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Summary 
Modeling of Internet topology has become the focus of 

Internet-related research fields recently, and was also the topic of 
this paper. First, the topology measuring results were collected 
and processed by tools of IP Alias resolution and sampling bias 
handling. Then, frequency-degree power-law, degree-rank 
power-law and so on were performed on these topology data to 
find power-law properties of the Internet topology. With the 
power-law achievements, an Internet topology model was 
constructed based on BA model after two steps of improvements. 
The first improvement is to optimize parameters of BA model 
through Genetic Algorithm and SLS in order to make the model 
complying with frequency-degree power-law analysis result; and 
the second one is to modulate the improved model again 
according to the degree-rank power-law analysis results. 
Generating algorithm for the topology model was finally given.  
Key words: 
Genetic Algorithm; Power-law distribution; SLS (Signless 
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1. Introduction 
In recent years, many emerging useful researches 
techniques such as the power-law distribution[1][2] and 
spectra analysis[33] are getting to be key approaches in 
Internet-related researches, especially the Internet 
topology modeling research[1][2][4].  

In power-law part, frequency-degree power-law was 
firstly used by Faloutsos to character the topology of both 
AS-level and router-level Internet in 1999, thereafter, 
degree-rank power-law, eigenvalue-rank power-law and 
CCDF(d)-degree power-law were brought forward[1][3].  

In spectra part, the signless Laplacian spectra (SLS)[33] 
and normalized Laplacian spectra (NLS)[33] are research 
techniques from Graph Theory but recently have been 
considered to be quite useful tools in topology modeling 
researches. So, power-law together with spectra analysis 
would be mainly used in studies of Internet topology 
modeling, based on a giant set of measured samples of 
router-level Internet topology in this paper.  

A. The measured samples of Internet topology 
1) Measuring methods 

Static methods based on the BGP route table and the 
dynamic methods based on the active probing are the main 

ways to measure the router-level Internet topology[16]. And 
the static methods are gradually replaced by the dynamic 
ones due to their lack of the redundant routers measures [16]. 

The dynamic methods, at present, are mainly divided 
into three categories[19]: (1) single-monitor-measuring by 
recording all routers in the route path, such as the Internet 
Mapping Project (IMP) in Bell Lab.[20], and the 
Mercator[21] projects; (2) active measuring based on the 
Public Traceroute Server (PTrS), such as the ISP topology 
measuring project by Boston University[22]. (3) multi-
monitor-measuring or measuring-from-multiple-vantage-
points by self-developed software engines, such as the 
CAIDA projects[17][18], and the Active Measuring Project 
by Harbin Institute of Technology[19].  

In the upper three methods, the PTrS (method No.2) is 
quite limited due to the following reasons[19]. Firstly, PTrS 
are quite unevenly distributed in Internet and not all ISPs 
render services of PTrS. Studies in [19] indicated that only 
one of nine ISPs providing PTrS, so PTrS method is not as 
reliable as the others. Secondly, it’s rather hard to transfer 
or gain the control of PTrS from the ISPs due to security 
considerations, which directly resulted in the inefficiency 
of measuring Internet topology.  

The first method is similar to the third one (e.g., 
CAIDA), they are all based on traceroute or the traceroute-
like programs[17][18], but the first method is inferior to the 
third one since it‘s totally upon single-monitor-measuring 
tools. CAIDA, however, could implement multi-monitor-
measuring and consequently yield better measuring 
results[17][18]. The Active Measuring Project by Harbin 
Institute of Technology (HIT) also used multi-monitor-
measuring tools, but it had fewer monitors in its project 
than CAIDA has, what’s more, the HIT project was 
mainly focused on the Internet topology in China part2][19], 
on the contrary, CAIDA project measured the world-wide 
Internet. So CAIDA1 measuring methods were selected for 
studies in this paper.  

 
2) Problems of the measuring results 

                                                           
1 CAIDA, the Cooperative Association for Internet Data Analysis, is a 
worldwide research center on Internet-related research fields. CAIDA has 
more than thirty monitor nodes which are distributed throughout the whole 
world, measuring and monitoring the variations of Internet. Three of the 
monitors are located in Asia.  

