected
to pick up the toys from the TM warehouse and deliver
them to a specific location.

Assuming that all participants in this value chain have
Service Oriented Architecture based processes.
Interconnecting the TM, sewing partner, box supplier and
deliverer processes induce the composition of
corresponding services and consequently the establishment
of a Service Oriented Enterprise. A selection phase is
required to find suitable services responding to differing

requirements. However, finding services that match only
the functional requirements of the stuffed toy manufacturer
is generally considered as insufficient to guarantee the
reliability of the retrieved services. In fact, some
contextual information may be as relevant as the required
functionality itself. They should be taken into account
when selecting Web services. Contextual information can
be considered as a decisive criterion which a consumer
must evaluate to select a specific service among several
equivalent functionalities. For example, considering two
sewing services from two providers offering similar
capabilities in terms of stuffed toy sewing, the TM would
prefer the one having the shorter execution time or the
offering better prices. In addition, these constraints can be
further defined:

• The TM may prefer that the supplier of boxes be a
local enterprise which in some cases can be more
expensive than one farther away but offers the
advantage of shorted delivery time and without extra
travel and perhaps customs fees.

• The TM has some cost constraints where the toys
should not exceed 10 euro per item.

• The stuffed toy must be delivered within 10 days to
meet a sales deadline for the supermarket.

Consequently, we need to consider more constraints
related to the context governing the establishment of the
collaborative business processes. Contextual information
will be used to make decisions of the adequacy of service
with regard to the requirements.

3. Adopting context in the Service Oriented
Enterprise

The concept of context has been studied in several fields
for quite sometime and there are a number of different
definitions and uses of the term context. Context appears
in many disciplines as meta-information to characterize the
specific situation of an entity, to describe a group of
conceptual entities, and to partition a knowledge base into
manageable sets or as a logical construct to facilitate
reasoning services [5]. Our definition of context follows
that of Dey [18] who says that a context is "any
information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and
an application, including the user and the application
themselves".

The goal of the context-aware applications is to acquire
and utilize information about the context to provide
services that are appropriate to the particular people, place,
time, events, etc. There are several definitions of context

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

81

aware system. Simply put, a system is context-aware if it
uses context to provide relevant information and/or
services to the user, where relevancy depends on the
user’s task [23].

Context includes whether implicit input and explicit input.
For example, the user related context can be deduced in an
implicit way by the service provider such as in pervasive
environment using physical or software sensors. Explicit
context is determined explicitly by entities involved by the
context. Authors in [6] depict that a variety of
categorizations of context have also been proposed. In fact,
there are certain types of context which are, in practice,
more used than others. These contexts' categories are
location, identity, time and activity used for characterising
the situation of a particular entity. Despite the various
attempts to develop categorization for contexts, there is no
generic context categorization. Relevant information
differs from a domain to another and depends on the
effective use of this information [29].

The Web service paradigm enforces the vision of
customized and context-aware service provisioning. In fact,
Web services are conceived as an encapsulated module
presenting a set of functionality that can be easily reused,
so long as the inputs, outputs, and messaging protocol are
conformant with the descriptions that present. However,
when we begin to look beyond simple examples, we find
that the situation become more complex especially in a
Service Oriented Enterprise scenario [24]. To support
automated discovery and selection of world-changing
services, for example, service descriptions must be
unambiguous about what situations will guarantee
successful service uses, and what new situations will result
from those uses. For some categories of services, service
behaviour may vary with time, location, user history, pre-
existing contractual commitments, and so forth;
descriptions of such distinctions can quickly become
complex [23, 24]. In addition, when we look in practical
case, many other aspects of services must be taken into
account which exceeds the simple services' description. As
example, Service orchestrator must take into account ay
provider reputation, and recommendations from third
parties. In addition, service compositions, to be effective,
must consider several resource constraints and
interrelationships between service providers. Finally,
recovery from failure must be based in a complex set of
constraints including QoS constraints, user preferences,
policies, etc. Indeed, when considering the full range of
service-related activities, it becomes clear that dealing
with context is a major challenge, requiring greater
expressiveness and reasoning capabilities than are
supported by the current widely accepted building blocks
of the Web services stack [24].

3.1 Categorizing context in the Service Oriented
Enterprise

The categorization of context parameters is important for
the development of context-aware Web service
environments. Despite the various attempts to develop a
taxonomy for context parameters, there is no generic NFP
categorization. Relevant information varies from one
domain to another and depends on the effective use of this
information. We propose a categorization of context
parameters in Web service environments. One or more non
contextual properties are associated to a Web service. Each
property belongs to a certain category which can be either
QoS related or business related.

3.1.1 QoS properties category

QoS related properties represent a very important aspect of
non-functional characteristics for a Web service. The
international quality standard ISO 9000 describes quality
as "the totality of features and characteristics of a product
or service that bear on its ability to satisfy stated or
implied needs" [19]. QoS encompasses several quality
parameters which characterize the behavior of a Web
service when delivering its functionalities [11, 15]. We
consider three main categories of QoS depending on the
behavior of the Web service they characterize:

 Execution: includes the performance parameters which
characterize the interaction with the Web service. We
consider the following properties [32]:

• Response Time: Time elapsed from the submission
of a request to the time the response is received.

