
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

227

UML Modeling of a Protocol for Establishing Mutual Exclusion in
Distributed Computer System

Dr. Vipin Saxena† and Deepak Arora††,

Department of Computer Science, B.B. Ambedkar University (A Central University), Vidya Vihar Rae Bareli Road,
Lucknow U.P. 226025, India

Summary
Mutual Exclusion in a fully distributed computer system contains
a lot of complexities related to the solution design and its
implementation. A number of solutions have been proposed for
solving mutual exclusion problem for fully distributed
environment but most of them are related to higher message
passing overheads over the network, which causes low
performance and efficiency. In this paper authors have presented
a design of a protocol for establishing mutual exclusion among
processes running concurrently, in fully distributed environment
by the use of bidirectional ring technique. A well known
modeling approach i.e. Unified Modeling Language (UML) is
used to model the protocol. UML class diagram, sequence
diagrams related to various scenarios is designed and system
complexities are also measured.
Key words:
UML Class Diagram, Bi-Directional Ring, Distributed system,
Mutual Exclusion, UML Sequence Diagram.

1. Introduction

Distributed computing systems have become more popular
nowadays, due to its capability to deal with heterogeneous
environments, network links with varying latencies, and
unpredictable failures in the network or the computers. In
this case mutual coordination becomes more important
aspect, when measuring the performance and reliability of
any distributed computer system. Also the mutual
coordination to access any shared resource should be
synchronized in such a way that at a time only one process
can access it at a time. Each process contains a segment of
code, in which it can update the shared variables or
resource [1]. For accessing its critical section, a process
has to submit a request for accessing the resources and
after the completion of critical section execution it should
release it, so that other processes can execute their own
critical sections. The necessary conditions for any mutual
exclusion algorithm are given below [1, 2],
1. Only one process can execute its critical section at a

time.
2. Progress must ensure, if no process is executing its

critical section, and some processes want to enter in
their critical section then permission will be given to

only those, who have not been entered yet in their
critical section, in a finite time.

3. Entry of any requesting process in its critical section
must be finite time bounded.

A number of researchers have given solutions to solve the
mutual exclusion problem in a distributed environment but
most of them are related to heavy message passing.
Lamport, L [3] suggests that any process wants to enter in
its critical section will issue a message and sends it to all
other existing processes. When the issued process gets
back the messages from all of other processes then only it
can enter in its critical section. After finishing its critical
section execution, it will again send message to all other
processes in the system. In this case for N process, there
will 3(N-1) messages are required to fulfill on process
request. According to Ricart, G., Agrawala, A. [4], there is
no need to send release message. In this way it requires
only 2(N-1) messages to fulfill a process request.
Maekawa, M. [5], has solved the mutual exclusion
problem by using sets. Any process can execute its critical
section, when it receives permissions from all other
processes its set. It requires 3√N massages to fulfill a
process request. Agrawal, D., El Abbadi, A. [6],
suggested an approach based on token ring. A process can
enter in its critical section, if it holds the token. In this case
N/2 messages are required for handling a process request.
Suzuki, I., Kasami, T. [7], discussed the solution as, the
process wants to enter in its critical section then it will
send messages to all and the processes, which currently
hold the token and then sends the token to requester
process. It requires N massages to fulfill a process request.
Rymond, K. [8], suggests an approach based on tree, in
which, root always holds the token. If any process wants
to access its critical section submits its request to its parent
node and this request will propagate towards root and
token will send to the requester child, if it is on the top of
request queue. It requires 2logN messages to fulfill a
process request. Another important algorithm proposed by,
Kawsar, F., Shaikot, S.H., Saikat, S., Mottalib, M.A. [9],
uses token ring approach based on token’s time stamp,
request list and node_no. when token matches with the
stored copy of token, a process can enter in to its critical
section. It requires N messages to fulfill a process request.

 Manuscript received June 5, 2008.