 
 

Manuscript received June 5, 2008.  
Manuscript revised June 20, 2008. 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008 
 

285

 

                                                          

The measuring results from CAIDA monitors are 
complete but in coarse granularity. There are two main 
problems in it: IP Alias problem and the sampling bias 
problem due to single-monitor- measuring[6][19].  

3) Problems of IP Alias 
[Def 1] IP Alias[23][24]: Different ports of one Internet 

router are assigned with different IP addresses, and they 
are mistaken for different routers in the active measuring. 
And this problem is known as IP Alias. 

IP Alias Resolution[25] is a way to distinguish the IP 
addresses and solve the problem of IP Alias. However, the 
researches on IP Alias Resolution is still in progress, and 
only a few methods or tools are provided at present and 
they still could not solve the whole problem, only to some 
extent[23][24]. Among these tools, three of them are 
comparatively practicable, and they are iffinder tool[26] 
from CAIDA, Mercator[27] and Rocketfuel tool[28] from 
Boston University. Rocketfuel tools distinguished aliased 
IP addresses by some complicated algorithm such as 
recognizing the TTL segment of the ip datagram. And 
some researches[28] found Rocketfuel tool could find Alias 
IP addresses three times more than the other present tools. 
So it was selected as IP Alias Resolution tool in this paper.  

4) Problems of Sampling Bias 
Some recent researches[6][19] found that the measuring 

results were usually different from real network topology 
and tended to show stronger power-law (frequency-degree 
power-law) properties than what the real network actually 
has when only one monitor or less monitors was used 
during the active measuring by the traceroute-like tools.  
Sampling bias is directly associated with the number of 

measuring monitors[6][19]. Though it’s still hard right now 
to find perfect approaches solving the sampling bias 
problems, we still found an easy and effective way to 
solve, in some extent, the problem of sampling bias. That 
is to use as many monitors as possible when measuring a 
target network[6][19]. And this is how we handle the 
measuring results of Internet topology from CAIDA 
monitors in this paper. 

5) The router-level Internet measuring samples after 
IP Alias Resolution and Sampling Bias handling 

The rough measuring results in this paper are the router-
level Internet topology data measured at 30th, Jan. 20062 
from as many as twenty-one CAIDA monitors3. And after 
the IP Alias resolution, we get twenty-one set of 
measuring samples.  

 
2 The reason why measuring topology data at 30th, Jan. 2006 is that there are 
as many as twenty-one monitors providing effective measuring data that day. 
For other days round that period of time, the fact is, there would be fewer 
effective monitors.  
3 The twenty-one monitors are arin, b-root, cam, cdg-rssac, champagne, d-
root, e-root, h-root, i-root, iad, ihug, k-root, lhr, m-root, mwest, neu1, nrt, 
riesling, sjc, uoregon and yto. And all monitors are distributed into different 
continents for better measuring Internet throughout the whole world. 

Then we move on sampling bias handling process. 
Firstly, we gather them together (the twenty-one monitor 
measuring results) to form a complete testing sample in 
order to reduce the impact of sampling bias to an extreme 
extent. And this best copy of sample is undoubtedly 
regarded as our key sample in experiments of the paper.  

However, we still made several other inferior or 
incomplete testing samples for comparison reasons, and 
they are sample(1) comprising data from only one 
monitors (arin monitor), and sample(2) from two monitors 
(arin, b-root), till sample(20) from as many as twenty 
monitors.  

Now we eventually had twenty-one set of measuring 
samples including the key testing sample.  

B. Mathematical description of power-law distribution 
Power-law distribution is mathematically described 

as , where x, y are random variables, and c, r are 
constants greater than 0. Perform logarithm on it, we then 
get 

rcxy −=

xcy ln'ln = . It’s easy to see that there is a linear 
relationship between  and , i.e., there would be a 
straight line if we plot the relationship between them in a 
dual-logarithmic coordinates. And this linear relationship, 
or the straight line in dual-logarithm plot, would be 
regarded as a primary judgment identifying whether 
power-law distribution is suited or not. 

yln xln

Three important power-law distributions mostly used in 
Internet topology researches are listed in table I[3][4], and 
the parameters are listed in table II.  