• Availability: It represents the percentage of time that
a service is operating. Large values mean high
availability. Small values indicate low availability.

• Accessibility: It represents the degree that a Web
service is able of serving a request.

 Security: Related to the ability of a given Web service
to provide suitable security mechanisms. We consider
the following parameters:

• Encryption: the ability of a Web service to support
the encryption of messages (received and sent).

• Authentication: the capacity of a Web service to offer
suitable mechanisms dealing with the identification
of the invoking party (i.e., service consumer) and
allow operation invocation.

• Access control: Whether the Web service provides
access control facilities to restrict the invocation of
operation and the access to information to authorized
parties.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

82

 Privacy: Includes the ability of the Web service in
protecting privacy of the submitted information. we
present the following parameters:

• Privacy policy: indicates whether the Web service
presents a privacy policy.

• Information sharing: indicates whether the Web
services shares the collected information with a third
parties.

• Information disclosure: indicates if the Web service
asks for an explicit permission to reveal information
to third parties.

3.1.2 Business properties category

Business properties are considered as part of context
properties related to a Web service. Like QoS properties,
they are relevant for differentiating Web services having
the same functional characteristics. We consider two main
categories of business properties: (i) the environmental
properties and (ii) the strategic properties. Environmental
properties include location and temporal properties.
Strategic properties include the following properties:

 Cost: It represents money that a consumer of a Web
service must pay in order to use the Web service, i.e.,
the cost of operations invocation.

 Reputation: Measures the reputation of the Web
services based on user feedbacks [43]. Users are
prompted to rate Web services on a scale after the end
of a querying session. The reputation corresponds to
the average of collected ratings.

 Organization arrangement: Includes preferences and
history (ongoing partnerships)

 Payment method: It represents the payment methods
accepted by a Web service, i.e. transfer bank, Visa
card…

 Monitoring: required for a number of purposes,
including performance tuning, status checking,
debugging, and troubleshooting [26]. The monitoring
context offers mechanisms that check the status of a
service invocation. It also includes elements for
inquiring about the "health" of a service in real time by
detecting signs of failure.

3.2 Describing Context categories by ontology

We use an ontology to represent the above context
categorization (see Figure 1). Ontology can be defined as a
formal explicit definition of a shared conceptualization
[21] and has many benefits like knowledge sharing, logic
inference, knowledge reuse. From the point of view of
Web services and their discovery in distributed registries,
ontology of context properties will function as universal

dictionaries so that the mechanism and registries share the
same interpretation of the terms contained in the WS
description.

Fig. 1 Ontology for context categories.

4. Using policies to express contexts

Modelling context is a crucial issue that needs to be
addressed to assist context-aware applications. In our case,
we refer by context modelling the language which will be
used to define both Web service and enterprise
collaboration contexts. Since, there is a diversity of
contextual information, we find several context modelling
languages such as ConteXtML [34], contextual schemas
[39], CxBR (context-based reasoning) [20], and CxG
(contextual graphs) [7]. These languages provide the
means for defining context in specific application domains
such as pervasive and mobile computing. All these
representations have strengths and weaknesses. As stated
in [9], lack of generality is the most frequent drawback:
usually, each representation is suited for only a specific
type of application and expresses a narrow vision of the
context. Consequently, they present little or no support for
defining context in Web service based collaboration
scenarios.

In this work we model the different types of context based
on policy. Relation between context and policies is
depicted in the definition below:

Definition 1 A Context Cx is a pair (Cx-name, P) where
Cx-name corresponds to the context name and P is the
policy related to the given context Cx. Let P-set= {P1, P2,
…, Pn} denotes the set of policies and WSCx= {Cx1,
Cx2,…, Cxn} the set of context properties related to a
particular Web service, we express the mapping between
Web service' contexts and policies with the mapping
function CP: WS-Cx P-set which gives the policy related

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

83

to a given context. It can be expressed
as

In the last definition, every context has a corresponding
name and will be described with a set of policies.
Consequently, to express context we need to express at
first policies. To this end, a policy definition language is
required. The selection of this language is guided by some
requirements that need to be satisfied as reported in [17]
expressiveness to support the wide range of policy
requirements arising in the system being managed ,
simplicity to ease the policy definition tasks for people
with various levels of expertise, enforceability to ensure a
mapping of policy specification into concrete policies for
various platforms, scalability to guarantee adequate
performance and analyzability to allow reasoning about
and over policies. Additional requirements for policy
definition languages are also given in [38]. The approach
presented in this work uses the WS-Policy Framework to
express context policies.

4.1 The basic WS-Policy framework

WS-Policy framework provides a grammar for
representing web services' properties based on XML. A
policy is defined as a collection of alternatives which is,
itself, defined as a collection of assertions. An assertion is
used to represent a requirement, capability or a behavior of
a Web service [40]. Assertions specify characteristics
which are critical for selecting and using the Web services,
for instance contextual properties. An assertion can
include an arbitrary number of child assertions and
attributes. To facilitate interoperability, WS-Policy defines
a normal form for policy expressions which is a
straightforward XML Infoset representation of a policy,
enumerating each of its alternatives that in turn enumerate
each of their assertions [3]. A WS-Policy normal form
contains the following tags: The "Policy" tag which is used
to start and finish a policy expression. The "ExactlyOne"
tag which contains a set of alternatives and finally the
"All" tag which includes all the assertions in an alternative.
The cost property of a Web service can be represented
using the WS-Policy as follow (Figure 2):

Fig. 2 Example of the extended WS-Policy expressing a cost policy.

