
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

209

Manuscript received June 5, 2008.
Manuscript revised June 20, 2008.

Enhanced Communal Global, Local Memory Management for
Effective Performance of Cluster Computing

Summary
Memory management becomes a prerequisite when handling
applications that require immense volume of data in Cluster
Computing. For example when executing data pertaining to
satellite images for remote sensing or defense purposes, scientific
or engineering applications. Here even if the other factors
perform to the maximum possible levels and if memory
management is not properly handled the performance will have a
proportional degradation. Hence it is critical to have a fine
memory management technique deployed to handle the stated
scenarios. To overwhelm the stated problem we have extended
our previous work with a new technique that manages the data in
Global Memory and Local Memory and enhances the
performance of communicating across clusters for data access.
The issue of the Global Memory and Local Memory
Management is solved with the approach discussed in this paper.
Experimental results show performance improvement to
considerable levels with the implementation of the concept,
specifically when the cost of data access from other clusters is
higher and is proportionate to the amount of data.
Keywords:
 High Performance Cluster Computing, Job Scheduling, Global
Memory Management, Local Memory Management

1. Introduction

This paper is an extension work of our previous work [10].
The first inspiration for cluster computing was developed
in the 1960s by IBM as an alternative of linking large
mainframes to provide a more cost effective form of
commercial parallelism [1]. However, cluster computing
did not gain momentum until the convergence of three
important trends in the 1980s: high-performance
microprocessors, high-speed networks, and standard tools
for high performance distributed computing. A possible
fourth trend is the increasing need of computing power for
computational science. The recent advances in these
technologies and their availability as cheap and
commodity components are making clusters or networks
of computers such as Personal Computers (PCs),
workstations, and Symmetric Multiple-Processors (SMPs)
an appealing solution for cost-effective parallel computing.

Cluster computing can be described as a fusion of the
fields of parallel, high-performance, distributed, and high
availability computing. It has become a popular topic of
research among the academic and industrial communities,

including system designers, network developers, algorithm
developers, as well as faculty and graduate researchers.
The recent developments in high-speed networking,
middleware and resource management technologies have
pushed clusters into the mainstream as general purpose
computing system. This is clearly evident from the use of
clusters as a computing platform for solving problems in
number of disciplines.

In some scientific application areas such as high energy
physics, bioinformatics, and remote sensing, we encounter
huge amounts of data. People expect the size of data to be
terabyte or even petabyte scale in some applications [2].
Managing such huge amounts of data in a centralized
manner is almost impossible due to extensively increased
data access time. To illustrate the scenario where a
scientific application is executed in a cluster computing
environment the data requirement of the application would
be enormous, the required data may be scattered across
several clusters. In this case, streamlining data access
through the usage of the proposed memory management
technique will improve the performance of the entire
operation.

In Cluster Computing Environment the data latency time
has significant impact on the performance when the data is
accessed across clusters. Memory management becomes a
prerequisite when handling applications that require
immense volume of data for e.g. satellite images used for
remote sensing, defense purposes and scientific
applications. Here even if the other factors perform to the
maximum possible levels and if memory management is
not properly handled the performance will have a
proportional degradation. Hence it is critical to have a fine
memory management technique deployed to handle the
stated scenarios.

Scheduling is a challenging task in this context. The data-
intensive nature of individual jobs means it can be
important to take data location into account when
determining job placement. Despite the other factors
which contribute performance in a cluster computing
environment, optimizing memory management can
improve, the overall performance of the same. To address
this problem, we have defined a combined memory
management technique. The proposed technique focuses

P. Sammulal† and Dr.A. Vinaya Babu††,

JNT University, Kakinada, India JNT University, Hyderabad, India

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

210

on optimizing memory usage, assuming the other factors
which contribute to performance are performing to the
optimum level.

The rest of the paper is organized as follows. Section 2
presents some of the existing works in job scheduling and
memory management. Section 3 describes the previous
combined memory management technique. Section 4
discusses Proposed Global and Local Memory
Management. Section 5 discusses the Experimental setup
and Results. Section 6 concludes the paper.

2. Related Work

Ann Chervenak et al. [3] review the principles that they
are following in developing a design for data grid
architecture. Then, they describe two basic services that
they believe are fundamental to the design of a data grid,
namely, storage systems and metadata management.

William H. Bell et al. [4] find the design of the simulator
OptorSim and Various replication algorithms. After setting
the simulation configuration they dedicated to a
description of simulation results.

