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Summary 
In this paper we propose to use a Markov chain in order to price 
contingent claims. In particular, we describe a non parametric 
markovian approach to price American and European options. 
First, we discuss the risk neutral valuation of the non parametric 
approach. Secondly, we examine the problems of the 
computational complexity and of the stability with respect to the 
number of the states of the Markov chain. Finally, we propose an 
ex post comparison between the Markovian model and the Black 
and Scholes one. 
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1. Introduction 

After the Black-Scholes option pricing model many 
studies have attempted to cope with the different 
contradictions emerged in the empirical tests of this model. 
While many researchers indicate the lognormal 
distribution hypothesis of the financial return as not too 
satisfying hypothesis, many others find the constant 
volatility of the financial price as the great weak point of 
the model. 

There exist a wide literature on the improvements 
performed on this pioneer model. Many efforts have been 
destined to make stochastic the volatility and others to 
make the distributional hypothesis more realistic on the 
price process.  

This paper shows a simple non-parametric way to 
model the contingent claims without assessing a 
distributional form a priori for the asset price and without 
the necessity of a valuation of parameters such as the 
volatility. The methodology presented enters in the class 
of the Markovian option pricing models. 

Among markovian models we essentially distinguish 
two categories: parametric models (see, among others, 
Duan and Simonato (2001); Duan, et al.(2003) and among 
semi-Markovian models see Limnios, Oprisan (2001), 
Blasi et al.(2003), D’Amico et al. (2005)), and 
nonparametric models. In the first category the Markovian 
hypothesis is used for diffusive models of the underlying 
returns. In the second category of models only the 
historical series are used to estimate the option prices. 
Thus nonparametric models have the main advantage in 

their capacity of adapting to the underlying return 
distributions. 

This paper deals with a nonparametric markovian 
model, that differently by the nonparametric derivatives 
models deal in literature (see, among others, Hutchinson, 
et al.(1994), Ait-Sahalia (1996, 1998), Stutzer (1996)),. 
explicates directly the markovian hypothesis assuming that 
the time evolution of the returns is described by a Markov 
chain. Thus our nonparametric approach is different 
respect to those based on the parameter estimations, those 
that use the Markov Chains to approximate such 
parameters and those that use neural network or only the 
historical series to approximate the option prices. With 
this model we are able to price American/ European and 
path dependent options and using the Markov chain 
properties we are able to simplify the computation of the 
derivative prices in reasonable times. Generally the 
resulting prices are different from those obtained with the 
Black and Scholes model even if this difference is strongly 
reduced when we use simulated Gaussian log-returns. 
Therefore the ductility of the model suggests that one of 
the main applications should be for energy derivatives 
which are strongly influenced by the seasonality of the 
price.  

The paper first presents the model discussing the risk 
neutral valuation when we consider either state dependent 
prices or state independent prices. Secondly we discuss the 
computational complexity of the algorithm and the 
stability of the prices with respect to the number of the 
states of the Markov chain. Finally we examine the 
empirical differences between the Black and Scholes 
model and the nonparametric markovian one. 

2. Nonparametric Markovian Trees 

Let us assume the time evolution of underlying asset 
return follows a Markov chain with 　　states. Doing so, 
we want to construct a multinomial recombining tree of 
the asset price with more degrees of freedom than the 
classical binomial tree. In particular, we assume that the 
gross return 　　has support on the interval , 
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the greatest value. Then we build the transition matrix as 
follows: 

1. we share in N intervals  (small 
enough) the return support  where 

, , 

);( 1−= iii aaI
)max;min( t

t
t

t
zz

t
t

za max0 = t
t

i
i zua max= N t

t
t

t
zzu max/min=  

and ; Ni ,...,1=
2. we assume that inside the interval the return is 

given by the geometric mean of the extremes, 
i.e.
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3. we build the transition matrix  
where the probability  points out the 
probability valued at time s to transit from the 
state  to the state  conditional of being in 
the i-th state. 
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Since the tree recombines at each step, the number of 
nodes increases linearly with the number of the time steps. 
For this reason we can control and limit the computational 
complexity. Thus, after  intervals of time we have 

