
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

167

An Efficient Hardware Architecture for H.264 Transform and
Quantization Algorithms

Logashanmugam.E* , Ramachandran.R**

* Sathyabama University, Chennai, India
** Sri Venkateshwara college of Engineering, Chennai, India

Abstract - In this paper, we present a high performance, low cost
and low power hardware architecture for real-time
implementation of forward transform and quantization and
inverse transform and quantization algorithms used in H.264 /
MPEG4 Part 10 video coding standard. The proposed hardware
implementation is based on a reconfigurable datapath with only
one multiplier. This hardware is designed to be used as part of a
complete low power video coding system for portable
applications. The proposed hardware architecture is implemented
using hardware description language (VHDL). The code is
synthesized using Xilinx tool and downloaded into Xilinx FPGA
to verify the functionality. The maximum frequency of operation
of architecture is about 120 MHz. The FPGA implementation
can code 39 VGA frames (640x480) per second.

Index Terms: H.264, Video Compression, Reconfigurable Data
path, ASIC, CABAC etc.

1. INTRODUCTION

Video compression systems are being used in different
commercial products, from consumer electronic devices
such as digital camcorders, cellular phones to video
teleconferencing systems. These applications trigger the
designers to implement efficient hardware video
compression devices. A new International standard for
video compression is developed to improve the
performance of the existing applications and to enable the
applicability of video compression to new real-time
applications. This new standard is developed with the
collaboration of ITU and ISO standardization
organizations, offering significantly better video
compression efficiency than previous International
Standards and it is called in two different names namely
H.264 and MPEG4 Part 10.

The video compression efficiency is achieved in H.264
standard is not a result of any single feature but rather a
combination of a number of encoding tools. Two of these
tools are the transform and quantization algorithm.
The previous video coding standards, e.g. MPEG-1, H.261,
MPEG-2, H.263 and MPEG-4, use the 8x8 Discrete
Cosine Transform (DCT) to transform the residual data,
where as H.264 uses a 4x4 integer transform for
transforming residual data. The integer transform achieves
very similar results to 8x8 DCT without any floating point
operations. Using low cost binary shifters, all the

multiplication operations in the forward and inverse
transform algorithms can be implemented in hardware.
Since the inverse transform in H.264 is defined by exact
integer operations, the mismatches in the inverse transform
are avoided. In the quantization algorithm a scaling factor
is used which is implemented using a multiplier [3, 4, and
5].
 In this paper, we present a high performance, low cost and
low power hardware architecture for real-time
implementation of H.264 forward transform and
quantization and inverse transform and quantization
algorithms. The hardware architecture is based on one
multiplier with a reconfigurable datapath. We have
designed this hardware to be used as part of a complete
low power H.264 video coding system for portable
applications. The proposed architecture is implemented in
VHDL. The VHDL code is verified to work at 120 MHz in
a Xilinx Virtex II FPGA [7].

Hardware architecture only for real-time implementation
of H.264 forward and inverse transform algorithms is
presented in [6]. Our proposed hardware achieves better
performance than the previous hardware with less
hardware cost. The proposed hardware design is a more
cost-effective solution for portable applications. In
previous implementation uses 16 adders and 16 internal
register files in their datapath as opposed to 3 adders and 6
internal register files in the transform part of our datapath.

Figure 1 H.264 Encoder Block Diagram

Manuscript received June 5, 2008.
Manuscript revised June 20, 2008.

mailto:logu999@yahoo.com

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

168

2. H.264 TRANSFORM AND
QUANTIZATION ALGORITHMS
OVERVIEW

The basic transform coding process in H.264, shown in
Figure 1, is similar to that of previous standards. The
process includes a forward transform and quantization
followed by zigzag ordering and entropy coding. The
transform coded residual data is also reconstructed. The
reconstruction process includes an inverse quantization
and inverse transform followed by motion compensation.
The reconstructed data before deblocking filter is used for
intra prediction [14 and 24] in current frame, and the
reconstructed data after deblocking filter is used for
motion estimation in future entropy coding and
reconstruction process in the order shown in figure 1.

The transform and quantization algorithms flow is
presented in Figure 2. The input to the forward transform
algorithm is a 4x4 block of residual data obtained by
subtracting the prediction from the original image data.

The transform and quantization algorithms process the
blocks in a macroblock and Send the resulting data to
entropy coding and reconstruction process in the order
shown in Fig 3.

Figure 2 Block Diagram of Transform and Quantization.