However, such representation using the original
specification of WS-Policy presents several difficulties
especially in the processing of the policies. Consequently

the matching and intersections processes between two
policies will be difficult. To overcome this shortage, we
introduce some new components in the WS-Policy [13] as
presented in next section.

4.2 Main components of extended WS-Policy

WS-Policy was written with some flexibility in such a way
that assertions are domain independent. Hence, according
to the domain, the form and specification of the assertion
contents can be defined. In order to address the context-
based policy, we suggest extending WS-Policy
specifications with a super set of elements to enable an
automatic parsing and reasoning over policies. For this
reason, we propose using an ontology-based model to
specify these elements as illustrated in Figure 3. We
introduce concepts as well as relationships among them to
represent context policies. Below, we describe the various
elements which constitute the extended policy:

 Policy: represents the root WS-Policy element and
indicates a policy expression, which is an XML
representation of a policy;

 Name, Id: identify a given policy within the WS-
Policy;

 PolicyCategory: each policy belongs to a specific
policy category corresponding to a particular context
attribute;

 PolicyReference: enables assertion reusing across
policies. Then, the content of a policy may be included
into another policy;

 Service: describes details of the service for which the
policy has been specified. A capability policy includes
this element in order to specify some details
corresponding to the service type to which the policy is
applied;

 PolicyOperators: the ExactlyOne and All elements are
WS-Policy policy operators. The ExactlyOne operator
is a collection of policy alternatives and the All
operator gathers policy assertions into alternatives;

The context policy assertion is composed of the following
attributes:

 AssertiontType: indicates whether the assertion is a
capability or a requirement. This Type enhances the
match-making process. In fact, in normal cases the
matching process considers all assertions as
capabilities and requirements and takes one-to-one
matching. This complicates matching and makes the
process time consuming. The AssertionType seeks to
facilitate the matching process;

 MatchingType: indicates the type of reasoning that can
be used regarding the assertion. There are two types:

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

84

• The first type is "xsd", denoting any data type
supported by the XML schema such as string and
float. In this case our reasoning about this assertion
compatibility must take into account the
manipulation of such data.

• The second type is "ont," indicating that a semantic
reasoning can be used when matching this assertion.
When defining assertion, the policy manager, based
on its domain knowledge, can assess if reasoning
using transformation rules can be applied to the
assertions. For example, an administrator defines
two policy assertions concerning the "Execution
Time" and "Network Time." But, he or she knows
that the sum of these two QoS attribute values can
produce another QoS attribute: the "Response
Time" attribute. The administrator indicates that
semantic reasoning can be applied by setting
attribute of the MatchingType to the "ont" value in
the assertion definition;

 ServiceOperation: an assertion is related to a particular
Web service operation. In some cases the assertion
may be applied to a particular attribute in the service
operation;

 Expression: guarantees an easy parsing and facilitates
automatic comprehension and handling of assertions.
This element contains sub-elements: the Parameter
sub-element represents the context parameter which
will be expressed by the assertion, such as the cost; the
Value sub-element is related to the supported
assertions; the Unit sub-element corresponding to a
measure unit of metrics related to the context attribute;
and the Operator sub-element is used in the assertion
expression to represent relationship between context
attributes and values.

Fig. 3 WS-Policy ontology.

The example illustrated in Figure 4 defines a context
policy based on the extended WS-Policy. This example

addresses the cost property. Lines (02-05) show name-
spaces: wspes, cxo, op, un which correspond respectively
to the name-space URIs of the web service extended
policy, the context categories Ontology, the Unit and
Operator Ontologies. The line (08) indicates the name of
the cost, (CostAssertion). Its expression is defined between
lines (11) and (18) which indicate that the cost must be
less than 100 euros.

Fig. 4 A context-based policy example.

4.3 Publishing context WS-Policy

In order to be used in the selection process, context
parameters specified as WS-Policy must be attached to
Web service and published in a registry. In our work, we
use the UDDI registry for publishing Web services and
their attached WS-Policies. For this purpose we adopt the
same mechanisms introduced in the WS-PolicyAttachment
to attach policy expressions to UDDI [42]. We register
context policies of a given Web service as distinct tModels.
tModel is a UDDI concept introduced for defining
technical fingerprints (or specifications) of Web services.
As illustrated in Figure 5, the tModelKey attribute (line 1)
in the tModel tag represents a unique identifier generated
by UDDI to refer to the tModel. This identifier also
represents the context policy identifier presented by the
tModel. The first keyedReference (lines 7-10) corresponds
to the service identifier on which context constraint will be
attached. The second keyedReference (lines 12-15)
represents the URL of XML file corresponding to the
context policy. The third keyedReference represents the
category for the context policy (lines 17-19). Its value acts
like an index which refers to the context policy attribute in
UDDI.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

85

Fig. 5 Publishing context policy in the UDDI tModel.

5. Model for Service Oriented Enterprise
creation

In this section, we present our model for Web service
based enterprise collaboration. We introduce a key concept
in our proposal which is the idea of Web service
community. Web service community supports the dynamic
discovery and selection of Web services which will
participate in the collaborative business process.