Manuscript revised June 20, 2008.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

228

Chakraborty, R.N., Yaprak, E. [10], suggest that one can
improve the reliability of token ring, if it is used with a bi-
directional ring, also given an algorithm for the detection
of ring breakage from single link component failure.
Lots of work on UML modeling is done by various
researchers but a very few research papers are available on
UML modeling related to the distributed computer
systems developed by Booch [12], is the most suitable
visual presentation platform for modeling the real word
problems. OMG [13, 14] describe the latest UML
specifications related to real world, modeling aspects also
the way of representation for XML metadata specification
in UML diagrams and the standard storage representations.
Pllana and Fahringer [15] suggested UML profiles,
through which one can model the high performance
applications. Further one more important reference by
Pllana and Fahringer [16], describes the issues related to
the design of parallel and distributed applications, using
Unified Modeling Language (UML). An object oriented
distributed architecture system is recently defined by
Saxena, V., Arora, D., Ahmad, S. [17], through UML
modeling, along with a case study of a multiplex system
for the distributed computing environment.
Most of the research work describe above is based
unidirectional ring technology. In this paper authors have
designed an algorithm for establishing mutual exclusion in
a distributed environment, using token approach based on
bi-directional ring technique, also satisfy the conditions
mentioned above. The modeling of the designed protocol
is given with the help of Unified Modeling Language
(UML). Also authors have suggested a way to recover
from token lost and recovery of bi-directional ring from
the process failure, which are major hazards of token
based approach. The performance of the designed
algorithm is also reported in the form of total messages
required for a process to enter in its critical section, along
with the comparison of previous approaches.

2. Background

2.1 Mutual Exclusion in fully distributed system

Distributed computer system is nothing but an
interconnection of loosely coupled processors through a
communication network. Every processor is having its
own local resources and intended to share the remote
processors, resources, which may vary in size and function.
The main purpose of distributed is to provide efficient and
convenient environment for this type of resource sharing.
However access of remote resources, imposes more
overheads in terms of processing and network
communication, but the development of distributed

computer systems is continuing getting its new hike, cause
of its reliability and high performance.

Fig.1 Sharing of resource under distributed computer system.

Distributed processes often need to establish coordination
in their activities. In the group of processes, mutual
exclusion for sharing of resources is required for
preventing interference & provides consistency when
accessing the shared resources. Therefore, there should be
some method used to establishing the mutual exclusion for
accessing the resources. Sharing of resources under the
distributed computer system is shown in Fig. 1.
All the four sites namely A, B, C and D are interconnected
through the communication network and these can share
the local as well as remote resources. In the above figure,
request can be generated at any time from any process to
get the resources, which may be available locally as well
as globally.
In this way more than one process can request for a
common resource. Here the mutual coordination becomes
important among the processes running concurrently in a
distributed computer system.
Also one can say if there are {P0, P1, P3….PN} process in
the system then each process must have a segment of code,
called critical section, in which a process may access the
resource or any common variable.
The most important aspect here is when process is in the
critical or executing critical section then no other process
is permitted to enter in its critical section. Thus the
execution of critical section by process must be mutually
exclusive, progressive and impose bounded waiting with
reference of time.

2.2 Process Definition

In this paper authors have assumed that processes are

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

229

running concurrently in the distributed computer system.
One can define the process, which is going to be executed
in the distributed environment. The process can be
classified as a macro, subprogram, subroutine or block of
code etc., which has an identification number called as
process_id. The UML class diagram consisting of the
number of attributes and methods is shown in Fig. 2(a).
The instance of the process and multiple instances through
the objects are also represented as in Fig. 2(b) & 2(c),
respectively. All the processes, which are compteting for
getting access of shared resources, are to be arranged in a
bi-directional logical ring. The instances of processes
arrange in a bi-directional ring, can be shown as Fig. 2(d).
This completes the definition of the process representation.

Fig. 2(a) Process UML class

Fig. 2(b) Instance of process

Fig. 2(c) Multiple instance of process

Fig. 2(d) Logical ring of process

2.3 Request_Token

The Request_Token class is a stereo typed class, LIST as a
Meta class. It is shown in Fig. 3 with its attributes. The
Request_Token is a list of process requests; each denotes
unique process request description. Every time a new
process request, get appended at the last in the
Request_Token, when any process generates the request
for accessing the shared resource or wants to execute its
critical section.

Fig. 3 Request_Token meta class

3. Algorithm for Establishing Mutual
Exclusion

A number of solutions have been proposed to mutual
exclusion problem for fully distributed environment but
most of them imposes heavy message passing overheads
on the network and based on unidirectional ring technique.
The designed algorithm for establishing mutual exclusion
in fully distributed environment is based on token
approach using bidirectional ring technique. The
assumptions and conditions, considered, while designing
the algorithm are given below:

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

230

1. The distributed computer system is composed of N
nodes or sites {S1, S2, S3,….SN}, equipped with its
own local memory and processor.

2. The participating sites do not share any memory or
global clock. The only way to get communicated is
through message passing mechanism.

3. On each site, there is exactly one process is running,
which can issue more than one request for accessing
the critical section but only after the completion of
previous one.

