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Abstract - In this paper, we present a high performance, low cost 
and low power hardware architecture for real-time 
implementation of forward transform and quantization and 
inverse transform and quantization algorithms used in H.264 / 
MPEG4 Part 10 video coding standard. The proposed hardware 
implementation is based on a reconfigurable datapath with only 
one multiplier.  This hardware is designed to be used as part of a 
complete low power video coding system for portable 
applications. The proposed hardware architecture is implemented 
using hardware description language (VHDL).  The code is 
synthesized using Xilinx tool and downloaded into Xilinx FPGA 
to verify the functionality. The maximum frequency of operation 
of architecture is about 120 MHz.  The FPGA implementation 
can code 39 VGA frames (640x480) per second.  
 
Index Terms:  H.264, Video Compression, Reconfigurable Data 
path, ASIC, CABAC etc. 
 
1. INTRODUCTION 

 
Video compression systems are being used in different 
commercial products, from consumer electronic devices 
such as digital camcorders, cellular phones to video 
teleconferencing systems. These applications trigger the 
designers to implement efficient hardware video 
compression devices. A new International standard for 
video compression is developed to improve the 
performance of the existing applications and to enable the 
applicability of video compression to new real-time 
applications. This new standard is developed with the 
collaboration of ITU and ISO standardization 
organizations, offering significantly better video 
compression efficiency than previous International 
Standards and it is called in two different names namely 
H.264 and MPEG4 Part 10. 
 
The video compression efficiency is achieved in H.264 
standard is not a result of any single feature but rather a 
combination of a number of encoding tools. Two of these 
tools are the transform and quantization algorithm. 
The previous video coding standards, e.g. MPEG-1, H.261, 
MPEG-2, H.263 and MPEG-4, use the 8x8 Discrete 
Cosine Transform (DCT) to transform the residual data, 
where as  H.264 uses a 4x4 integer transform for 
transforming residual data. The integer transform achieves 
very similar results to 8x8 DCT without any floating point 
operations. Using low cost binary shifters, all the 

multiplication operations in the forward and inverse 
transform algorithms can be implemented in hardware. 
Since the inverse transform in H.264 is defined by exact 
integer operations, the mismatches in the inverse transform 
are avoided. In the quantization algorithm a scaling factor 
is used which is implemented using a multiplier [3, 4, and 
5].  
 In this paper, we present a high performance, low cost and 
low power hardware architecture for real-time 
implementation of H.264 forward transform and 
quantization and inverse transform and quantization 
algorithms. The hardware architecture is based on one 
multiplier with a reconfigurable datapath. We have 
designed this hardware to be used as part of a complete 
low power H.264 video coding system for portable 
applications. The proposed architecture is implemented in 
VHDL. The VHDL code is verified to work at 120 MHz in 
a Xilinx Virtex II FPGA [7]. 
 
Hardware architecture only for real-time implementation 
of H.264 forward and inverse transform algorithms is 
presented in [6]. Our proposed hardware achieves better 
performance than the previous hardware with less 
hardware cost. The proposed hardware design is a more 
cost-effective solution for portable applications. In 
previous implementation uses 16 adders and 16 internal 
register files in their datapath as opposed to 3 adders and 6 
internal register files in the transform part of our datapath.  

 
 

Figure 1 H.264 Encoder Block Diagram 
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2. H.264 TRANSFORM AND 
QUANTIZATION ALGORITHMS 
OVERVIEW 
 
The basic transform coding process in H.264, shown in 
Figure 1, is similar to that of previous standards. The 
process includes a forward transform and quantization 
followed by zigzag ordering and entropy coding. The 
transform coded residual data is also reconstructed. The 
reconstruction process includes an inverse quantization 
and inverse transform followed by motion compensation. 
The reconstructed data before deblocking filter is used for 
intra prediction [14 and 24] in current frame, and the 
reconstructed data after deblocking filter is used for 
motion estimation in future entropy coding and 
reconstruction process in the order shown in figure 1. 
 
The transform and quantization algorithms flow is 
presented in Figure 2. The input to the forward transform 
algorithm is a 4x4 block of residual data obtained by 
subtracting the prediction from the original image data. 
 