5.1 Community support for Web service discovery

A community is a "container" which clusters Web services
based on a specific area of interest. All Web services
which belong to a given community share the same area of
interest. Communities provide descriptions of desired
services without referring to any actual service [36].

Communities are defined by community providers (see
Figure 6). For example, they can be a domain specific
consortium such as a group of organizations which
contributes in a particular marketplace or simply an
administrator.

A community C is formally defined as a tuple

C= < Id-Community,Cg, WSS, GM, GCx>, where:

• Id-Community is the identifier of the community;

• Cg represents the category of the community.
Examples of categories include Delivery, Payment, etc;

• G-Method is a set of Generic Methods proposed by the
community C. Generic Methods are "abstract" methods
that summarize the major functions offered by a
community. Community providers define generic

methods based on their expertise on the corresponding
business domain. The term "abstract" means that no
implementation is provided for generic method.
Community providers present only an interface
description for every generic method. This interface
could subsequently be used and implemented by a
concrete Web service.

• WSS is the set of Web services members of the
corresponding community. Being members of a
community, Web service promise that they will
support one or several of the community's generic
methods.

• GCx is the set of generic context elements which the
community is sensitive to. Like generic methods,
generic context parameters are defined by community
provider. Examples of context elements include QoS,
location, price, etc.

Our approach for creating communities is based on using
functional ontologies that capture the relevant methods,
their inputs and outputs in a domain. In addition,
contextual parameters are added to a community based
also on context parameter ontology defined previously.

Fig. 6 Community for Web service.

5.2 Collaborative business process Construction

The business model, presented here, is based on the
concept of collaborative process specification also referred
to as Abstract Process. An abstract process represents a
Web service based collaboration process whose control
and data flow are defined, but the concrete Web services

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

86

are not selected until a later time. The advantage of this
approach is that complexities in control and data flow can
be collected using a manual approach and Web service
discovery and selection can be automated using discovery
mechanisms based on functional and contextual
parameters.

We identify two steps for dynamic collaborative process
construction: (i) collaborative business process schema
creation and (ii) Web service discovery that we detail
heretofore.

5.2.1 Collaborative Process Schema

A Collaborative Process Schema (CPS) is composed of
two basic sections: (i) Goal Template which captures the
capabilities of the requested service and (ii) description of
the flow with special type of activities called
synchronization Activities. Figure 7 presents an example
of a collaborative process schema.

Definition 2 (Collaborative Process Schema). A
Collaborative Process Schema is a tuple

CPS = < GTs, C, L > where:
GTs is the set of goal templates, C is the set of connectors,
L∈ (GTs C) (GTs C) is the set of control links
which describes the connections among goal templates and
defines the flow structure, which is the sequencing of goal
templates within a schema.

∪ × ∪

Definition 3 (Goal Template). A Goal Template (GT) is
defined as a pattern used to identify suitable candidate
Web services which can be involved in the collaboration
process. A goal template represents the requirements of a
service requestor and is formally defined as:

GT= <Id-Template, Id-Community, IGM, ICx> where:

• Id-Template is the identifier of the Goal Template,

• Id-Community represents the community identifier in
which the goal template is related.

• IGM represents the set of instantiated general methods
where IGM GM. ⊂

• ICx corresponds to the set of instantiated general
context parameters where ICx ⊂ GCx.

The concept of goal template is introduced to help in the
Web service discovery process. This describes abstract
Web services in specific domain.

Our approach for creating Goal Templates is based on
using communities which detail the relevant generic
methods, their inputs and outputs in a specific Web service
sector. Generic methods inherited from the community are
instantiated with relevant parameters related to the
collaboration process request. Besides, a Goal Template
defines also the set of context parameters which must be
verified by the candidate Web services.

A key issue that affected our definition of Goal Templates
is the notion of treating Web services as a set of indivisible
units of functionalities and contextual parameters.
Consequently, to discover the requirements of a given
Goal Template, we must find a Web service which
provides suitable methods with appropriate set of
contextual parameters.

Definition 4 (Synchronization Activity). A
synchronization activity can be:

• And-Join activity: a point in the process where two or
more parallel executing activities converge into a
single common thread of control.

• Or-join activity: a point within the process where two
or more alternative branches converge to a single
common activity as the next step in the process.

• And-fork activity: point within the process where a
single thread of control splits into two or more parallel
activities.

• OR-fork activity: a point within the process where a
single thread of control makes a decision upon which
branch to take when encountering multiple alternative
process branches.

• Loop activity: a cycle in the process involving the
repetitive execution of one (or more) service(s) until a
condition is met.

Fig. 7 Collaborative process schema based on template.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

87

5.2.2 Web service discovery

Web Service discovery process is based on the
requirements defined using the Goal Templates to find
candidate services for this cooperative process.

Fig. 8 Discovery framework overview.

The cornerstone of our framework for Web service
discovery (see figure 8) is the Service Discovery Engine
(SDE). The SDE takes each Goal Template defined in the
Abstract Process creation phase and tries to project the
requirements fixed in the Goal Template (GT) in the actual
Web service set.