4. All the processes competing for accessing critical
section are arranged in a bi-directional logical ring
imposing in any ordering on process number i.e. Pi
can exist on ring before or after Pj.

5. All the processes know their successor and
predecessor in the bi-directional logical ring i.e. a
process should know the network address of its next
process and the previous process.

6. There is one separate bi-directional ring exists per
critical section or shared resource.

7. Any new process can join the contention ring at any
time by proper exchanging of their successor and
predecessor addresses.

8. The joining of new process in the ring will be done by,
breaking the logical link between any two processes
and exchange the addresses in the following manner:

9. Suppose process Q wants to join the bi-directional
ring or it is going to be insert between the existing
process P and process R then,

a. Q-> successor = P-> successor
b. Q-> predecessor = R-> predecessor
c. P-> successor = Q
d. R-> predecessor = Q

10. Instead of token message, a new data structure, called
Request_Token message will propagate around the
bidirectional ring.

11. The Request_Token retains the following information
about the process:

a. process_id: Process identification
number used to recognize the process
uniquely in the distributed system.

b. request_id: The request_id is a number
that increments every time when any
process generates new request for
accessing the critical section.

c. cycle: Required in case of
Request_Token lost, one by default.

12. Every site maintains a token_lost flag also, FALSE by
default.

13. The token will move left to right on the bi-directional
ring. Only process failure recovery algorithm uses the
bi-directional property of the ring.

14. On receiving of Request_Token by the process P, and
then copying of the Request_Token means update the
process request entries to the already existing
Request_Token in the node’s memory and copy it in
the node’s memory, if it is not found there.

The perception behind the algorithm is that, whenever any
process needs to access its critical section, it has to submit
its request by appending these three entries in the
Request_Token. As the Request_Token follows the
concept of List, so the process request entries can be made
dynamically. In this way the Request_Token can be any of
the length. To carry the Request_Token of arbitrary length,
ring topology is an appropriate choice, because a ring can
carry data of any length. On receiving of Request_Token
by the process P on bi-directional ring, it will react in the
following manner,
1. Process P does not want to access its critical section

then it will simply copy the Request_Token to the
node’s memory and forward it to the next successor
process.

2. Process P wants to access its critical section and it
finds their request entry in the received
Request_Token, then it will,

a. Hold Request_Token
b. Access critical section
c. Remove the corresponding entry form

Request_Token after completing its
critical section

d. Save the updated Request_Token in the
node’s memory.

3. Process P is in the critical section, then it will simply
copy the Request_Token to the node’s memory and
forward it to the next successor process.

4. Process P wants to submit their request for accessing
the critical section then it will,

a. Increment the request_id of last entry in
the received Request _Token, by one. If
it is first process request entry then
request_id =1.

b. Append the aforesaid three entries in the
Request_Token

c. Save a copy of request-token in the
node’s memory.

5. Upon receiving Request_Token, any process P
updates the Request_Token in node’s memory, if and
only if the cycle value in Request_Token >= cycle
value of already existing Request_Token in the site’s
memory.

6. In case of Request_Token lost, a timer expires at the
process. In this case the process P generates the
lost_token message. This lost_token message will
contain a field for saving the node address and highest

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

231

request_id value, found in the Request_Token entries
stored at any node’s memory. When any process Q
recieves the lost_token message, it will set token_lost
flag true and copy its node’s address and highest
request_id value found in saved Request_Token at
that site, if found greater than the lost_token message
already have.

7. After completing one complete cycle, the lost_token
message will contain the site address, which has the
largest request_id. Create a copy of Request_Token
from that site; set the token_lost flag false, increment
the cycle value by one, put it on the ring back.

8. When this Request_Token with incremented cycle
value reaches to other process R that have lesser cycle
value in saved Request_Token, replace the saved
Request_Token by the newly received
Request_Token and set the token_lost flag false.

9. If Request_Token arrived at a process R with the
smallest cycle value than the process already have
saved in its memory, then this Request_Token is
assumed to be obsolete and hence discarded.

10. If lost_token message arrives repeatedly at the process
R that have already token_lost flag true then these
lost_token messages is assumed to be obsolete and
hence discarded.

11. If the fate has been completed successfully, then
certainly after N complete cycles, every process has
nothing in its memory, where N is the number of
competing process for accessing critical section.