 nodes (i.e., the multinomial tree growths 
linearly with the time). Starting to count from the highest 
node, after 　　steps the 　-th node has: 
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Next we consider an homogeneous Markov chain 
with transition matrix . In this case we 
assume the maximum likelihood estimate of probability 

 which is simply given by the ratio of the count of the 

appropriate cells, i.e., 
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p ≅,  where  is the number 

of times the return transit from the state i-th to the state j-
th and  is the number of times the return is 

in the i-th state. However, we could consider a non 
homogeneous Markov chain taking into account the 
behavior of the prices in different periods. 
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Therefore, we can model and value differently the 
transition matrixes when the underlined prices change its 
behavior during the maturity period. For example, if we 
have a seasonal price, like those observed in the energy 
markets, we can compute different transition matrixes in 
order to consider the week-end effect and/or the season 
effect. 

Once we get the transition matrix, we have to find 
adequate answers to the following three issues that should 
be object of the next sections: 
a) how one obtains the risk neutral valuation starting 

from the market-based transition probability; 
b) what we can say about the valuation procedure for 

European and American contingent claims and the 
main greek letters; 

c) discuss the stability of the solutions with respect to 
the number of the states. 

3. Risk neutral valuation 

Let us assume the dividend of one unity of wealth 
invested in a given asset during the period  is given 
by 

],[ 0 tt
))(exp( 0ttq −  where q describes the intensity of the 

dividend and suppose ))(exp( 0ttr −−  is one unity of wealth 
discounted at time  where we assume that r defines a 
fixed short term interest rate. 

0t

With markovian trees we can generally distinguish 
two possible risk neutral valuations: 

1. a risk neutral price that is state independent; 
2. a risk neutral price that is state dependent. 
The two cases require a different valuation of the risk 

neutral transition matrix, that we should denote 
respectively with P̂  and P  

3.1 State independent Risk Neutral Valuation 

Let us assume no arbitrages are allowed. Then there 
exists a risk neutral measure such that the value “today” is 
equal to the expected value of the future wealth discounted 
with the risk-free gross return. With a Markov chain this is 
equivalent to write: 

∑
=

−=∈
N

i
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where 00 =t ,  is the risk neutral expected 
value of the future return conditional on being in the i-th 
state, and  is risk neutral probability of being in the i-th 
state. Clearly in incomplete markets could exist more than 
one risk neutral measure satisfying the no arbitrage 
criterion. One criterion proposed in literature considers the 
minimal entropy martingale measure (see Stutzer (1996), 
Frittelli (2000) and the reference therein). On the other 
hand, the use of the minimal entropy martingale measure 
can be motivated by maximum expected utility arguments 
(see Frittelli (2000)). 

)/(ˆ
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ip̂

In our context, we find the minimal entropy 
martingale measure with respect to the unconditional 
probability measure Njijii ppP ≤≤= ,1, }{  where  is the 
unconditional probability to transit from the state i to the 
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state k. As observed by Frittelli (2000), in order to get the 
minimal entropy martingale measure in the discrete case, 
we have to compute the value θ , unique for all the states, 
that is obtained as a solution of the equation: 
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Then the risk neutral unconditional probability to 

transit from the state j to the state k is given by: 
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where  is the solution of equation (2). Therefore, we 
write the risk neutral transition matrix considering the 
following transition probabilities  
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Therefore, once we estimate the transition matrix 
　we can find the corresponding risk 

neutral transition matrix  that could be 
used in the risk neutral valuation of contingent claims. Let 

NjijipP ≤≤= ,1, ][

NjijipP ≤≤= ,1, ]ˆ[ˆ

]ˆ,...,ˆ[~
1 Nppp =  be the row vector of risk neutral 

unconditional probabilities of the different states. 
Then if we point out with  the vector 

of the possible states the fundamental theorem of asset 
pricing after one period is simple given by 

]',...,[~ )()1( Nzzz =

)exp(~ˆ~ qrzPp −= . 
Note that in the discrete case the minimal entropy 

martingale measure coincides with the minimal variance 
martingale measure and we can easily link also to the 
Esscher trasform risk neutral measure (see Gerber, Shiu 
(1994, 1996)) often used to price contingent claims with 
Levy processes (see Schoutens (2003)). Moreover, since 
we apply a risk neutral valuation that is independent on the 
state, we have not necessarily to correct the transition 
matrix as we do in the next state dependent valuation. 