 
TABLE I 

THE BASIC EQUATIONS OF POWER-LAW DISTRIBUTIONS 
Power-law distributions Mathematical models 

frequency-degree R
vv dp ∝  

degree-rank R
vv rd ∝  

CCDF(d)-degree D
d dD ∝  

TABLE II 
DEFINITIONS OF THE PARAMETERS AND SYMBOLS 

Variable Definition 
G   Undirected graph 
N   Number of the nodes in a graph 
E   Number of the links in a graph 
dv   Degree of node v 

d   Average degree of a graph, NEd /2=  

pv   Frequency of node whose degree is v 
Dd   CCDF(complementary cumulative distribution function) 
rv   Order of node v 

λ   eigenvalues of N*N Matrix A: X:X ∈ RN \{0} and 
AX=λX 
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C. Mathematical description of spectra 
1) Spectra 

A non-directed graph G could be denoted by it 
symmetrical adjacency matrix A. If there is a link between 
node i and node j in G, then Aij=Aji=1, otherwise Aij=Aji=0. 
Eigenvector of G are the eigen values of A, and they are 
denoted as λ 1, λ 2… λ n. Researches in Graph Theory 
show that eigenvector of a graph are closely related to the 
structural properties of the graph topology. So studies on a 
graph’s eigenvector are useful in topology research. 
Spectra of a graph G is denoted by a set of the eigen 
values and their tuples[2], as is equation (1).  

⎟⎟
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                  ( 1 ) 

where m is the tuple of the corresponding eigen value. 
Spectral density )(λρ , is the eigen value density of A, 
and it could be denoted as[2][5][35]:  

∑
=

−=
n

i
iN 1
)(1)( λλδλρ                     ( 2 ) 

where iλ  is the ith eigen value of adjacency matrix A, N 
is the number of the eigenvector.  

2) Signless Laplacian spectra (SLS) 
An SLS matrix |L| of a graph G is defined to |L|=D+A, 

where matrix D is a diagonal matrix representing G’s 
degree, and A is G’s adjacency matrix[2][5]. SLS is the 
eigenvector of |L|. Some researches in graph theory 
indicated that SLS is the best spectra in distinguishing 
different graphs[5]. So SLS would be mainly used in 
analysis of properties of Internet topology structure.  

2. POWER-LAW ANALYSIS 

A. Frequency-degree power-law 
Calculate the frequency and degree from one-monitor 

sample, two-monitor sample, five-monitor sample and 
twenty-one-monitor sample (the key sample) and make the 
illustration in Fig.1. The power-law curve fitting results 
were also illustrated in Fig.1.  
 

There is clear power-law relationship between variable 
frequency and degree since the curve fitting result - 
straight line shown from Fig.1. Besides, the curve fitting 
results (the straight line) are close to the sample, and all 
four fitting ACCs (Absolute value of the correlation 
coefficient) are greater than 0.95, meaning that the curve 
fitting results are acceptable. 

Though the results in four sub-graphs show clear 
power-law relations, their power-exponents |R|, however, 
are different. We list them in table III. 

 

 

Fig. 1 The frequency-degree power-law analysis on the router-level 
Internet topology and the curve fitting results. 

 

TABLE III 
POWER EXPONENTS OF THE FREQUENCY-DEGREE POWER-LAW ANALYSIS 
Number of monitors ACC |R| 

1 0.9675 2.8279 
2 0.9560 2.7834 
5 0.9601 2.5495 

21 0.9824 2.1406 
|R| is decreasing with increasing monitors. Considering 

the fact that a greater |R| means a stronger power-law 
relationship, we find that the power-law relationship of 
Internet topology is getting weaker with increasing 
monitors. This conclusion, however, is not so much 
correct because the sampling bias problem in measuring 
topology might tend to produce extra stronger power-law 
relations than what the real network actually has. Then, 
the reason of decreasing |R| with increasing monitors is 
easy to figure out now. And what was found here on the 
router-level Internet in Fig.1 is quite similar to the 
research outcomes in [5], proving the correctness of our 
experiments.  