Figure 3 Processing Order of Blocks in a Macroblock

2.1 Overview of Transform Algorithm

H.264 transform algorithm uses four different transform
matrices as shown in Figure 4. (4x4 forward integer, 4x4
hadamard, 2x2 hadamard, and 4x4 inverse integer) [3, 4
and 5]. Since 4x4 and 2x2 hadamard transform matrices
are symmetric, inverse hadamard transform matrices are
same as forward hadamard transform matrices.

(a)

(b)

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
− 11

11
32
10

11
11

zz
zz

(c)

(d)

Figure 4 Matrices used in H.264 Transform Algorithm

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

169

a) 4x4 Forward Integer Transform,
b) 4x4 Hadamard Transform,
c) 2x2 Hadamard Transform,
d) 4x4 Inverse Integer Transform

In the transform coding process, 4x4 integer transform [6]
is applied to all the blocks independent of their prediction
type and mode. As shown in Figure 3, 4x4 block -1 is
formed by the transformed DC coefficients of 4x4
luminance blocks for the macroblocks that are coded in
16x16 Intra mode, and 2x2 blocks 16 and 17 are formed by
the transformed DC coefficient for all the macroblocks.
After the 4x4 integer transform, 4x4 hadamard transform is
applied to block -1 and 2x2 hadamard transform is applied
to blocks 16 and 17.
In the reconstruction process, 4x4 inverse hadamard
transform is applied to block -1, and 2x2 inverse hadamard
transform is applied to blocks 16 and 17. After the inverse
hadamard transforms, 4x4 inverse integer transform is
applied to all the blocks independent of their prediction
type and mode.

2.2. Overview of Quantization Algorithm

A quantization parameter (QP), calculated by the rate
control algorithm, is used for determining the quantization
step size of transform coefficients in H.264 [3, 4 and 5].
There are 52 quantization parameter values. These values
are arranged so that an increase of 1 in quantization
parameter means an increase of quantization step size by
approximately 12%. An increase of quantization step size
by approximately 12% means roughly a reduction of bit
rate by approximately 12%.
Quantization of AC coefficients is done by using the
equation (1)
|Zij| = (|Wij|.MF + f) >> qbits, sign (Zij)
 = sign(Wij) ------ (1)
Where Wij is the result of forward transformation, MF is a
scaling factor, f is a parameter used to avoid rounding
errors and it depends on prediction type of the block and
QP, qbits is a variable depending on QP. Inverse
quantization of AC coefficients is done by using the
equation (2)
W’ij = Zij.Vij.2floor (QP/6) ------- (2)
Where Zij is the result of forward quantization, Vij are
rescaling factors. Quantization of DC coefficients is done
similarly.

3. PROPOSED HARDWARE
ARCHITECTURE
The proposed hardware architecture includes an input
register file, a reconfigurable datapath and its control unit,
internal register files and an output register file. The
reconfigurable datapath and the register files are shown in
Figure 5. The reconfigurable datapath is designed for

implementing both forward and inverse transform and
quant algorithms. Even though only one multiplier is used
in the reconfigurable datapath, the proposed hardware
performs forward transform, hadamard transform, quant,
inverse hadamard transform, inverse quant and inverse
transform at the speed of 120 MHz.

Figure 5 Reconfigurable Data path architecture

In this design we use 384x9 bit input register file to store
residual data for a macro block that will be transform
coded including both luminance and chrominance blocks.
The part of the datapath above the dashed line which is
shown in figure 5 performs transform and inverse
transform operations. The registers, adders and shifters in
this part of the datapath are shared by forward and inverse
transform operations. The control unit configures the
datapath to perform the forward transform operation when
it performs forward transform. When it is used to perform
inverse transform, the control unit configures the datapath
to perform the inverse transform operations.
The first row of multiplexers is used for selecting the
proper inputs for transform operations. They select the data

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

170

from input register file for forward transform operations
and the data from IQIT register file for inverse transform
operations. The second row of multiplexers is used for
selecting the proper input data for the first and the second
matrix multiplications. They select the data from the first
row of multiplexers for the first matrix multiplication
operations and the data from register 0, register 1, register
2 and register 3 for the second matrix multiplication
operations. Shifters are one bit shifters used for shifting
left (multiply by 2) for forward transform operations and
for shifting right (divide by 2) for inverse transform
operations.

Three adder/subtractors are used in the datapath to achieve
high performance with low hardware cost. The first
column of the result matrix for the matrix multiplication
operations shown in Figure 4 (a) can be calculated using
the following four equations (3).