Kavitha Ranganathan and Ian Foster [5] describe a
simulation framework that they have developed to enable
comparative studies of alternative dynamic replication
strategies. They present preliminary results obtained with
this simulator, in which they evaluate the performance of
five different replication strategies for three different kinds
of access patterns.

Kavitha Ranganathan and Ian Foster [6] develop a family
of job scheduling and data movement (replication)
algorithms and use simulation studies to evaluate various
combinations and they describe a scheduling framework
that addresses the problems.

Houda Lamehamedi et al. [7] introduce a set of replication
management services and protocols that offer high data
availability, low bandwidth consumption, increased fault
tolerance, and improved scalability of the overall system
and their results prove that replication improves the
performance of the data access on Data Grids, and that the
gain increases with the size of the datasets used.

Sang-Min Park et al. [8] evaluate BHR strategy by
implementing it in an OptorSim, a data grid simulator
initially developed by European Data Grid Projects and
their simulation results show that BHR strategy can
outperform other optimization techniques in terms of data
access time when hierarchy of bandwidth appears in
Internet.

D. G. Cameron et al. [9] discussed an economy-based
strategy as well as more traditional methods, with the

economic models showing advantages for heavily loaded
grids.

Khalil Amiri, David Petrou, Gregory R. Ganger, Garth A.
Gibson [11] presents ABACUS, a run-time system that
monitors and dynamically changes function placement for
applications that manipulate large data sets and they
evaluate how well the ABACUS prototype adapts to run-
time system behavior, including both long-term variation
(e.g., filter selectivity) and short-term variation (e.g.,multi-
phase applications and inter-application resource
contention).

Christine Morin [12] gives the design of Gobelins,a cluster
operating system, aiming at providing these two properties
to parallel applications based on the shared memory
programming model and their experimentations are carried
out on a cluster of dual-processor PC interconnected by a
SCI high bandwidth network.

Michael R. Hines, Mark Lewandowski and Kartik
Gopalan[13] address the problem of harnessing the
distributed memory resources in a cluster to support
memory-intensive high-performance applications and they
presented the architectural design and implementation
aspects of Anemone - an Adaptive NEtwork MemOry
Engine – which is designed to provide transparent, fault-
tolerant, low-latency access distributed memory resources

Michael R. Hines, Mark Lewandowski, Jian Wang, and
Kartik Gopalan [14] discussed the benefits and tradeoffs in
pooling together the collective memory resources of nodes
across a high-speed LAN based cluster and they present
the design, implementation and evaluation of Anemone –
an Adaptive Network Memory Engine – that virtualizes
the collective unused memory of multiple machines across
a gigabit Ethernet LAN, without requiring any
modifications to the large memory applications and also
their results with Anemone prototype show that
unmodified single-process applications execute 2 to 3
times faster and multiple concurrent processes execute 6 to
7.7 times faster, when compared to disk based paging.

Renaud Lottiaux and Christine Morin[15] introduce the
concept of container at the lowest operating system level
to build a COMA-like memory management subsystem
and they have presented the concept of container and
described how it can be used for global distributed
memory management in Gobelins operating system
targeted for clusters.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

211

3. Combined Memory Management
Technique

3.1 Global and Local Memory

Our memory management technique comprises global
memory and local memory. Global memory (Mg) is
common for all the clusters. Where as local memory is
specific to the nodes of every individual cluster.

The global memory (Mg) constitutes a persistent storage
and temporary storage. The data which are frequently
accessed is stored in the persistent part and the less
frequently accessed are stored in the temporary part.
Intuitively the bandwidth between the global memory and
the clusters will be significantly higher than the bandwidth
across clusters. The local memory associated with every
individual node of cluster hosts the data pertaining to the
task assigned for that node. Simply the local memory
consists of data that are required for the task deputed for
the corresponding node.

3.2 The Scheduler and Memory Management

When a user makes a request, he specifies the required
resources, the estimated execution time and the deadline.
The request is forwarded to the scheduler. The scheduler
consists of a resource management system which
maintains details regarding the resource availability,
resource under utilization. This information is updated
periodically by the resource management system.
Moreover the updations also happen after the completion
of running requests.

The scheduler after the reception of a new request makes
an analysis to identify a particular cluster to which the
request can be forwarded. The scheduler primarily takes
in to consideration the load of the processors of the nodes
of the concerned clusters before the task is assigned. But
this process of designating clusters for processing tasks
would not yield optimum performance because bandwidth
is also a major factor in determining the performance
levels. So to overwhelm this problem we have proposed a
new algorithm using global memory and local memory.