In Fig.1(the 4th sub-graph), the power-law property 
might be least influenced by the sampling bias since the 
number of monitors reaches most. Obvious power-law 
relations still exist under such conditions, indicating that 
there is definite power-law property in Internet topology.  

From table III, the frequency-degree power exponent of 
the router-level Internet topology is 2.1406 (out of the key 
sample in the paper), quite close to the power-exponent 
2.2 of AS-level Internet topology in reference [6][7][8]. 
As we know, AS-level Internet topology is a coarse 
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granularity of router-level Internet topology, the two 
research outcomes are expected to be similar to each other. 
And the analogs, in return, testify the accuracy of the 
frequency-degree power-law research results in this paper.  

B. Degree-rank power-law 
In degree-rank power-law analysis, we first sort the 

degree in descending order, then perform the logarithm 
operation on the degree and its order (rank) to form dual-
logarithmic coordinates. The power-law analysis is 
illustrated in Fig.2.  

 

 
Fig. 2. The degree-rank power law analysis and curve fitting results. 

It’s obvious that there is power-law relation in Fig.2. 
And the fitting ACCs are greater than 0.97, meaning the 
fitting result is good. The power-exponent (|R|) is listed in 
table IV. 

From table IV, |R| is increasing with increasing 
monitors. To better explain this phenomenon, we make 
reference to the research results of [2] that the power-
exponent |R| would increase or decrease exactly with 
increasing or decreasing Numld/Numsld

[2] in degree-rank 
power-law analysis. What was found in table IV is quite 
the same, proving that the results of the degree-rank 
analysis in this paper are correct.  

 
TABLE IV 

POWER EXPONENT OF THE DEGREE-RANK POWER-LAW ANALYSIS 
Number of 
monitors ACC |R| Numld/Numsld

1 0.9734 0.6550 3.3921 
2 0.9727 0.7128 4.2578 
5 0.9830 0.7762 6.7064 
21 0.9941 0.8464 17.4633 

Note: Numld is the number of nodes with the least degree, and Numsld is 
the number of nodes with the second least degree in the Internet topology 
graph. 

After further studies on Fig.2, we find that there are 
bad curving fitting parts when ln(rank) is less than 
around 3 in all four sub-graphs, and especially in sub-
graph 4. Since sub-graph 4 is out of the key sample of 
the paper, we would perform further degree-rank power-
law studies on it. 

In sub-graph 4, we find that there might be another 
kind of power-law relationship when ln(rank) is less than 
around 3, then the curve fitting is performed and the 
result is illustrated in Fig.3.  

 
Fig. 3. Analysis of two phases of degree-rank power-law properties and 
the curve fitting results. 

The cross position of two straight lines in Fig.3 is 3.6 
on axis x. Besides the power-law relationship when 
ln(rank) is greater than 3.6 as we discussed above, the 
straight line when ln(rank) less than 3.6 also indicates 
that another power-law property is suited since the fitting 
ACC of this part is greater than 0.95. Thus, two phases 
of degree-rank power-law relations are found in Internet 
topology graph, and power exponents are 0.29981 and 
0.84639, respectively.  

The power exponents could be used to quantitatively 
depict the power-law properties of Internet topology and 
would be used in Internet topology modeling later.  

C. CCDF(d)-degree power-law 
There are several mathematical models to calculate 

CCDF, and they are listed in table V.  
 

TABLE V 
FOUR COMPLEMENTARY CUMULATIVE DISTRIBUTION FUNCTIONS 

(CCDFS) 
Function 

name PDF CCDF 

Power 
law )1,0()( −<>= αα CCxxf  1

1
)(' +

+
−= α

α
xCxF  

Power 
law(2) )1,0()( −<>+= αα CDCxxf  DxxCxF +

+
−= +1

1
)(' α

α
 

Weibull(
2-

paramete
r) 

cbxc ebx
b
cxf )/(1)/()( −−=  cbxexF )/()(' −=  
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Apply different CCDFs on the samples, and the results 
are listed in Fig.4 and table VI. 