[(X0+X4+X8+X12)+(X1+X5+X9+X13)+
(X2+X6+X10+X14) + (X3+X7+X11+X15)]

[2*(X0+X4+X8+X12)+(X1+X5+X9+X13)-
(X2+X6+X10+X14)-2*(X3+X7+X11+X15)]

[(X0+X4+X8+X12)-(X1+X5+X9+X13)-
(X2+X6+X10+X14) + (X3+X7+X11+X15)]

[(X0+X4+X8+X12)-2*(X1+X5+X9+X13)+
2*(X2+X6+X10+X14)-(X3+X7+X11+X15)] ----
(3)

The four values (X0+X4+X8+X12), (X1+X5+X9+X13),
(X2+X6+X10+X14) and (X3+X7+X11+X15) are the results of
first matrix multiplication and they are used for calculating
the first column of the result matrix containing the
transform coefficients. Similarly, the equations for
calculating the transform coefficients in each remaining
column of the result matrix have four common values that
are used to calculate the corresponding transform
coefficient. Therefore, 16-bit registers register 0, register 1,
register 2 and register 3 are used to store these four
common values, i.e. the results of first matrix
multiplications. This reduces both the number of cycles
and the power consumption of both forward and inverse
transform operations. The same method is used to
implement the other matrix multiplication operations
shown in Figure 4.

Since the order of some of the equations used to perform
the matrix multiplications for 4x4 and 2x2 hadamard
transforms are not important for functional correctness, we
have used the order that gives the lowest power

consumption. For example, the first column of the result
matrix for the matrix multiplication operations for 4x4
hadamard transform shown in Figure 4 (b) can be
calculated using the following four equations in the given
order.

[(Z0+Z4+Z8+Z12)+(Z1+Z5+Z9+Z13) +
(Z2+Z6+Z10+Z14) + (Z3+Z7+Z11+Z15)]

[2*(Z0+Z4+Z8+Z12)+(Z1+Z5+Z9+Z13)-
(Z2+Z6+Z10+Z14) - 2*(Z3+Z7+Z11+Z15)]

[(Z0+Z4+Z8+Z12) - (Z1+Z5+Z9+Z13) –
(Z2+Z6+Z10+Z14) + (Z3+Z7+Z11+Z15)]

[(Z0+Z4+Z8+Z12)-2*(Z1+Z5+Z9+Z13)+
2*(Z2+Z6+Z10+Z14) - (Z3+Z7+Z11+Z15)] ---- (4)

When the equations (4) are calculated in the given order,
both the operations (addition or subtraction) performed by
adder/subtractor 0 and adder/subtractor 1 and their inputs
stay the same in first and second cycles and in third and
fourth cycles. Since their inputs and the operations they
perform stay the same for two consecutive clock cycles,
their outputs stay the same as well. This avoids
unnecessary switching activity resulting in lower power
consumption for both forward and inverse hadamard
transforms. Register 4 contains the input data for the
quantization and inverse quantization operations. P.
Registers are pipelining registers used to achieve 120 MHz
clock frequency in a 2V8000ff1152 Xilinx Virtex II FPGA
with speed grade 5. Register 4 stores the results of forward
or inverse transform operations.

The part of the datapath below the dashed line performs
forward and inverse quantization operations. The registers,
adders, shifters and the multiplier in this part of the
datapath are shared by forward and inverse quant
operations. When the hardware is used to perform forward
quantization, the control unit configures the datapath to
perform the forward quant operations. When it is used to
perform inverse quantization, the control unit configures
the datapath to perform the inverse quant operations.

The multiplier used in the datapath is a 15x14 unsigned
multiplier. Two multiplexers are used for selecting the
proper inputs for the multiplier. One of the multiplexers is
used to select either a transformed or inverse transformed
value coming from register 4 or a quantized value coming
from the output register file TQ. The other multiplexer is
used to select either a value from quant lookup table or a
value from inverse quant lookup table. The adder at the
output of the multiplier and the shifter at one of the inputs

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

171

of the adder are used to avoid rounding errors that can
happen during scaling and rescaling operations. The 3-bit
shifter at the output of the multiplier is used to perform
scaling and rescaling operations depending on the value of
q bits parameter. The result of the shift operation is
converted into two’s complement form and stored in the
output register file TQ.
The transform and quant operations are executed in a
pipelined manner. After a transform coefficient is
computed, in the next cycle, this coefficient is quantized in
the quant part of the datapath and a new transform
coefficient is computed in the transform part of the
datapath. Since only one multiplier is used in the datapath,
quant and inverse quant operations cannot be pipelined.
After all the transform coefficients in a block are quantized,
inverse quantization starts followed by inverse transform.