 

3.2 State dependent Risk Neutral Valuation 

Let us assume that the gross return z at time 00 =t  is 
in the i-th state. When no arbitrage opportunities are 
allowed, then 

)exp()/(ˆ qrIzzE i −=∈    (4) 

where  is the risk neutral expected value of the 
future return conditional on being in the i-th state. 
However, we can find a risk neutral measure that satisfies 
condition (4) only if 
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In particular, it could happen that for some extreme 
states we cannot guarantee condition (4) holds since we 
have not enough observations of these extreme states and 
the probability approximations in the transition matrix are 
not sufficiently accurate. 

In order to overcome this problem, we can 
opportunely correct the original transition matrix 

NjijipP ≤≤= ,1, ][  such that condition (5) is satisfied. For 

example, suppose for the state "i"  
then we correct the i-th row of matrix P as follows: 
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The corrected matrix (that with abuse of notation we 
call again P) permits to overcome some misapplications 
problems deriving by a non sufficiently accurate 
approximation of the transition matrix. Once we correct 
transition matrix P condition (5) is satisfied for every state. 
Thus, for every state we can determine the minimal 
entropy martingale measure that satisfy condition (4). 
Hence, for every state  we compute the value Ni ,...,1=

( )iθ , obtained as a solution of the equation: 
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Then the risk neutral transition matrix 
NkikipP ≤≤= ,1, ][  should contain the risk neutral 

conditional probabilities given by: 
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where  is the solution of equation (6). Using this risk 

neutral transition matrix we get that
( )
*
iθ

NqrzP 1)exp(~ −= , 

where  is the vector of the possible states 
after one period and  is the unity vector column. 

( ) ( )]',...,[~ 1 Nzzz =

N1

4. Valuation procedure for European and 
American contingent claims and 
computational complexity 

Given an asset with gross return z, then we can build 
the tree of the underlying price. Thus starting from a price 
in a generic node, we could generate N possible future 
prices (depending on the N possible future states). On the 
other hand, the original price should be conditioned from 
the state of provenance (N possible backward states). This 
aspect is fundamental in the state dependent valuation 
because the procedure must take into account of the 
previous steps. 

The state dependent and the state independent risk 
neutral valuations allow us to determine a backward 
computation of contingent claims particularly useful for 
American derivatives. However, for European contingent 
claims, we can also propose an alternative state dependent 
forward valuation that is generally different from the 
previous ones. Thus, we can generally consider two 
different types of valuation procedures: forward and 
backward. The first one is used for European contingent 
claims, whilst the second one is a much more versatile 

approach that can be used for American, European and 
path dependent derivatives. 

4.1 State dependent forward valuation of European 
contingent claims 

Recent studies have proposed a simple algorithm to 
determine the return distribution function on a 
recombining markovian tree after k periods of time (see 
Iaquinta and Ortobelli (2006)). Therefore an easy way to 
compute the value of European contingent claims consists 
in using the Iaquinta and Ortobelli’s recursive algorithm 
that presents computational complexity of  order. )( 23kNO

In this framework we apply the same algorithm to the 
transition matrix P of an homogeneous Markov chain in 
order to obtain the distribution after k periods of time. The 
forward procedure of the algorithm builds a sequence of 
matrixes  of dimension  such that, after 
k periods of time, the return probabilities in the 

kQ NkN ×+− )1)1((
1)1( +− kN  

nodes of the tree are given by the vector  where  
is the unity vector column. Note that each node of the tree 
is simultaneously achievable from different states. Thus 
each node could be in different states and this depends on 
the provenance state. In particular , 

where  is the probability of being in i-th state and in 
the j-th node (counting from the highest node) after k 
periods of time. 
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Therefore, if we suppose the initial state is the i-th 
one, then the first transition matrix is the diagonal matrix 
with the discounted probabilities corresponding to the i-th 
row of P on the diagonal, i.e.,  ),...,( 11 iNi ppdiagQ =

 Instead, the other matrixes are given by 
)( 1PQdiagMQ kk −= , where the diagM operator performs a 

diagonalization process consisting in the following two 
operations applied to : PQk 1−