3.1 Recovery algorithm from Process Failure

Fig. 4: Logical ring of process

In Fig. 4, one can see that processes P1, P2……PN are
arranged in a bi-directional ring. Here authors have
assumed that at a time only one process shall failure on the
bi-directional ring, while others remain alive, in the

distributed computing environment.
Suppose there are five processes on the ring and process
P1 has failed then process P2 will not be able to see the
Request_Token for a specified period of time. In this case
it will react as follows,
1. Process P2 will send an echo packet to its predecessor

process P1.
2. If it doesn’t find any response from its predecessor

process P1 within a certain amount of time, declare it
dead.

3. Now process P2 generates a recover message, which
contains two fields, sucessor_end and the
predecssor_end, for storing the successor and
predecessor process addresses respectively, and a list
for maintaining the entry of all the live processes.

4. Process P2 sends an echo packet to the next process
P3, if it gets reply from process P3, Process P2 saves
its own address in successor_end, put the recover
message on the bi-directional ring and passes it to the
next successor process P3.

5. Upon receiving the recover message, process P3 will
make its own entry in recover message and send an
echo packet to its successor process.

6. If process P3 gets echo back then passes this recover
message to next successor P4.

7. Repeat steps 5 and 6 for Processor P4.
8. When recover message reaches to process P5, it

would not get echo back from process P1 as it is
failed. In this case process P5 saves its own address in
predecessor_end in recover message.

9. Replace, P5->successor address with recover
message->successor_end.

10. Match the process entries in saved Request_Token
with the recover message live process entries.
Remove extraneous process entries, in
Request_Token saved at the site’s memory.

11. Change the direction of recover message and send it
to the predecessor process P4. Repeat step10 and send
the recover message again to the next predecessor P3.

12. Repeat step10 and send the recover message back to
issuing process P2.

13. Replace the P2->predecessor with recover message-
>predecessor_end and Repeat step 10.

The above recovery method has been designed for one
process failure at a time only. The process declared dead
can join the bidirectional contention ring later at any time.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

232

4. UML Modeling of Mutual Exclusion
Algorithm

4.1 UML Class Diagram

Fig. 5 UML class diagram for mutual exclusion

Fig. 5 shows the UML class diagram for mutual exclusion
in distributed environment. In this diagram one can see
the classes and their relation, involved in the system. Here
authors have considered that the process are arrange in a
bi-directional ring. The Process class is responsible for
grabbing operations for the Request_Token moving
around the ring. For the movement of Request_Token on
the ring Reqest_Token class would interact with
Communication_Medium class, which follows some sort
of communication technology used for constructing the
distributed system.
Also the Request_Token class will directly interact with
the Memory class for performing the save and update
operation for the Request_Token entries. The Memory
class is responsible for all the save and search related

operations for the Request_Token. Request_id_Matcher
will also interact with the Memory for searching the
respective request_id for the corresponding process.
Token_generator class is responsible for generating new
token and putting it on to the ring, in case of ring
initialization and Request_Token lost.
For submitting the request for accessing the shared
resource or executing its critical section, Process class will
interact with the CS_Request_Generator class; which is
responsible for the proper generation of request, to the
corresponding process. Here authors have considered that
processes are arranged in bi-directional ring, the Ring
class is responsible for constructing the bi-directional
logical ring of processes.

4.2 UML Sequence Diagram

4.2.1 Process Request for Accessing Critical Section

Fig. 6 UML sequence diagram for process request

In the Fig. 6, one can see that how the objects are getting
activated and what are the messages being transferred
among objects while submitting a process request.
If any process wants to access their critical section, a
process will first submit a reqest to
CS_Request_Generator object. Now
CS_Request_Generator will initiate the Request_id and
get the new request number. After getting new request id,
CS_Request_Generator starts preparing a new process

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

233

request and append this request entry to the existing
Request_Token. Now update the Request_Token in the
memory and upon completion, send an acknowledgement
back to the process for a successful request submission.

4.2.2 Request Granted to process for Accessing Critical
Section

The Fig. 7, given below, shows the sequence of messages
communicated when any process permitted to access their
critical section. First of all, token is grabbed by the process
and saved into the memory.
Now Request_id_matcher will start searching for
respective request_id issued by the corresponding process
in Request_Token, if search declared successful then
process will start its critical section execution.
After the completion of critical section execution, remove
the request entry of corresponding process from the
Request_Token and pass it to its successor after updating
the copy of Request_Token, already saved in the memory
at respective site.

Fig. 7 UML sequence diagram for request granted to process

If search fails the process will pass the Request_Token to
the next successor and start waiting again for another
chance.