 TABLE VI 
CURVE FITTING RESULTS OF CCDFS 

Number of 
monitors Function style SSSR1

1 
Power law  
Power law(2)  

Weibull(2-parameter) 

12455.6927
219431.0825

11594.8785

2 
Power law  
Power law(2)  

Weibull(2-parameter) 

24215.0629
303397.4291

20133.3965

5 
Power law  
Power law(2)  

Weibull(2-parameter) 

114594.8493
503785.6687

59191.7273

21 
Power law  
Power law(2)  

Weibull(2-parameter) 

485010.9747
1160172.4009

221809.1604
Note: SSSR is standard square sum of residual, and it equals to sqrt(SSR). 

 
Fig. 4 The CCDF(d)-degree power-law relationships (in log-log plot) and 
curve fitting results.. 

There are three fitting curves in Fig.4 representing the 
CCDFs of power-law (line), power-law2 (dotted line) and 
Weibull(2-parameter) distributions (the long dotted line), 
respectively. It’s obvious that the four experiment results 
illustrated in all four sub-graphs present great uniformity, 
indicating the effectiveness of the research approach.  

It’s hard to directly distinguish the best fitting curve 
because of the log-log coordinate. Then the 
SSSR(standard square sum of residual) from table VI is 
introduced to make estimations. 

First, SSSR of the CCDF of power-law(2) is greater 
than the other two CCDFs, so power-law(2) is the worst in 
three. For the other two CCDFs, we see in table VI that 
SSSR of power-law in all four sub-graphs is greater than 
that of Weibull(2-parameter), thus Weibull(2-parameter) is 
better than power-law in fitting the Internet topology 
samples.  

Then, the CCDF(d)-degree power-law distribution 
might not be the best way to quantitatively character the 
Internet topology when compared with Weibull(2-
parameter) distribution. And this research result is 
completely identical to the studies in [9][10][11].  

D. Power-law analysis conclusions 
Firstly, frequency-degree power-law relationship is 

clearly found in the router-level Internet topology, with a 
power exponent of 2.1406. 

Secondly, two phases of power-law relationships are 
found in degree-rank power-law studies, the first phase 
locates in an interval where ln(rank) is less than 3.6, and 
its power-exponent is 0.29981. The second part lies in 
where ln(rank) is greater than 3.6, and its power-exponent 
is 0.84639.  

Finally, the CCDF(d)-degree power-law distribution is 
proved not to be the best approach to character router-
level Internet topology and thus would not be used for 
modeling Internet in this paper.  

3. MODELING OF THE INTERNET TOPOLOGY 
STRUCTURE 

A. Introductions of the way to construct Internet model by 
results of power-law analyses 

With the power-law analyses outcomes, it’s a natural 
idea to set up a topology model complying with their 
power exponents.  

1) Step 1: according to the frequency-degree power-
law exponent 

The power exponent of frequency-degree power-law is 
|R|=2.1406. Some researches[4][14] indicated that, a network 
having frequency-degree power-law properties is a kind of 
scale-free networks, and the traditional model - BA 
model[29] is regarded as one of the best choices to generate 
such scale-free networks. With this, we use BA model as a 
base to form the Internet topology model.  

A short description of the algorithm of BA model is: 
generate  nodes, and link them randomly; 
repeat the following step: for network G(t-1), add one new 
node with n links to G(t-1) and form a new network G(t). 
The n links could be connected between the new added 
node and any selected node i in current network if node i’s 

)1( 00 >mm

∑=Π
j

jii kk / is greater than a given threshold, where i, 

j are nodes existed in G(t-1) and ki, kj are degree value of 
corresponding nodes.  

Networks generated by the upper algorithm conform to 
a frequency-degree power-law distribution of , 
where the power exponent α is irrelevant to  and n.  

α−kkp ~)(

0m
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Researches in [4], [14] showed that the power exponent 

of the network generated by BA model is usually 3, which 
is different from 2.1406 in this paper. So improvement of 
BA model is necessary.  