SDE offers two operations. The first is the findWebService
operation. This takes as input the XML file describing the
Goal Template, then returns a list of candidate Web
services from the Web service registry (UDDI) fitting the
GT description. The second is the updateCommunityList
operation used by community providers at the community
creation time in order to update SDE's list of available
communities. Each entry in updateCommunityList contains
the service community ID (Id-Community) and the
community category.

The discovery process is a 3-step process:

Step1: (Identify Web service community). When receiving
the XML description of the Goal Template, the SDE

determines the category of the community related to the
template.

Step2: (Identify Web services fitting functional
constraints). Based on the instantiated generic methods
described by the template, the SDE searches in this
community the Web services which match these functional
requirements. This step leads to a primary list of Web
services.

Step3: (Match Goal Template contextual constraints with
Web service context parameters). This step consists in
verifying contextual constraints expressed by the template.
It is composed of 2 sub-steps:

• Sub-step3.1: SDE gets the set of context policies
related to every Web service from the primary list
identified in the previous step 2. For this purpose it
sends the service identifier to the UDDI registry which
checks all existing tModels and returns the set of
context policies related to this Web service.

• Sub-step3.2: This sub-step consists on matching
instantiated generic context parameters with the
extracted context policies of each Web services. The
SDE sends these two sets of context constraints to a
Context Evaluator Engine (CEE). Determining if two
contexts are equivalent relies on Context Matching
Template (CMT). The CEE has its own set of CMT.
Based on the category of the context category, it
triggers the suitable CMT stored in the CMT base. The
syntax of context matching template is given below:

Context Matching Template CMT-name
 Context category category name
 Constraints source policy, member policy
 Action matchContextPolicies (source policy,
 member policy)

The context matching template represents an equivalency
criterion related to a specific context category. The CMT
provides mechanism to compare correspondence between
two context policies. The Action field in the CMT
corresponds to a matching function called
matchContextPolicies which specifications are related to
context policy category and to the community in which the
Web service belong. For example, in some cases, this
function uses a simple syntactic comparison of context
constraints and in other cases it uses transformation rules
as mentioned in [41] before comparing context constraints.

This step returns a list of Web services which match the
Goal Template instantiated generic context.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

88

6. Related work

Web service composition is a very active research and
development areas. In this section, an overview of major
techniques related to our approach is suggested. We will
introduce some relevant works in dynamic Web service
composition techniques. Depicted also are important work
in context-aware Web service.

6.1 Service composition approaches

Many researchers have worked on Web service
composition using disparate approaches, which vary from
manually composing services using either GUI based tools
or AI planning based techniques to automatically compose
the service. Next, we survey some relevant works in the in
e-business collaboration field.

Medjahed et al. [27, 28] use semantic Web technologies
for the automatic composition of Web services which are
semantically described in terms of non-functional
properties such as their purpose, category and quality. A
"composability" model is defined, for comparing syntactic
and semantic features of services, verifying if they can be
composed. The client request is expressed in the
Composite Service Specification Language, and delineates
the sequence of desired operations that the composite
service should perform. Thus, given the client request and
a set of available atomic services, they develop a technique
for semi-automatic composition. Finally, the composite
service is translated into an orchestration language that is
based on a mediated architecture.

Orriëns et al. [31] address the issue of service composition,
where services are atomically represented as Web
components. As a composite service is constituted of a set
of (possibly composite) services, also a Web component
can be constituted of other Web components, manually
"glued" together by the so-called composition logics. The
authors have also developed the language SCPL (Service
Composition Planning Language), for representing a
composite service, by specifying relations among Web
components, in terms of the execution order (either
sequential or concurrent) of Web components within
composition, or dependencies among input and output
parameters.

Thakkar et al. [37] suggest a dynamic AI approach for
Web services composition based on mediator. The
composition algorithm assimilates as input the set of
available services modelled as data-sources, and a user
query, expressed in terms of inputs and requested outputs
provided by the user. The output is an integration plan that
can be executed by a streaming, highly parallel execution
engine called Theseus. Moreover, a mediator system as
described, accepts a user query and returns a URL of the

new dynamically composed Web services that can answer
a class of user queries similar to the original user query.

Several dynamic service composition systems have been
proposed and implemented, such as SELF-SERV, e-Flow
and so on and so forth. In [4], authors present a framework
SELF-SERV to compose declarative Web services. The
resulting services can be executed in a decentralized
manner within a dynamic environment. The service
selection approach uses a local selection strategy.
Although the service selection is optimal locally, they may
not satisfy the overall constraint. E-Flow is an e-business
service composite system designed by the HP lab [12]. It is
a platform for specifying, enacting, and monitoring
composite Web services. Composite Web services are
modelled as business processes, enacted by a service
process engine. Although this supports Web service
management and deployment, however Web services
providers must register, and there is not a fully supported
Web services environment.

The works being presented previously focused on simple
cases of Web service composition which can't be
compared to an inter-enterprise collaboration. Indeed the
majority of work present methodologies for an automatic
Web service composition which do not take into account
the complexity of the collaborative process in terms of the
control flow. To overcome this shortage our approach is
based on a manual collaborative process modelling
(abstract process) and offers the suitable mechanisms to
transform the abstract process into a concrete composition
of Web services. Finally, the previous works have taken
into account only the functional parameters of Web
services in the selection process. Nevertheless, pure
functional descriptions of Web Services are insufficient to
develop valuable Service Oriented Enterprise.
Consequently, we have proposed an approach which
combines functional and non-functional parameters
(contextual parameters) in the composition process.