Figure 6 Proposed Transform architecture

The transformation hardware part is modified by replacing
adder/subtractor with carry save adder or ripple carry
adder, the simulation is carried out for examining the
performance of the hardware.

4. SIMULATION AND SYNTHESIS
RESULTS

The proposed architecture is coded using VHDL and the
code is simulated using Modelsim. The simulation result
is shown in the figure 7. We have used built in function of
the multiplication which is present in the Xilinx Virtex II
FPGA (2V8000ff1152). The simulation is carried out

when replacement is done with both carry save adder and
ripple carry adder also. The table 2 shows that the
comparison analysis of transformation with two different
adders. The code is synthesized using Xilinx project
navigator and the report is shown in figure 8. The device
utilization of the overall architecture is shown in table 1.

Figure 7 Simulation result of the proposed hardware unit

Figure 8 Synthesis report

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

172

Table I

Device utilization of Virtex II FPGA (2V8000ff1152)

Sl.No Description Used Available %
used

1 Number of Slices 291 46592 0
2 Number of Slice

Flip Flops
228 93184 0

3 Number of 4
input LUTs

546 93184 0

4 Number of
bonded IOBs

18 824 2

5 Number of
MULTI8X18s

1 168 0

6 Number of
GCLKs

4 16 25

Table II

Comparative Analysis of transformation algorithm with two different adders

Sl.No Parameter Ripple carry
adder

Carry save
adder

1 Minimum period 16.061ns 12.537ns
2 Minimum input

arrival time before
clock

16.866ns 14.725ns

3 Maximum output
required time after

clock

4.932ns : 4.932ns

4 Maximum Frequency 62.263MHz 79.764MHz

5. CONCLUSIONS

In this paper, we presented and implemented a high
performance and low cost hardware architecture for H.264
forward transform and quantization and inverse transform
and quantization algorithms. The hardware is designed
such that the datapath is reconfigurable and it uses only
one multiplier.
This hardware design is aimed for portable applications
since it is a complete low power H.264 video coding
system. The transformation architecture with carry save
adder gives better performance. The overall architecture is
improved with the previous architecture which is running
at 81 MHz. The speed of operation increases at 48%
compared with the previous implementation. The
modified architecture operates at 120 MHz. The FPGA
implementation can code 39 VGA frames (640x480) per
second.
The future work of this research is to implement in ASIC
to further reduce area and increase the speed of operation.

References

[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra

“Overview of the H.264/AVC Video Coding Standard”, IEEE
Trans. on Circuits and Systems for Video Technology vol. 13,
no. 7, pp. 560–576, July 2003

[2] I. Richardson, H.264 and MPEG-4 Video Compression,
Wiley, 2003

[3] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC
MPEG, Draft ITU-T Recommendation and Final Draft
International Standard of Joint Video Specification, ITU-T
Rec. H.264 and ISO/IEC 14496-10 AVC, May 2003

[4] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC
MPEG, Joint Model (JM) Reference Software Version 9.2,
http://bs.hhi.de/suehring/

[5] H. Malvar, A. Hallapuro, M. Karczewicz. and L. Kerofsky,
"Low-Complexity Transform and Quantization in H.264 /
AVC", IEEE Trans. on Circuits and Systems for Video
Technology, vol. 13, no. 7, pp. 598–603, July 2003.

[6] T. C. Wang, Y. W. Huang, H. C. Fang, and L. G. Chen,
“Parallel 4x4 2D Transform and Inverse Transform
Architecture for MPEG-4 AVC / H.264”, Proc. of IEEE
ISCAS, 20

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

173

[7] Xilinx Inc., Virtex-II™ Platform FPGAs: Complete Data
Sheet DS031, http://www.xilinx.com, March 2004

[8] D. Marpe, G. Blattermann, G. Heising, and T.Wiegand,
“Further Results for CABAC Entropy Coding Scheme”,
Austin, TX, ITU-T SG16/Q.6 Doc. VCEG-M59, 2001.

[9] D. Marpe, G. Blattermann, and T. Wiegand, “Improved
CABAC”, Pattaya,Thailand, ITU-T G16/Q.6 Doc. VCEG-
O18, 2001.

[10] D. Marpe, G. Blattermann, T. Wiegand, R. Kurceren, M.
Karczewicz and J. Lainema, “New results on improved
CABAC”, in Joint Video Team of ISO/IEC
JTC1/SC29/WG11 & ITU-T SG16/Q.6 Doc.
JVTB101,Geneva, Switzerland, Feb. 2002.