1. shift below the s-th column of s-1 spaces for 
s=2,…,N, creating a new matrix NkN ×+− )1)1((  ; 

2. fill all the new spaces with zeros. 
In order to get the minimal entropy martingale 

measure that is risk neutral with respect the distribution 
after k periods of time, we have to compute the unique 
value kθ  solution of the equation: 
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Then the risk neutral unconditional probability of 
being in the j-th node after k steps is given by: 
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where  is the solution of equation (7). Let 
 the vector of contingent claim 

value at maturity T. Then the price of the European 
contingent claim is simply given by: 

*
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This is a forward risk neutral valuation of the price 
with computational complexity of  order. )( 23TNO

In this valuation we do not correct the transition 
matrix as we suggest in the previous state dependent 
valuation, since we implicitly assume that ))exp(( Tqr −  
belongs to the support of the gross return after T periods 
of 

time i.e.: 
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This inequality is generally verified when T is big 
enough. Even for this reason we could expect some 
differences in the price valuations when we do not correct 
the transition matrix before applying the recursive 
algorithm to compute the return distribution after T 
periods of time. 

4.2 The backward valuation procedure for American 
and European contingent claims 

The backwards pricing of derivatives proceeds as any 
other standard backward process, distinguishing the state 
dependent and state independent valuations. 

State dependent backward valuation: 
In the state dependent valuation each node represents 

different values in dependence on the previous provenance 
state. It is the case to observe that this seemingly 
complication of a node with multiply values, due to the 
recombining purpose of the tree, allows a great advantage 
in order to save computational time and the memory usage. 

Since the tree is multinomial, the single node 
considered has N possible final nodes representing the 
final payoff of the derivative. A single backward step in 
the expected discounted process consists of the matrix 
multiplication between the discounted transition matrix 

transformed (as previously explained) and the vector of 
the final payoff. The result is a vector of N elements which 
represent the different values of the node in dependence of 
the provenance state. 

The description of the entire European option pricing 
process is offered through its algorithm form. Let consider 
a recombining multinomial price tree composed by M time 
steps and N branches for each node. Then we can build the 
tree of the contingent claim. 
1. Suppose we have the final payoff at M-th step (the j-

th payoff from above is given by ). Starting to 
count from the highest node then at the j-th node (for 

jMf :

1)1)(1(,...,1 +−−= MNj ) we consider the vector of 
payoffs ]',...,[

~
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th step we consider the 1)1)(1( +−− MN  vectors of 
discounted possible prices: 
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However, in this step we get more prices than those 
we have in the tree. In order to eliminate the prices 
which are not on the tree, we have to reorder the 
vectors that should be discounted in the backward 
process. 

2. We build the new vectors : 
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The value of the contingent claim depends on the 
state  we begin from and it is given by the m-th 

component of 
mI

1:1
~

)exp( fPrq − . 
The complexity of this algorithm is the same of the 

state dependent forward valuation (i.e., of  order). 
As a matter of fact, in the backward procedure the 
algorithm above can be summarized as follows. We build 
a sequence of matrixes of payoffs 
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operator performs a reduction process consisting in the 
following two operations applied to 1)exp( +− kFPrq : 
1. at the s-th row, cancel the first s-1 values for s=2,...,N 

and the last N-s for s=1,...,N-1; 
2. shift on the left the s-th row of s-1 spaces for s=2,...,N, 

creating a new matrix ((N-1)(k-1)+1) N (without 
considering the cancelled spaced of the first 
operation). 

×

Finally the contingent claim price is given by the m-
th component of 1)exp( FPrq −  when we suppose that the 
initial state is the m-th one. Observe that this reduction 
process is in some sense the inverse operation of the 
diagonalization process and it has the same computational 
complexity. This algorithm can be easily adapted to 
compute American options. For example, if we value an 
American put with exercise price X for every s less than 
the time to maturity (i.e., s M-1), in the backward 
procedure, we have to consider the vector 
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Moreover, even if this approach is not parametric we 

can also approximate the Greek letters which are often 
used to hedge the investors’ positions.. However, in this 
case we take into account the incremental ratios with their 
risk neutral probability. Suppose at time zero we are on 
the m-th state, then after one period we have the vector of 
contingent claims 1:1

~
f  whose the k-th component is 

realized with the risk neutral probability kmp , . In order to 
estimate the delta ( Sf ΔΔ=Δ ) of the option, we have 
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where we have not considered i, j s,k. since when ≠
kjsi =∧=  we get 0=Γijij . 