The transform and quantization algorithms process the 
blocks in a macroblock and Send the resulting data to 
entropy coding and reconstruction process in the order 
shown in Fig 3. 

 

 
 

Figure 2 Block Diagram of Transform and Quantization. 
 

 
 

Figure 3 Processing Order of Blocks in a Macroblock 
 
2.1 Overview of Transform Algorithm  
 
H.264 transform algorithm uses four different transform 
matrices as shown in Figure 4. (4x4 forward integer, 4x4 
hadamard, 2x2 hadamard, and 4x4 inverse integer) [3, 4 
and 5]. Since 4x4 and 2x2 hadamard transform matrices 
are symmetric, inverse hadamard transform matrices are 
same as forward hadamard transform matrices. 
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Figure 4 Matrices used in H.264 Transform Algorithm 
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a) 4x4 Forward  Integer Transform,    
b) 4x4 Hadamard Transform,  
c) 2x2 Hadamard Transform,     
d) 4x4 Inverse Integer Transform 
 
In the transform coding process, 4x4 integer transform [6] 
is applied to all the blocks independent of their prediction 
type and mode. As shown in Figure 3, 4x4 block -1 is 
formed by the transformed DC coefficients of 4x4 
luminance blocks for the macroblocks that are coded in 
16x16 Intra mode, and 2x2 blocks 16 and 17 are formed by 
the transformed DC coefficient for all the macroblocks. 
After the 4x4 integer transform, 4x4 hadamard transform is 
applied to block -1 and 2x2 hadamard transform is applied 
to blocks 16 and 17.  
In the reconstruction process, 4x4 inverse hadamard 
transform is applied to block -1, and 2x2 inverse hadamard 
transform is applied to blocks 16 and 17.  After the inverse 
hadamard transforms, 4x4 inverse integer transform is 
applied to all the blocks independent of their prediction 
type and mode. 
 
2.2. Overview of Quantization Algorithm  
 
A quantization parameter (QP), calculated by the rate 
control algorithm, is used for determining the quantization 
step size of transform coefficients in H.264 [3, 4 and 5]. 
There are 52 quantization parameter values. These values 
are arranged so that an increase of 1 in quantization 
parameter means an increase of quantization step size by 
approximately 12%. An increase of quantization step size 
by approximately 12% means roughly a reduction of bit 
rate by approximately 12%. 
Quantization of AC coefficients is done by using the 
equation (1) 
|Zij| = (|Wij|.MF + f) >> qbits, sign (Zij) 
      = sign(Wij)     ------   (1) 
Where Wij is the result of forward transformation, MF is a 
scaling factor, f is a parameter used to avoid rounding 
errors and it depends on prediction type of the block and 
QP, qbits is a variable depending on QP. Inverse 
quantization of AC coefficients is done by using the 
equation (2)       
W’ij = Zij.Vij.2floor (QP/6)                 -------         (2) 
Where  Zij is the result of forward quantization, Vij are 
rescaling factors. Quantization of DC coefficients is done 
similarly. 
 
3. PROPOSED HARDWARE 
ARCHITECTURE 
The proposed hardware architecture includes an input 
register file, a reconfigurable datapath and its control unit, 
internal register files and an output register file. The 
reconfigurable datapath and the register files are shown in 
Figure 5. The reconfigurable datapath is designed for 

implementing both forward and inverse transform and 
quant algorithms. Even though only one multiplier is used 
in the reconfigurable datapath, the proposed hardware 
performs forward transform, hadamard transform, quant, 
inverse hadamard transform, inverse quant and inverse 
transform at the speed of 120 MHz.  
 

 
Figure 5 Reconfigurable Data path architecture 

 
In this design we use 384x9 bit input register file to store 
residual data for a macro block that will be transform 
coded including both luminance and chrominance blocks. 
The part of the datapath above the dashed line which is 
shown in figure 5 performs transform and inverse 
transform operations. The registers, adders and shifters in 
this part of the datapath are shared by forward and inverse 
transform operations. The control unit configures the 
datapath to perform the forward transform operation when 
it performs forward transform. When it is used to perform 
inverse transform, the control unit configures the datapath 
to perform the inverse transform operations. 
The first row of multiplexers is used for selecting the 
proper inputs for transform operations. They select the data 
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from input register file for forward transform operations 
and the data from IQIT register file for inverse transform 
operations. The second row of multiplexers is used for 
selecting the proper input data for the first and the second 
matrix multiplications. They select the data from the first 
row of multiplexers for the first matrix multiplication 
operations and the data from register 0, register 1, register 
2 and register 3 for the second matrix multiplication 
operations. Shifters are one bit shifters used for shifting 
left (multiply by 2) for forward transform operations and 
for shifting right (divide by 2) for inverse transform 
operations.  
 