[11] H. Schwarz, D. Marpe, G. Blattermann, and T. Wiegand,
“Improved CABAC,” in Joint Video Team of ISO/IEC
JTC1/SC29/WG11& ITU-T G16/Q.6 Doc. JVT-C060,
Fairfax, VA, Mar. 2002.

[12] D. Marpe, G. Heising, G. Blattermann, and T. Wiegand,
“Fast arithmetic coding for CABAC,” in Joint Video Team of
ISO/IECJTC1/SC29/WG11 & ITU-T SG16/Q.6 Doc. JVT-
C061, Fairfax, VA, Mar. 2002.

[13] H. Schwarz, D. Marpe, and T. Wiegand, “CABAC and
slices”, in Joint Video Team of ISO/IEC JTC1/SC29/WG11
& ITU-T SG16/Q.6 Doc.JVT-D020, Klagenfurt, Austria,
July 2002.

[14] M. Karczewicz, “Analysis and simplification of intra
prediction”, in Joint Video Team of ISO/IEC
JTC1/SC29/WG11 & ITU-T SG16/Q.6 Doc. JVT-D025,
Klagenfurt, Austria, July 2002.

[15] D. Marpe, G. Blattermann, G. Heising, and T. Wiegand,
“Proposed cleanup changes for CABAC,” in Joint Video
Team of ISO/IEC JTC1/SC29/WG11 & ITU-T SG16/Q.6
Doc. JVT-E059, Geneva, Switzerland, Oct. 2002.

[16] F. Bossen, “CABAC cleanup and complexity reduction,” in
Joint Video Team of ISO/IEC JTC1/SC29/WG11 & ITU-T
SG16/Q.6 Doc. JVTE086, Geneva, Switzerland, Oct. 2002.

[17] D. Marpe, H. Schwarz, G. Blattermann, and T.Wiegand,
“Final CABAC clean up,” in Joint Video Team of ISO/IEC
JTC1/SC29/WG11 & ITU-T SG16/Q.6 Doc. JVT-F039,
Awaji, Japan, Dec. 2002.

[18] D. Marpe and H. L. Cycon, “Very low bit-rate video coding
using wavelet-based techniques,” IEEE Trans. Circuits Syst.
Video Technol., vol. 9, pp. 85–94, Apr. 1999.

[19] G. Heising, D. Marpe, H. L. Cycon, and A. P. Petukhov,
“Wavelet-Based very low bit-rate video coding using image
warping and overlapped block motion compensation,” Proc.
Inst. Elect. Eng.—Vision, Image and Signal Proc., vol. 148,
no. 2, pp. 93–101, Apr. 2001.

[20] S.J. Choi and J.W.Woods, “Motion compensated 3-D
subband coding of video,” IEEE Trans. Image Processing, vol.
8, pp. 155–167, Feb. 1999.

[21] A. Said and W. Pearlman, “A new, fast, and efficient image
codec based on set partitioning in hierarchical trees,” IEEE
Trans. Circuits Syst. Video Technol., vol. 6, pp. 243–250,
June 1996.

[22] D. Marpe and H. L. Cycon, “Efficient pre-coding techniques
for wavelet based image compression,” in Proc. Picture
Coding Symp., 1997, pp. 45–50.

[23] J. Rissanen and G. G. Langdon Jr, “Universal modeling and
coding,” IEEE Trans. Inform. Theory, vol. IT-27, pp. 12–23,
Jan. 1981.

[24] J. Rissanen, “Universal coding, information, prediction, and
estimation,” IEEE Trans. Inform.Theory, vol. 30, pp. 629–
636, July 1984.

[25] W. B. Pennebaker and J. L. Mitchell, JPEG: Still Image Data
Compression Standard. New York: Van Nostrand Reinhold,
1993.

[26] A. Papoulis, Probability, Random Variables, and Stochastic
Processes, New York: McGraw-Hill 1984, pp. 37–38.

E.Logashanmugam received
Masters in Electronics engineering
from Anna University. Currently he
is doing PhD in Sathyabama
University. He is working as Head of
Department of Electronics and
Communication in Sathyabama
University. His field of interest is

Image processing and VLSI Design .He is a member IEEE
and ISTE Email: logu999@yahoo.com

 Dr.R.Ramachandran received
PhD from Anna University. He is
working as Principal in Sri
Venkateswara College of
Engineering. His field of interest is
Image processing and VLSI
Design .He is a member IEEE and
Life fellow of IETE.