The conventional scheduling algorithm blindly fixes a
particular cluster taking into account the availability of
data the as the sole criterion. This method of designating a
particular cluster for a request would lead to performance
degradation. To illustrate the above scenario let us
consider a particular request requires certain the cluster
that is identified for the given request is based on the
presence of major portion of required data and the cost for
accessing remaining data is not considered and if it is
significantly higher, then it has to be treated in a separately.

At the same time, if the task is designated to a cluster
irrespective of the percentage of data present in that cluster
and considering the cost of accessing the remaining data
from the rest of the clusters through global memory the
performance can be optimized further. We have proposed
a new algorithm in 3.3 that also gives the needed
importance to the cost of accessing data

Figure 1: Example for General approach for selection of Cluster

Figure 2: Example for Proposed approach for selection of Cluster

3.3 Scheduling Algorithm

Assumptions

CN → Total Number of Clusters

iCJ → The Cluster handling the current job.

FS → Set of files required for the current job

WCSF → Set of files available in iCJ needed for
 current job

MgSF → Set of files to be transferred from

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

212

CSS through gM .

WCSN → Set of nodes having WCSF in the

cluster iCJ

CSS → Set of clusters having MgSF

For Files within a Cluster:

WCSFin fileseach for

 WCSNin nodeeach for

 timeCalculatet =
 end

 min(t) min =t
 WCSQN Update

 end

The total time needed to transfer the files between the
nodes within the cluster is calculated as follows.

∑
=

=
)(SF of size

0i
min

WC

t WCT

For Files between Clusters:

MgSFin fileseach for

 CSSin cluster each for

from file transfer to timeCalculatet =
 g M throughSSCi

 end
min(t) min =t

qcS Update

end

The total time needed to transfer the files between the
clusters through the global memory Mg is calculated as
follows.

 ∑
=

=
(Sqc) of size

0i
mint BCT

The total time needed to transfer the files required by the
job is calculated as follows.

 BCWC TTT +=

Repeat the above steps for all the clusters
).................,,(210 NCT TTTTS =

)min(S T=QT

The cluster with minimum time is chosen to allot the job.
At regular intervals the data access patterns in Global
Memory is analyzed. If the data stored in temporary
portion has been accessed more frequently then it is
shifted to the permanent storage part. Similarly the data
present in the permanent storage part is also deleted to
pave the way for new storage if it is not frequently referred.

4. Global and Local Memory Management
Technique

4.1 Memory management of nodes within a cluster

Files are normally transferred between both nodes and
clusters when it is not found in a particular node. In
between nodes, files are transferred directly without the
need of global memory within the cluster. But in between
the clusters, all the files transferred through the temporary
memory in the global memory. Assume that the file access
rate of each file is maintained in a vector FARV by every
node in a cluster.

If the used memory of a node exceeds a predefined
threshold value, the files which are not frequently accessed
have to be removed from that node. For this purpose we
have proposed the following algorithm.

4.2 Algorithm:

For each node in a cluster perform the following steps:

(1) Sort the vector FARV in ascending order.

(2) Retrieve the FARV of all the remaining nodes .
within that cluster.
(3) Find the non replicated files in the node and

 remove that files from the vector.

FARV of each value for
clustertheinwithnodethefromfiletheremove

 nodein that files remaining theall of size =MNS

)) -(Thresh (S MN ϕ<if

 break
 end
 end

Perform the above algorithm for the nodes of all the
clusters in the Cluster Computing Environment.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

213

4.3 Memory Management of Global Memory

The global memory consists of both permanent memory
and temporary memory. All the files transferred between
the clusters are transferred through the temporary memory
in the global memory. Assume that the file access rate of
all the files in the temporary memory and permanent
memory are maintained in a vector. If a file in temporary
memory is more frequently accessed, it must be
transferred from temporary memory to primary memory.
After transferring the files from temporary memory to
permanent memory, the files must be removed from
temporary memory. For this purpose we have proposed the
following algorithm.

4.3.1 Temporary Memory Management:

Assumptions:

RFA Access rate of all the files in the
temporary memory.

RSFA RFA sorted in descending order.

MP Permanent Memory

MT Temporary Memory

RSFA of each value for
 MM P toT from file theMove

memory temporaryin the files theall of Size =TMS
))((ϕ−< ThreshSIf TM
 break
 end
 end

4.3.2 Permanent Memory Management:

If the used memory of the permanent memory exceeds a
predefined threshold value, the files which are not
frequently accessed have to be removed from permanent
memory. For this purpose we have proposed the following
algorithm.