Researches on how to improve the power exponent of 
BA model are still scarce at present. Reference [15] gave 
an algorithm but is too complicated to fit for the 
improvement requirement in this paper for using limit 
calculations. Reference [7] gave another way of 
improvement during its studies in AS level Internet 
topology. And this approach is briefly depicted as: 
according to the probability model of linking nodes (as 
mentioned in the upper BA algorithm description):  

∑=Π
j

jii kk /                               (3 ) 

where ki, kj are degree value of node i and j. If it’s changed 
to: 

∑ ++=Π
j

jii kk εε 11 /                               (4) 

Then the power exponent of BA model would be 
modulated to be around 2.2 when parameter ε is set in an 
interval [0.1, 0.3][7]. Since value 2.2 is close to value 
2.1406 in this paper, this method seemed to be effective 
for our requirement and would be adopted in this paper.  

As to the optimization of the specific value of ε, a 
composite approach of Genetic Algorithm (GA)[30][31] and 
spectra[2][5][35] (SLS) would be used in the paper, and will 
be detailed described later.  

2) Step 2: according to the degree-rank power-law 
exponents 

Studies on AS-level Internet topology in [32] indicated 
that nodes in a network would not definitely conform to a 
power-law distribution with only one power exponent, 
especially the CCDF(d)-degree power-law and degree-
rank power-law distribution. Likewise, the outcome of 
degree-rank power-law analysis is divided into two parts 
with two different power exponents (according to Fig.2 
and Fig.3). So the model designed in this paper should be 
modulated according to this property so as to generate a 
network with two phases of degree-rank power-law 
distributions.  

B. Implementation of Step 1: improve BA model by GA & 
SLS 

1) Choice of the improvement approaches 
There is a choice that we might find or optimize 

parameter ε through thorough searches with a certain 
increment step in a given interval. And if the network 
generated by the improved BA model with a certain value 
of ε could produce power exponent close to 2.1406, ε is 
optimized. Or else, continue the algorithm by move up to 
another value by an increment. 

This method, however, is of low efficiency. Genetic 
Algorithm (GA)[30][31] is a kind of approach similar to but 

better than this method. GA also tries to find and optimize 
parameter ε in a certain interval, but differs in that, GA 
generate many random ε values in a certain interval and 
automatically find better ε out of all by operations such as 
cross, mutation and selection, etc. Experiments indicate 
that GA is much more efficient than the thorough searches 
approach. 

GA, however, is still in low efficiency because GA 
could not evaluate the quality of a randomly selected ε till 
the power exponent of the generated network is calculated. 
This calculation of power exponent, however, is rather 
slow due to the process of the statistical operation and 
curve fitting (just as the power-exponent gained out of 
Fig.1, 2 and 3).  

To solve this problem, SLS (signless Laplacian 
spectra)[2][5][35] is introduced into GA as an evaluation tool 
of parameter ε. The reason is, firstly, SLS is proved to be 
capable of quantitatively charactering a network topology; 
secondly, calculation of SLS is completely in matrix form 
and could be easily implemented by computer programs.  

2) SLS of the Internet topology 
Apply SLS on four 3000-node samples originated from 

the key testing sample (the twenty-one-monitor Internet 
topology) in this paper, and the outcome is illustrated in 
Fig. 5. 

 
Fig. 5 SLS analysis results of four 3000-node Internet topology, axis y is 
in logarithm scale, and axis x is the SLS eigenvector sorted in descending 
order. 

From Fig.5, all four curves show high similarities 
although the four samples are completely random and 
different from each other, which could be regarded as a 
proof that SLS is efficient in charactering Internet 
topology in this paper.  

Besides, there are two evident horizontal lines when 
SLS equals to 1(100) and 2, which means that there are the 
most nodes in the Internet topology graph when SLS 
equals to 1, and the second most nodes when SLS=2. All 
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four curves conform to these same properties. Again, 
correctness of SLS for samples in the paper is proved.  

Finally, the four 3000-node samples are selected in a 
totally random way from the key testing sample, and the 
analogy of four and more samples (experiments show that 
more samples still conform to each other) proves that 
Internet topology, just like other scale-free network, is of a 
property of self-similarity in topology[4][14]. So, a 
conclusion could be inferred that the 3000-node topology 
is capable of being used as a representative of the whole 
Internet topology, i.e., the SLS of 3000-node topology 
could be regarded as a good and effective example of the 
whole Internet topology in the paper.  