6.2 Context-aware Web service

The need to integrate context-aware in Web service field
has been underlined in different studies, and recently
several context-aware approaches have been proposed to
enhance Web service discovery and composition
mechanisms.

Martin [24] discussed different kinds of knowledge that
can be considered contextual with respect to Web services
tasks and challenges. In addition, he demonstrated how
several projects had made contributions to the
understanding of the role of context. Also, he gave the
main directions that are needed in Web service research to
effectuate more efficient handling of the wide range of
contextual knowledge that may be incorporated in future
Web services-based systems.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

89

Broens et al. [8] discuss the shortcomings of existing
methodologies for service discovery, and propose a
interesting approach to overcome some of them. They
consider the available contextual information about a
particular user or service provider (e.g. user location or
service opening times). In addition, they use ontologies to
semantically express user queries, service descriptions,
and contextual information. Nevertheless, the proposed
approach takes into account only Web service discovery,
and does not consider contextual information necessary for
Web services composition.

Sattanathan et al. [35] use three types of context (I/W/C-
context): (i) I-context refers to a Web service instance
context, (ii) W-context is the Web service context that is
defined by means of I-contexts, and (iii) C-context is the
composite service and is defined by the respective W-
contexts. The authors focus on the context reconciliation
among different Web services. The importance of a
language for context specification and management was
also stressed, for example OWL-C language.

Maamar et al [22] offer a context-based multi-type
approach for Web services composition. Context is used as
a support for the development of adaptable and flexible
Web services, and policies are used to specify the
behaviour of Web services which will participate in the
composite service. The binding among Web services
occurs at four levels: component level to deal with Web
services' definitions and capabilities, composite level to
address how Web services are discovered and combined,
semantic level to handle the semantic heterogeneity that
can arise among Web services, and resource level to focus
on the performance of Web services. Due to the
composition complexity, the approach uses three types of
policies: engagement assesses a Web service participation
in a given composition, mediation deals with the semantic
heterogeneity, and deployment manages the interactions
between component Web services and computing
resources.

Despite the interesting work of [22, 35], these authors
focus only on run-time context which includes information
related to the execution of composite Web services and
their participants (e.g., number of current service instances
and their status). In our work, we consider context
parameters for selection (composition) phase. In addition,
context categories presented in all these works are domain
based and deal only with a special kind of application.
Collaboration scenarios need to be investigated more in
the categorization of context. To this end, we have
introduced a new context categorization suitable for the
SOE environment

7. Implementation

To illustrate the feasibility of the proposed architecture, we
have implemented a prototype: SOE Creation prototype
(SOEC) enables the discovery of Web services which
supports a Collaborative Business Process based on an
abstract description.

7.1 Prototype presentation

The developed prototype offers a tool set to represent the
collaborative business process schema as a collection of
Goal Templates, control nodes and edges. It enables also
the managing different domain and context ontologies in
order to add descriptions about generic methods and
generic context parameters to Goal Templates. SOEC

forms and deploys Web service communities.

The SOEC contains 4 modules as illustrated in the figure
10:

1. Collaborative business process schema module:
provides a set of tool for modeling the collaborative
business process as a combination of goal templates
and control flow. Based on this module, CBP designer
(initiator) can assign a goal template to a particular
community. Plus, the CBP designer can affect the
generic methods and generic context parameters by
instantiating them with concrete values based on users
preferences and constraints.

2. XML generator module: contains two functions. First,
it generates XML files containing Goal templates'
descriptions and overall collaborative business process
schema description (see figure 9) a DTD description
for the XML file). Second, this module develops the
final collaborative business process description by
switching the goal template tags in the schema file with
the actual selected Web service. This XML file can be
an entry for a process execution engine.

Fig. 9 XML DTD representing the Goal Template.

3. Service discovery engine module: discovers and
selects as described in previous section, Web services
fitting the Goal Template requirements.

4. Ontology and community management module:
creates a community and assigns generic methods and

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

90

generic context parameters to the community based in
both domain ontology and context ontology.

Fig. 10 Prototype's modules.

These modules are implemented using Eclipse IDE.
Apache Axis is used to deploy and invoke Web services as
well as Apache Tomcat server to host Web services. We
use jUDDI, an open source Java implementation of UDDI,
as a service registry.

The next figures (Figure 11 and Figure 12) depict a screen
shot of the implemented prototype.

Fig. 11 Screen shot of SOEC prototype.

Fig. 12 Screen shot of the Template configuration interface.

7.2 Prototype evaluation

We have tested the developed prototype based on two
criteria: the usability of the prototype and its performance.
The tests were executed on a computational environment
characterized by the configuration shown in the next Table
(Table 1).

Table 1: Computational environment characteristics

Operating System Windows Vista business
Java Virtual machine Sun Java Run Time Environment

1.5.0_06
Screen size 15.4 inch

For the first criteria we have asked some users to model
several Collaborative Processes having different behaviors
and different Template number. It turned out that even
novice users can easily conceive the process schema of a
SOE and configure the different Templates just by reading
the help provided by the prototype.