Assumptions:

RFA Access rate of all the files in the primary
memory.

MP Permanent Memory

RSFA FAR sorted in ascending order.

RSFA of each value for

 memory permanent from file Re move

memorpermanent in files remaining theall ofmemory =PMS

))((ϕ−< ThreshSIf PM
 break
 end
end

5. Results

We developed the algorithm in java. The performance of
the algorithm was tested with few clusters. We had
replication of files in the cluster also.

We stored the cluster and file information in the tables of a
database and the designs are as follows

Table1: ClusterId: Table to store the Cluster Information

Filename This list of files stored in the clusters
ClusterId Id of the cluster

Node Node id of the particular cluster

Table2: BetweenCluster: Table to store information about transferring
files from one cluster to another cluster

Filename This list of files stored in the clusters

From Cluster id from which files are
transferred

To Cluster id to which files are
transferred

Time Time taken for transferring file from
one cluster to another

Table3: WithinCluster: Table to store information about transferring files

from one node to another node within a cluster

Filename This list of files stored in the clusters

From Node id from which files are
transferred

To Node id to which files are transferred

Time Time taken for transferring file from
one node to another

ClusterId Cluster id of the particular node

Some result data are given in Table 4.

Files File numbers
Size Size of the file
From cluster id Cluster id from which files are
 transferred
To cluster id Cluster id to which files are

transferred
Time Time taken for transferring file

from one node to another

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

214

Table 4: Result Data

Files

Size
in
kb

From
Clusetr

Id

To Cluster
ID

(Qualified)

Time
in

MS
1 20 3 1 29
2 23 2 1 28
3 28 2 1 38
4 31 3 1 51
5 38 2 1 49
6 45 2 1 54
7 51 3 1 62
8 55 3 1 60
9 57 2 1 71

10 67 2 1 73

1 187 1 2 220
2 204 3 2 249
3 221 3 2 300
4 276 1 2 387
5 285 1 2 338
6 347 1 2 460
7 389 3 2 465
8 401 3 2 473
9 481 3 2 512

10 480 1 2 623
11 525 1 2 607
12 528 1 2 612
13 600 1 2 698

Chart 1, 2, 3 depicts more results obtained from our
experimental setup.

Chart 1 - 0kb to 100kb

Chart 2 - 100kb to 1,000kb

Chart 3 - 1,000kb to 10,000kb

6. Conclusion

The proposed technique for data access across clusters
shows substantial improvement reducing execution time.
Providing due consideration to data access latency besides
computational capability proves worthwhile. The proposed
concept uses a combination of Local Memory and Global
Memory management scheme The Local Memory takes
care of moderating communication across nodes within the
cluster. In Global Memory Management, The file access
rate of all the files in the temporary memory and
permanent memory are considered. If a file in temporary
memory is more frequently accessed, it is transferred from
temporary memory to primary memory. After transferring
the files from temporary memory to permanent memory,
the files must be removed from temporary memory. In
Local Memory Management, if the used memory of a node

X axis Size in KB
Y axis Time in MS

X axis Size in KB
Y axis Time in MS

X axis Size in KB
Y axis Time in MS

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

215

exceeds a predefined threshold value, the files which are
not frequently accessed is removed from that node. The
experimental results showed the proposed approach seems
to give effective and better performance

References

[1] R. Buyya (ed.), High Performance Cluster Computing:
Architectures and Systems, vol. 1, Prentice Hall, 1999.

[2] Wolfgang Hosehek, Francisco Javier Jaen-Martinez, Asad
Samar, Heinz Stockinger, and Kurt Stockinger. “Data
Management in an International Data Grid Project,”
Proceedings of First IEEE/ACM International Workshop on
Grid Computing (Grid’2000), Vol. 1971, pages 77-90
Bangalore, India, December 2000.

[3] A.Chervenak, I. Foster, C, Kesselman, C. Salibury, and S.
Tuecke, “The Data Grid: Towards an Architecture for
Distributed Management and Analysis of Large Scientific
Datasets”, Journal of Network and Computer Applications,
vol.23, Pages 187-200,2000.