3) Evaluations of the differences between topologies by 
SLS 

The SLS eigenvector is a sequence of values 
representing the topology characteristics of target graph. 
Common approaches are of little values in evaluation of 
such sequence. So an algorithm of cross-correlation[34] 
from communication theory is introduced here.  

Cross-correlation algorithm is capable of distinguishing 
and identifying the differences between sequences in an 
absolutely quantitative way[25], i.e., it helps to determine 
how much two topologies are alike. It’s mathematically 
defined as:  

∑
−−

=

+=
1

0

)()(1)(
nN

k
xy knykx

N
nr                  ( 5 ) 

where x, y represents eigenvectors of the two topologies 
respectively, k is the order of the sequence, N is the 
sequence length, rxy is outcome of cross-correlation 
calculation.  

Cross-correlation would result in a maximum outcome 
only when the two SLS eigenvectors are totally identical, 
if there are some differences between them, the outcome 
would decrease[25]. And the larger the difference is, the 
smaller the gained result would be, which means more 
differences between topologies.  

Equation (5) generally involves n rounds of calculations 
and n outcomes would be gained. Shift of SLS eigenvector 
sequence is auto-operated before each round of calculation 
in order to ensure that all possible conditions would be 
included in the calculation results. And the max value (i.e., 
the best outcome) out of the n outcomes would be selected 
as the final evaluation value of cross-correlation[34].  

4) Final implementations of Step 1 by GA & SLS 
Take cross-correlation algorithm as the evaluation 

function of GA, implementation of improvement of BA 
model by optimizing its parameter ε could be finally 
performed through GA. And the algorithm is described as 
follows: repeat the following steps till the termination 
conditions are met. 

i) Gene code: We define a gene code x as a vector 
comprising primary parameters to be optimized. Of course, 

parameter ε is the only one to be optimized in this paper. 
So,  

)(ε=x                                     (6 ) 
ii) Random initialization of gene group: Assuming the 

size of the gene group is N (N is set to be 100 in this 
paper), we randomly initialize a gene group having N 
genes, i.e., 100 copies of randomly selected parameter ε. 

iii) Evaluation function: The choice of ε should 
minimize the difference between the generated network 
and real Internet, i.e., the cross-correlation outcome should 
be maximized. So the evaluation function should be:  

|),(|)( yxrxf ε=                             ( 7 ) 

where  is the cross-correlation operation, and 
are SLS eigenvectors of generated network and the 

Internet topology (an eigenvector randomly selected from 
the analysis results of the four 3000-node Internet 
topology in Fig.5), respectively. The evaluation function is 
expected to score the genes. Superior genes have higher 
scores (value).  

()r εx
y

iv) Selection: Genes were sorted in descending order by 
their corresponding scores in the gene group, so all good 
genes were list in front. The first m*N genes, m is a 
random number (0<m<1), were directly selected for the 
next round of calculation by GA. Thereafter, we duplicate 
these m*N genes, and together with the genes that were 
not selected, i.e., N(1-m) genes, we get the gene group 
with size of 2*m*N + N(1-m) = N+mN.  

In order to keep the size of group remaining unchanged, 
we remove the last (worst) m*N genes and then the size of 
group gets back to N. This group is ready for next round 
of calculation in GA.  

v) Crossover: Crossover operation is:  

ijj

jii

βεαεε

βεαεε

+−=

+−=

)1('

)1('
                            (8) 

where βα ,  are random numbers, and 10,10 <<<< βα . 

vi) Mutation: Mutation operation is:  

)1(
)1(

αεε
αεε

−=
+=

ii

ii

if
if

5.0
5.0

<
≥

γ
γ

                        (9) 

where γα ,  are random numbers, and 10,10 <<<< γα .  
Unlike crossover operations, not all genes have to be 

mutated. We set up a threshold of 0.3 in the algorithm, 
which means only 30% genes would be performed by 
mutation.  

vii) Termination conditions: Basically there are two 
termination conditions in GA.  