5. Correctness of algorithm

5.1 Mutual Coordination

This algorithm ensures the mutual coordination among the
processes running concurrently in a distributed
environment. Any process, which holds Request_Token,
can execute their critical section only. The Request_Token
will be forwarded to next successor process only when the
current process will complete the execution of critical
section. Therefore there is no any possibility for more than
one process to enter in its critical section at a same time.

5.1 Bounded Waiting Time

The Request_Token will contain the entry of request_id
for each competing process, which ensures that each
process would be served according to their request_id
number. As the token moves along with the ring and
passes from one process to another process on the ring,
every request will serve within a certain amount of time.
Suppose process P is initiated a request for accessing the
critical section by appending a request entry in the
Request_Token. This request would be granted after
completing one complete cycle of a ring i.e. when process
P would receive the Request_Token again. Starvation will
occur in the system, because every process will evenly get
a chance to complete their request.

5.2 Lost Request_Token Recovery

The Lost Request_Token recovery algorithm given in the
paper is designed to regenerate the Request_Token, in
case of token lost in a distributed computing environment.
When Request_Token reaches to any process, a copy of
token is maintained at the respective site’s memory. In
case of token lost the Request_Token, copy kept at site,
having the largest value of request_id, will be responsible
for the new Request_Token generation. Now this new
Request_Token have to be copied out to each of the
participating site to overcome the token lost problem on a
process ring.

5.3 Recovery from Process Failure

It is possible that during the execution, any process remain
fail to pass the Request_Token to its successor process.
On expiration of timer the successor process will try to
find out that whether the predecessor process is alive or

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

234

not. If it is found dead, it will generate the
recover_message to find out the both ends, where the
logical link has been broken. Once it finds out both the
ends of ring, one can join the broken link by exchanging
the successor and predecessor addresses. Removing the
entry of the dead process(s) from the Request_Token will
prevent serving of request issued from the dead process(s).
The above process failure recovery algorithm has been
designed for only one process failure at any instance on
the bi-directional ring.

5.4 Ensure Progress

As this algorithm, provides recovery mechanisms from
both of the hurdle i.e. token failure and process failure, of
token-based approach for establishing the mutual
exclusion in distributed environment. This will ensure the
progress of process execution results at higher rate of
concurrency in any distributed computing scenario.

6. Performance Analysis

6.1 Message Complexity

If there are N number of processes are running
concurrently in the distributed computer system, then one
can compute the message complexitys as shown in Table 1.

Table 1: Message Complexity

Activity Messages

Lamport’s Algorithm [3] 3(N-1)

Ricart-Agarwals Algorithm [4] 2(N-1)

Maekawas Algorithm [5] 3√N

Token Ring Algorithm [6] Avg N/2

Suzuki-Kasamis Algorithm [7] N

Raymonds Algorithm [8] Avg 2LogN

Fahims Algorithm [9] N

Author’s Algorithm N

As the present approach is a token based approach uses bi-
directional ring technique, in comparison of all previous
approaches are based on unidirectional ring technology.
To deal the problem of establishing the mutual exclusion
in the distributed computing environment, the older
approaches have adopted the request message collection
methodology, which imposes heavy message overheads on
communication network. Besides that in the present
approach there will be less communication overheads on
the network due to Request_Token approach on the bi-
directional ring

7. Concluding Remarks

In this paper, authors have designed, a new protocol based
on Request_Token approach using bi-directional ring for
ensuring the mutual exclusion in a fully distributed
computer system through Unified Modeling Language
(UML). This design is equipped with the mechanisms to
recover the system from token lost and process failure.
Authors have also given the correctness and message
complexity for this algorithm, and found satisfactory. In
this way one can say that UML plays an important role in
visual representation of any software and hardware
problems. Bottom up approach used in UML modeling
makes it more robust, reliable and efficient.

References
[1] Siberschatz, A., Galvin, P. B., 2000, Operating Systems

Concepts, 5th edition, John Wiley & Sons, Inc.
[2] Silberschatz, A., Peterson, J.L., 1988, Operating System

Concepts, Addison-Wesley, Alternate edition.
[3] Lamport, L., 1978, Time, clocks, and the ordering of events

in a distributed system, Communications of the ACM, vol.
21, no. 7, July 1978, pp. 558-565.

[4] Ricart, G., Agrawala, A., 1981, An optimal algorithm for
mutual exclusion in computer networks, Communications of
the ACM, vol. 24, no. 1, Jan. 1981, pp. 9-17.