State independent backward valuation: 
With the state independent valuation we get a price at 

each step instead of a vector of prices since we have not to 
take into account the state of provenance. 

Let consider a recombining multinomial price tree 
composed by M time steps and N branches for each node. 
Then we can build the tree of the contingent claim. 
1. Suppose we have the final payoff at M-th step (the j-

th payoff from above is given by ). Starting to 
count from the highest node then at the j-th node (for 

jMf :

1)1)(1(,...,1 +−−= MNj ) we consider the vector of 
payoffs ]',...,[

~
1::: −+= NjMjMjM fff .Thus, at the (M−1)-

th step we consider the  prices: 1)1)(1( +−− MN

jMjM fPprqf ::1
~~)exp( −=−  

and we build the new vectors 
]',...,[

~
1:1:1:1 −+−−− = NkMkMkM fff  for k=1,…,(N-1)(M-

2)+1 
2. Thus, after s steps we have at the j-th node (starting 

from above) the price: 

jsjs fPprqf :1:
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and we build the new (N-1)(s-1)+1 vectors 
,  k=(N−1)(s−1)+1. ]',...,[

~
1::: −+= Nksksks fff

3. At the first step we have only one vector 
]',...,[

~
:11:11:1 Nfff =  and the value of the contingent 

claim is given by 1:1
~~)exp( fPprq − . 

Observe that the complexity of this algorithm is the 
same of the state dependent one (i.e.,  order) and, 
even in this case, we can easily adapt the algorithm to 
value an American contingent claim. So in order to value 
an American put with exercise price X for every s less than 
the time to maturity (i.e., s≤M−1), in the backward 
procedure, we have to consider the vector 
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5 Stability of the price valuation 

From the analysis of the backward valuation 
procedure we understand that the stability of the price 
depend on the opportune number of states N used in the 
pricing valuation. From a simple empirical analysis we 
could observe that the price of contingent claims do not 

substantially change with N greater than 50. In particular, 
we consider historical data from January 1995 to August 
2005 of Dow Jones Industrials, S&P500 and Nasdaq and 
we compute the price of several European puts and calls 
changing the number of the states (from 10 to 200) the 
strikes (five in the money and five out the money) and the 
time to maturity (7) for a total of 210 possible options. We 
compute the prices with a state dependent valuation and 
with a state independent valuation. While there exist 
differences in the prices, we generally do not observe 
differences in stability between the two procedures. 
Moreover, for all the experiments we obtain the stability 
of the price with N around 40, while, for N lower than 40, 
we not always have a stable price. 

Figure 1 and 2 summarize two of these experiments 
for a call and a put on the S&P500. The graphs show 
clearly how increasing the number of the states the prices 
tend to be stable and it makes sense to consider at least 50 
states. 

On the other hand, the valuation of the price of 
contingent claims with the above algorithms requires few 
seconds using a notebook dual centrino with one Gb of 
Ram. As a matter of fact, Figure 3 reports the graphs with 
the seconds necessary to compute the price of an European 
call with a backward state dependent valuation and 
considering the mean of 10 prices with maturity 20, 40, 60, 
90, 120 trading days and states varying between (41-50), 
(51-60) (61-70) (71-80). 

In view of this simple empirical analysis, next we 
consider as contingent claim price, the average of the 
prices obtained with transition matrixes from 40 

 

Fig. 1: This figure reports the values of an European call on the S&P500 
computed with the nonparametric markovian trees varying the number 

of states of the Markov chain. 

to 60 states. 

 

Figure 2: This figure reports the values of an European put on the 
S&P500 computed with the nonparametric markovian trees varying 

the number of states of the Markov chain. 
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6 An empirical comparison 

In this section we propose a comparison between 
nonparametric markovian option prices and the prices 
obtained under the Black and Scholes assumption. 

First of all we compute the differences of valuation 
when we assume the hypotheses of the Black and Scholes 
model holds. Then we describe the differences of prices 
computed using real data. 