For the second criteria we have tested the prototype for the
modeling of different Collaborative Processes with
different number of Templates. We conclude that
modeling the behavior of the Collaborative Processes
becomes complex from 20 Templates process given the
limited size of the used computer screen. It becomes very
complex part of 40 Templates process. The next figure
(Figure 13) exposes the evolution of the time consuming
when the number of Template becomes important.

Fig. 13 Time consuming for the Collaborative Process modeling.

8. Conclusion and future work

Service Oriented Enterprise results from a composition of
several Web services as an inter-enterprise Collaborative
Process. Relevant mechanisms for web service selection
and composition are consequently a key point in
establishing such collaborative process. Nevertheless, Web
service selection mechanisms are based essentially on

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

91

functional parameters. This leads on some deficiency on
the selection phase. In fact more pragmatic criterions are
required in such collaborative process. In this work we
have presented a framework for discovering and selecting
Web service in case of Collaborative Business Process
based on contextual parameters. Using context parameters
for describing and selecting Web services enhances the
compatibility of selected services with the user
requirements. For this end, our framework is based on four
key elements: context categories (suitable to collaboration
scenario), WS-Policy (for context parameters
representation), Web service community (to manage Web
service registry space) and goal template (to enable an
easy specification of collaboration request and selection
criteria). Goal templates are used in an abstract
specification of the Collaborative Business Process. It
gathers functional and contextual parameters for
describing a target Web service.

As a future work we envisage to add some semantic
annotations to the Goal Template in generic method side
and contextual parameter side. Adding such annotation
empowers Template descriptions and consequently
enhances the selection process. We envisage also
clustering context parameters in different measurement
scales (nominal, ordinal, interval and ratio) in order to
compute exactly the dissimilarity between two context
descriptions.

References
[1] Resource Description Framework (RDF), Published online at

http://www.w3.org/RDF/.
[2] A. Alamri, M. E. and, and A. E. Saddik, "Classification of

the state-of-the-art dynamic web services composition
techniques," International Journal for Web and Grid
Services, vol. 2, pp. 148–166, 2006.

[3] Bajaj et. al, "Web Services Policy Framework (WS-Policy)
published on line at: http://www-
128.ibm.com/developerworks/library/specification/ws-
polfram/," 2006.

[4] B. Benatallah, Q. Z. Sheng, and M. Dumas, "The Self-Serv
environment for Web services composition," IEEE Internet
Computing, vol. 7, pp. 40-84, 2003.

[5] D. Benslimane, A. Arara, G. Falquet, Z. Maamar, P. Thiran,
and F. Gargouri, "Contextual Ontologies: Motivations,
Challenges, and Solutions," in Fourth Biennial International
Conference on Advances in Information Systems, Izmir,
Turkey, 2006, pp. 168 - 176.

[6] N. A. Bradley and M. D. Dunlop, "Toward a
Multidisciplinary Model of Context to Support Context-
Aware Computing," Human-Computer Interaction, vol. 20,
pp. 403-446, 2005.

[7] P. Brezillon, "Context-based modeling of operators' Practices
by Contextual Graphs," in 14th Mini Euro Conference in
Human Centered Processes, 2003.

[8] T. Broens, S. Pokraev, M. v. Sinderen, J. Koolwaaij, and P.
D. Costa, "Context-aware, ontology-based, service
discovery," in Ambient Intellegence. vol. 3295, 2004, pp. 72-
83.

[9] O. Bucur, P. Beaune, and O. Boissier, "What Is Context and
How Can an Agent Learn to Find and Use it When Making
Decisions?," in international workshop of central and eastern
europe on multi agent systems, Budapest, Hungary, 2005, pp.
112-121.

[10] C. Bussler, "The Role of Semantic Web Technology in
Enterprise Application Integration," Data Engineering
Bulletin, vol. 26, pp. 62-68, 2003.

[11] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut,
"Quality of service for workflows and web service
processes," Web Semantics: Science, Services and Agents on
the World Wide Web, vol. 1, pp. 281-308, 2004.

[12] F. Casati and M.-C. Shan, "Dynamic and adaptive
composition of e-services," Information Systems, vol. 26, pp.
143-163, 2001.

[13] S. Chaari, Y. Badr, and F. Biennier, "Enhancing web service
selection by QoS-based ontology and WS-policy," in 2008
ACM Symposium on Applied Computing, Brasil, 2008, pp.
2426-2431.

[14] S. Chaari, F. Biennier, C. Benamar, and J. Favrel, "Towards
Service Oriented Enterprise," in Knowledge Enterprise:
Intelligent Strategies in Product Design, Manufacturing, and
Management Helsenki, 2006, pp. 920-925.

[15] M. Conti, M. Kumar, S. K. Das, and B. A. Shirazi, "Quality
of service issues in Internet web services," IEEE
Transactions on Computers, vol. 51, pp. 593-594., 2002.

[16] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and
S. Weerawarana, "Unraveling the Web Services Web: An
Introduction to SOAP, WSDL, and UDDI," IEEE Internet
Computing, vol. 6, pp. 86-93, 2002.

[17] N. Damianou, N. Dulay, E. lupu, and M. Solman, "the
Ponder Policy Specification Language," in International
Workshop, Policy 2001, Bristol, UK, 2001, pp. 18-38.