[4] W. H. Bell, D.G. Cameron, L. Capozza, P. Millar, K.
Stockinger, and F. Zini, “ Simulation of Dymanic Grid
Replication Strategies in OptorSim”, Proceedings of the
Third ACM/IEEE International Workshop on Grid
Computing (Grid2002), Baltimore, USA, vol. 2536 of
Lecture notes in Computer Science, Pages 46-57, November
2002.

[5] I. Foster, and K. Ranganathan, “ Identifying Dynamic
Replication Strategies for High Performance Data Grids”,
Proceedings of 3rd IEEE/ACM International Workshop on
Grid Computing, vol. 2242 of Lecturer Notes on Computer
Science, Pages 75-86, Denver, USA, November 2002.

[6] I. Foster, and K. Ranganathan, “ Decoupling Computation
and Data Scheduling in Distributed Data-intensive
Applications”, Proceedings of the 11th IEEE International
Symposium on High Performance Distributed Computing
(HPDC-11), IEEE CS Press, Pages 352-368, Edinburgh,
U.K., July 2002.

[7] E. Deelman, H. Lamehaedi, B. Szymanski, and S. Zujun,
“ Data Replication Strategies in Grid Environments”,
Proceedings of 5th International Conference on Algorithms
and Architecture for Parallel Processing (ICA3PP’2002),
IEEE Computer Science Press, Pages 378-383, Bejing,
China, October 2002.

[8] Sang-Min Park, Jae-Hoon Kim, Young-Bae Go, and Won-
Sik Yoon, “ Dynamic Grid Replication Strategy based on
Internet ?Hierarchy”, Lecturer Note in Computer Science,
International Workshop on Grid and Cooperative
Computing, vol. 1001, pp.1324-1331, Dec.2003.

[9] DG Cameron, AP Millar, and C. Nicholson, “OptorSim: a
Simulation Tool for Scheduling and Replica Optimization in
Data Grids”, Proceedingsof Computing in High Energy
Physics, CHEP 2004, Interlaken, Switzerland, September.

[10] P. Sammulal and A. Vinaya Babu , “ Efficient and
Collective Global, Local Memory Management For High
Performance Cluster Computing”, International Journal Of
Computer Science and Network Security, Vol. 8 No. 4 pp.
81-84, 2008.

[11] Khalil Amiri, David Petrou, Gregory R. Ganger, Garth A.
Gibson,” Dynamic Function Placement for Data-intensive

Cluster Computing”on USENIX Annual Technical
Conference, San Diego, CA, June 2000.

[12] Christine Morin,” Global and Integrated Processor, Memory
and Disk Management in a Cluster of SMP's” in
IRISA/INRIA Campus universitaire de Beaulieu, 35042
Rennes cedex (FRANCE) 1999.

[13] Michael R. Hines, Mark Lewandowski and Kartik Gopalan,”
Anemone: Adaptive Network Memory Engine” in
proceedings of the twentieth ACM symposium on Operating
systems principles Brighton, United Kingdom Year of
Publication: 2005.

[14] Michael R. Hines, Mark Lewandowski, Jian Wang, and
Kartik Gopalan,” Implementation Experiences in
Transparently Harnessing Cluster-Wide Memory” In: Proc.
of the International Symposium on Performance Evaluation
of Computer and Telecommunication Systems (SPECTS
2005

[15] Renaud Lottiaux and Christine Morin,” A Cluster Operating
System Based on Software COMA Memory
Management”in Proc. of the 1st Workshop on Software
Distributed Shared Memory (WSDSM'99.

P. Sammulal is Pursuing his PhD
(Computer Science and Engineering)
from Osmania University, Hyderabad,
India. He has received the B.E degree
from Osmania University in 2000 and
MTech degree from JNT University in
Computer science and engg., in 2002. He
is in teaching and research since 2002.
He has published 4 papers in
International conferences/journals. His

research is focused on memory management in cluster computing,
face recognition in image processing He is working as an
Assistant Professor in JNT University, Kakinada, INDIA.

Prof. Dr. A. VinayaBabu received PhD
(Computer Science) from JNT University,
Hyderabad, India. He has received BE
and ME from Osmania University in
Electronics and Communication
Engineering, MTech from JNT
University in Computer Science and
Engineering. He is a professor in CSE
and Director of School of Continuing and

Distance Education in JNT University, Hyderabad, India. He is a
life member of CSI, ISTE member of FIE, IEEE, and IETE. He
has published about 35 research papers in International/National
journals, International/National Conferences and Refereed
International Conferences. His current research interests are
distributed/parallel computing, Cluster computing, Grid
computing, Network security.