[5] Maekawa, M., 1985, A sqrt(n) algorithm for mutual
exclusion in decentralized systems," ACM Transactions on
Computer Systems, vol. 3, no. 2, May 1985, pp. 145-159.

[6] Agrawal, D., El Abbadi, A., 1991, An efficient and fault-
tolerant solution for distributed mutual exclusion, ACM
Transactions on Computer Systems, vol. 9, no. 1, Feb. 1991,
pp. 1-20.

[7] Suzuki, I., Kasami, T., 1985, A distributed mutual exclusion
algorithm, ACM Transactions on Computer Systems, vol. 3,
no. 4, Nov. 1985, pp. 344-349.

[8] Raymond, K., 1989, A tree-based algorithm for distributed
Mutual Exclusion, ACM Transactions on Computer
Systems, vol. 7, no. 1, Feb. 1989, pp. 61-77.

[9] Kawsar, F., Shaikot, S.H., Saikat, S., Mottalib, M.A., 2002,
An Efficient Token Based Algorithm for Mutual Exclusion
in Distributed System, Proceedings of the 5th International
Conference on Computer and Information Technology

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

235

(ICCIT 2002), pp. 93-96, Dhaka, Bangladesh, December
2002.

[10] Chakraborty, R.N., Yaprak, E., 1993, Improvement in
reliability of the token ring network by reversal of token in
case of a single component failure, Circuits and Systems,
IEEE, Proceedings of the 36th Midwest Symposium on Vol.
2 , Issue, 16-18 Aug 1993 pp. 1152 - 1154.

[11] Andrew S. Tanenbaum, 1995, Distributed Operating
Systems, Prentice Hall, 1995.

[12] Booch, G., Rumbaugh, J., Jacobson, I., 1999, The Unified
Modeling Language User Guide, Addison Wesley, Reading,
MA 1999.

[13] OMG, 2001, Unified Modeling Language Specification.
Available online via http://www.omg.org.

[14] OMG, 2002, OMG XML Metadata Interchange (XMI)
Specification. Available online via http://www.omg.org.

[15] Pllana, S., T. Fahringer, 2002, On Customizing the UML for
Modeling Performance Oriented Applications. In
<<UML>>, Model Engineering Concepts and Tools,
Springer-Verlag., Dresden, Germany.

[16] Pllana, S., T. Fahringer, 2002, UML Based Modeling of
Performance Oriented Parallel and Distributed Applications,
Winter Simulation Conference.

[17] Saxena, V., Arora, D., Ahmad S., 2007, Object Oriented
Distributed Architecture System through UML, conference
IEEE, International Conference on Advances in Computer
Vision and Information Technology, ACVIT-07, ISBN 978-
81-89866-74-7, pp.305-310.

Dr. Vipin Saxena: He is a Reader &
Head, Dept. of Computer Science,
Babasaheb Bhimrao Ambedkar
University, Lucknow, India. He got his
M.Phil. Degree in Computer
Application in 1991 & Ph.D. Degree
work on Scientific Computing from
University of Roorkee (renamed as
Indian Institute of Technology, India)
in 1997. He has more than 12 years

teaching experience and 16 years research experience in the field
of Scientific Computing & Software Engineering. Currently he is
proposing software designs by the use of Unified Modeling
Language for the various research problems related to the
Software Domains & Advanced Computer Architecture. He has
published more than 55 International and National publications.
Phone: +91-9452372550
Fax: +91-522-2440821
E-mail: vsax1@rediffmail.com

Deepak Arora: He is a Research
Scholar, Dept. of Computer Science,
Babasaheb Bhimrao Ambedkar
University, Lucknow, India. He got his
Master Degree of Computer
Applications in 2003 and M.Phil.
Degree in Computer Science in 2006.
Currently he is actively engaged in the
research work on Distributed Computing
Systems through the Unified Modeling
Language. Ha has produced several

outstanding publications on Distributed Computing Systems.
Phone: +91-522-2439567, +91-9889505518
E-mail: deepakarorainbox@gmail.com

	Activity
	Messages
	Lamport’s Algorithm [3]
	3(N-1)
	Ricart-Agarwals Algorithm [4]
	2(N-1)
	Maekawas Algorithm [5]
	3√N
	Token Ring Algorithm [6]
	Avg N/2
	Suzuki-Kasamis Algorithm [7]
	N
	Raymonds Algorithm [8]
	Avg 2LogN
	Fahims Algorithm [9]
	N
	Author’s Algorithm
	N