Three adder/subtractors are used in the datapath to achieve 
high performance with low hardware cost. The first 
column of the result matrix for the matrix multiplication 
operations shown in Figure 4 (a) can be calculated using 
the following four equations (3). 

 
[(X0+X4+X8+X12)+(X1+X5+X9+X13)+ 
(X2+X6+X10+X14) + (X3+X7+X11+X15)] 
 
[2*(X0+X4+X8+X12)+(X1+X5+X9+X13)-
(X2+X6+X10+X14)-2*(X3+X7+X11+X15)] 
 
[(X0+X4+X8+X12)-(X1+X5+X9+X13)- 
(X2+X6+X10+X14) + (X3+X7+X11+X15)] 
 
[(X0+X4+X8+X12)-2*(X1+X5+X9+X13)+ 
2*(X2+X6+X10+X14)-(X3+X7+X11+X15)]  ----   
(3) 
 
The four values (X0+X4+X8+X12), (X1+X5+X9+X13), 
(X2+X6+X10+X14) and (X3+X7+X11+X15) are the results of 
first matrix multiplication and they are used for calculating 
the first column of the result matrix containing the 
transform coefficients. Similarly, the equations for 
calculating the transform coefficients in each remaining 
column of the result matrix have four common values that 
are used to calculate the corresponding transform 
coefficient. Therefore, 16-bit registers register 0, register 1, 
register 2 and register 3 are used to store these four 
common values, i.e. the results of first matrix 
multiplications. This reduces both the number of cycles 
and the power consumption of both forward and inverse 
transform operations.  The same method is used to 
implement the other matrix multiplication operations 
shown in Figure 4.  
 
Since the order of some of the equations used to perform 
the matrix multiplications for 4x4 and 2x2 hadamard 
transforms are not important for functional correctness, we 
have used the order that gives the lowest power 

consumption. For example, the first column of the result 
matrix for the matrix multiplication operations for 4x4 
hadamard transform shown in Figure 4 (b) can be 
calculated using the following four equations in the given 
order. 
 
[(Z0+Z4+Z8+Z12)+(Z1+Z5+Z9+Z13) +  
(Z2+Z6+Z10+Z14) + (Z3+Z7+Z11+Z15)] 
 
[2*(Z0+Z4+Z8+Z12)+(Z1+Z5+Z9+Z13)- 
(Z2+Z6+Z10+Z14) - 2*( Z3+Z7+Z11+Z15)] 
 
[(Z0+Z4+Z8+Z12) - (Z1+Z5+Z9+Z13) –  
(Z2+Z6+Z10+Z14) + (Z3+Z7+Z11+Z15)] 
 
[(Z0+Z4+Z8+Z12)-2*(Z1+Z5+Z9+Z13)+ 
2*(Z2+Z6+Z10+Z14) - (Z3+Z7+Z11+Z15)]  ---- (4) 
 
When the equations (4) are calculated in the given order, 
both the operations (addition or subtraction) performed by 
adder/subtractor 0 and adder/subtractor 1 and their inputs 
stay the same in first and second cycles and in third and 
fourth cycles. Since their inputs and the operations they 
perform stay the same for two consecutive clock cycles, 
their outputs stay the same as well.  This avoids 
unnecessary switching activity resulting in lower power 
consumption for both forward and inverse hadamard 
transforms. Register 4 contains the input data for the 
quantization and inverse quantization operations.  P. 
Registers are pipelining registers used to achieve 120 MHz 
clock frequency in a 2V8000ff1152 Xilinx Virtex II FPGA 
with speed grade 5. Register 4 stores the results of forward 
or inverse transform operations. 
 