[18] A. K. Dey, G. D. Abowd, and D. Salber, "A Conceptual
Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications," Human-
Computer Interaction, vol. 16, pp. 97-166, 2001.

[19] R. L. Glass, "Defining Quality Intuitively," IEEE Software,
vol. 15, pp. 103-104, 1998.

[20] A. J. Gonzales and R. Ahlers, "Context-based representation
of intelligent behavior in training simulations," International
Transactions of the Society for Computer Simulation, pp.
153-166, 1999.

[21] T. Gruber, "A Translation Approach to Portable Ontology
Specifications," Knwledge Acquisition, vol. 5, pp. 199-220,
1993.

[22] Z. Maamar, D. B. , P. Thiran, C. Ghedira, S. Dustdar, and S.
Sattanathan, "Towards a context-based multi-type policy
approach for Web services composition," Data & Knowledge
Engineering, doi:10.1016/j.datak.2006.08.007, 2006.

[23] Z. Maamar, D. Benslimane, P. Thiran, C. Ghedira, S.
Dustdar, and S. Sattanathan, "Towards a context-based multi-
type policy approach for Web services composition," Data &
Knowledge Engineering, 2006.

[24] D. Martin, "Putting Web Services in Context," in
International Workshop on Context for Web Services in
conjunction with the 5th International and Interdisciplinary
Conference on Modeling and Using Context, 2005, pp. 3-16.

[25] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D.
McDermott, D. McGuinness, B. Parsia, T. Payne, M.
Sabou, M. Solanki, N. Srinivasan, and K. Sycara,

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

92

"Bringing Semantics to Web Services: The OWL-S
Approach," in SWSWPC, 2004.

[26] B. Medjahed and Y. Atif, "Context-based matching
forWeb service composition," Distributed and Parallel
Databases archive, vol. 21, pp. 5-37, 2007.

[27] B. Medjahed and A. Bouguettaya, "A Dynamic
Foundational Architecture for Semantic Web Services,"
Distributed and Parallel Databases, vol. 17, pp. 179–206,
2005.

[28] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid,
"ComposingWeb services on the Semantic Web," Very
Large Data Base, vol. 12, pp. 333-351, 2003.

[29] S. K. Most´efaoui and G. K. Most´efaoui, "Towards A
Contextualisation of Service Discovery and Composition
for Pervasive Environments," in the Workshop on Web-
services and Agent-based Engineering, 2003.

[30] E. Newcomer, Understanding Web service XML, WSDL,
SOAP et UDDI: Addison-Wesley Professional, 2002.

[31] B. Orriëns, J. Yang, and M. P. Papazoglou, "Service
Component: a mechanism for web service composition
reuse and specialization," Journal of Integrated Design and
Process Science, vol. 8, pp. 13-28, 2004.

[32] M. Ouzzani, "Efficient Delivery of Web Services," PHD
thesis, vol. 15, 2004.

[33] M. Paolucci, A. Ankolekar, N. Srinivasan, and K. Sycara,
"The DAML-S Virtual Machine," in the Second
International Semantic Web Conference (ISWC2003), 2003,
pp. 335-350.

[34] N. Ryan, "ConteXtML: Exchanging contextual
information between a Mobile Client and the FieldNote
Server,"http://www.cs.kent.ac.uk/projects/mobicomp/fnc/C
onteXtML.html.

[35] S. Sattanathan, N. C. Narendra, and Z. Maamar,
"Ontologies for Specifying and Reconciling Contexts of
Web Services," Electronic Notes in Theoretical Computer
Science, vol. 146, pp. 43-57, 24 January 2006 2006.

 [36] S. Sattanathan, P. Thiran, Z. Maamar, and D. Benslimane,
"Engineering Communities of Web Services," in
International Conference on Information Integration and
Web Based Applications & Services (iiWAS) Timisoara,
Romania, 2007, pp. 57-66.

[37] S. Thakkar, J. L. Ambite, and C. A. Knoblock, "A Data
Integration Approach to Automatically Composing and
Optimizing Web Services," in International Workshop on
Planning and Scheduling for Web and Grid Services, 2004.

[38] G. Tonti, J. M. Bradshaw, R. Jeffers, R. Montanari, N.
Suri, and A. Uszok, "Semantic Web languages for policy
representation and Reasoning: A comparison of KAOS, Rei
and Ponder," in International Semantic Web Conference,
Florida, USA, 2003, pp. 419-437.

[39] R. M. Turner, "Context-mediated behavior for intelligent
agents," Human-Computer studies, vol. 48, pp. 307-330,
1998.

[40] K. Verma, R. Akkiraju, and R. Goodwin, "Semantic
Matching of Web Service Policies," in Second
International Workshop on Semantic and Dynamic Web
Processes (SDWP 2005), 2005.

[41] K. Verma, R. Akkiraju, and R. Goodwin, "Semantic
Matching of Web Service Policies," in in Second
International Workshop on Semantic and Dynamic Web
Processes (SDWP 2005), 2005.

[42] W3C, " Web Services Policy Attachment, available at
http://www.w3.org/Submission/WS-PolicyAttachment,"
2006.

[43] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J.
Kalagnanam, and H. Chang, "QoS aware Middleware for
Web Services composition," IEEE Transactions on
software engineering, vol. 30, pp. 311-327, 2004.