In order to value the performance of our model when 
we assume the same hypotheses of the Black and Scholes 
model, we propose a MonteCarlo simulation comparison. 
In particular, we generate 10000 Gaussian scenarios 
N(0.002,0.03) of log returns. We assume that the risk free 
rate is 4% and the price of the stock today is 50 USD. 
Then we compute the prices of call options with 20, 40, 60 
days to maturity considering different exercise prices X 
(X=42, 44, 46, 48, 50, 52, 54, 56, 58). For all the options 
we compute the real Black and Scholes price the Black 
and Scholes estimated price, the price estimated with the 
backward state dependent and state independent valuation. 
Then we compute the average of the differences observed 
by estimated models and the real Black and Scholes prices. 

We observe that the estimated Black and Scholes 
price differs in average of about 0.0001 USD from the real 
one, while both the backward state dependent and state 
independent valuation differ in average of about 0.00025 
USD. Therefore, this analysis confirms that the 
nonparametric markovian models well fit the underline 
distribution and we do not observe significative 
differences between the state dependent and state 
independent valuations. On the other hand, it is well 

known that log returns are not Gaussian distributed (see 
Rachev and Mittnik (2000)). In an analysis of long time 
distributions Iaquinta and Ortobelli (2006) have recently 
shown that the approximation of the long time return 
distributions with a nonparametric markovian tree presents 
much better fit than that obtained assuming log-normal 
distributed returns. Therefore we expect that the prices 
computed with markovian trees are more precise than 

those obtained with the Black and Scholes model.  

 

Fig. 3: This figure reports the numbers of seconds necessary to compute 
the mean of 10 prices o f European calls with different maturities 
computed varying the number of the states of the Markov chain. 

Table 1: This table shows some differences in the option prices with 
T=60, 90 days to maturity and Strike Price equal to E(ST) we observe on 
European options valued for the S&P500 when we consider or the non-

parametric Markovian model (both backward and forward manner) or the 
Black and Scholes one. 

Using historical data from January 1995 to August 
2005 of S&P500, Dow Jones Industrials and Nasdaq we 
compute some of these differences in Tables 1,2 and 3. In 
particular Table 1 refers to S&P500, Table 2 to Dow Jones 
Industrials, Table 3 to Nasdaq. Each table reports the 
values of European calls and puts valued in different 
weeks between March and April 2005. We use two 
different maturities T = 60 and T=90; exercise price 
X= ( )TSE  and risk-free rate equal to the Treasury Bill 3 
months. Since we have not observed significative 
differences between the state dependent and state 
independent valuation (both backward and forward 
method), in this table we consider only the state 
independent one. 

As we can observe from the tables there exist 
significative differences between the pricing models much 
higher that those observed under the Black and Scholes 
assumptions. Therefore it makes sense to consider this 
modelization as alternative to the classic Black and 
Scholes one. 
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7 Concluding remarks 

We have proposed a Markovian model to price 
contingent claims. The model is nonparametric, ductile 
and it presents a reasonable computational complexity. 

Table 2: This table shows some differences in the option prices with 
T=60, 90 days to maturity and Strike Price equal to E(ST) we observe on 
European options valued for the Dow Jones Industrial when we consider 

or the non-parametric Markovian model (both backward and forward 
manner) or the Black and Scholes one. Using the minimal entropy martingale measure as 

risk neutral valuation, we have studied the stability of the 
price with respect to the number of the states. 

Moreover we have proposed an ex-post empirical 
comparison with the Black and Scholes model showing 
the ductility of the model with respect to the underline 
distribution. 

The model here proposed consider only a 
homogeneous Markov chain to value European and 
American derivatives. However, it can be easily extended 
assuming non homogeneous Markov chains to value plain 
vanilla and path dependent options. We also observe that 
the transition probability matrix associated with the 
Markov chain is usually sparse. It means that many 
elements of this matrix are numerically negligible. This 
property is important because it deeply reduces the 
computational cost of the algorithm (see Zlatev (1991) and 
Broyden, Vespucci (2004)). Therefore we believe that the 
computational time of ( )23kNO  order could be further 
reduced taking into account this fact. 
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