The part of the datapath below the dashed line performs 
forward and inverse quantization operations. The registers, 
adders, shifters and the multiplier in this part of the 
datapath are shared by forward and inverse quant 
operations. When the hardware is used to perform forward 
quantization, the control unit configures the datapath to 
perform the forward quant operations. When it is used to 
perform inverse quantization, the control unit configures 
the datapath to perform the inverse quant operations. 
 
The multiplier used in the datapath is a 15x14 unsigned 
multiplier. Two multiplexers are used for selecting the 
proper inputs for the multiplier. One of the multiplexers is 
used to select either a transformed or inverse transformed 
value coming from register 4 or a quantized value coming 
from the output register file TQ. The other multiplexer is 
used to select either a value from quant lookup table or a 
value from inverse quant lookup table. The adder at the 
output of the multiplier and the shifter at one of the inputs 
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of the adder are used to avoid rounding errors that can 
happen during scaling and rescaling operations. The 3-bit 
shifter at the output of the multiplier is used to perform 
scaling and rescaling operations depending on the value of 
q bits parameter. The result of the shift operation is 
converted into two’s complement form and stored in the 
output register file TQ.  
The transform and quant operations are executed in a 
pipelined manner. After a transform coefficient is 
computed, in the next cycle, this coefficient is quantized in 
the quant part of the datapath and a new transform 
coefficient is computed in the transform part of the 
datapath. Since only one multiplier is used in the datapath, 
quant and inverse quant operations cannot be pipelined. 
After all the transform coefficients in a block are quantized, 
inverse quantization starts followed by inverse transform. 
 

 
 

Figure 6 Proposed Transform architecture 
 
The transformation hardware part is modified by replacing 
adder/subtractor with carry save adder or ripple carry 
adder, the simulation is carried out for examining the 
performance of the hardware.  
 
4. SIMULATION AND SYNTHESIS 
RESULTS 
 
The proposed architecture is coded using VHDL and the 
code is simulated using Modelsim.  The simulation result 
is shown in the figure 7.  We have used built in function of 
the multiplication which is present in the Xilinx Virtex II 
FPGA (2V8000ff1152).  The simulation is carried out 

when replacement is done with both carry save adder and 
ripple carry adder also. The table 2 shows that the 
comparison analysis of   transformation with two different 
adders.  The code is synthesized using Xilinx project 
navigator and the report is shown in figure 8.  The device 
utilization of the overall architecture is shown in table 1. 

  

 
 

Figure 7 Simulation result of the proposed hardware unit 
 

        

 
Figure 8 Synthesis report 
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Table I 

Device utilization of Virtex II FPGA (2V8000ff1152) 
 

Sl.No Description Used Available %  
used

1 Number of Slices 291 46592 0 
2 Number of Slice 

Flip Flops 
228 93184 0 

3 Number of 4 
input LUTs 

546 93184 0 

4 Number of 
bonded IOBs 

18 824 2 

5 Number of  
MULTI8X18s 

1 168 0 

6 Number of 
GCLKs 

4 16 25 

 
Table II 

Comparative Analysis of transformation algorithm with two different adders 
 

Sl.No Parameter Ripple carry 
adder 

Carry save 
adder 

1 Minimum period 16.061ns 12.537ns 
2 Minimum input 

arrival time before 
clock 

16.866ns 14.725ns 

3 Maximum output 
required time after 

clock 

4.932ns : 4.932ns 

4 Maximum Frequency 62.263MHz 79.764MHz 
 

5. CONCLUSIONS  
 
In this paper, we presented and implemented a high 
performance and low cost hardware architecture for H.264 
forward transform and quantization and inverse transform 
and quantization algorithms. The hardware is designed 
such that the datapath is reconfigurable and it uses only 
one multiplier.  
This hardware design is aimed for portable applications 
since it is a complete low power H.264 video coding 
system. The transformation architecture with carry save 
adder gives better performance. The overall architecture is 
improved with the previous architecture which is running 
at 81 MHz.  The speed of operation increases at 48% 
compared with the previous implementation.  The 
modified architecture operates at 120 MHz. The FPGA 
implementation can code 39 VGA frames (640x480) per 
second. 
The future work of this research is to implement in ASIC 
to further reduce area and increase the speed of operation.   
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