Firstly, GA would be terminated right after the best 
gene is found when evaluation function (Equation 7) result 
in the highest score or a maximum value. As mentioned 
above, maximized outcome from cross-correlation only 
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occurs when the two SLS eigenvectors are totally identical. 
And in this paper, it’s quite obvious that  (as 
mentioned, y is the SLS eigenvector of real Internet 
topology from Fig.5) is the maximum we are looking for, 
which means the generated network is completely 
equivalent in topology to real Internet.  

),( yyr

This maximum value, however, is hard to achieve, since 
it’s hard to generate a network exactly same as real 
Internet. We then set up a threshold as to 
replace . A best optimized parameter ε is regarded 
to be found and GA will stop running if the evaluation 
result out of Equation 7 is great than this threshold.  

),(95.0 yyr⋅
),( yyr

The second termination condition is when GA have 
repeated for more than 1000 times before finding the best 
gene (parameter ε). If so, terminate the algorithm. This is 
done to ensure ending GA in an appropriated way, or else 
GA might run a very long time.  

Parameter ε was finally optimized to be 0.10812 by GA 
in this paper.  

C. Implementation of Step 2: the second improvement with 
two phases of degree-rank power exponents 

After improvement of BA model by frequency-degree 
power exponent (step 1), we come to step 2 –another 
improvement by two phases of degree-rank power 
exponents.  

The outcome of degree-rank power-law analysis is 
divided into two parts with two different power exponents 
(according to Fig.2 and Fig.3). And the nodes where 
ln(rank)<3.6 complied with a power exponent of 0.29981. 
So, the generated network should be modulated again to 
conform to this property, i.e., the degree-rank power-law 
|R| of the generated network should equal to 0.29981 when 
ln(rank) is less than 3.6, and equal to 0.84639 when others.  

This improvement could be implemented as a periodical 
modulation model in the Internet model constructed in this 
paper, and its algorithm is directly depicted as part of the 
generating algorithm of the final Internet model in table 
VII.  

D. Generating algorithm of the final Internet model 
The final algorithm is listed in table VII.  

E. The incomplete part of the model 
The network generated by this final model only 

comprises nodes with degree greater than one, due to its 
primary inheritance from BA model. Internet topology, 
however, has a large amount of nodes whose degree is one. 
So the research on Internet topology modeling comprising 
those nodes would be our next work.  

 

 

TABLE VII 
THE GENERATING ALGORITHM OF THE CONSTRUCTED INTERNET MODEL 
step contents 

(1)   Input number N. N is the number of the nodes in the to-be-
generated network; /* N should be input by users */ 

(2)   Loop steps (3)(4)(5) and (6) until a network with N nodes is 
generated；  

(3) /* Growth by the frequency-degree power-law properties */ 
  Add a new node to the current network, and it would be linked 
to the randomly selected m nodes in the present network 
according to the linking probability function (shown in Equation 
(4) with parameter ε optimized to be 0.10812), and m is less than 
or equal to the total number of the nodes in the network.  
  If the outcome out of the linking probability function is greater 
than a threshold t0=0.6, then a link between node i and the new 
added node will be added to the network. Or else, the link would 
not be added to the network.  

 /* Threshold t0=0.6 is set by the program, and it helps avoid 
constructing a network with too many or too few links */ 

(4)   Define a threshold t1=10%, if the increment percentage of the 
new added nodes is greater than t1, then go to step (5) for 
degree-rank power-law modulation operation; or else go back to 
step (2).  

(5) /* Degree-rank power-law modulation */ 
Sort the nodes of the present network in descending order, for 

each node lying in an interval where ln(rank) is less than 3.6, 
calculate its degree by the degree-rank power-law distribution 
with the power-exponent of |R|=0.29981.  

If node i’s calculated degree is less than its present degree, 
then add links by algorithm step (3). Loop the operation till the 
degree equals to the calculated degree.  

If node i’s calculated degree is greater than its present degree, 
delete links. Randomly select node j, if the linking probability 
between i and j out of Equation (4) is greater than t0=0.6 and 
there is a link between node i and j, then delete it. Loop the 
operation till node i’s degree equals to the calculated degree.  

(6) Go back to step (2); 

4. CONCLUSIONS 
Frequency-degree power-law, degree-rank power-law 

and CCDF(d)-degree power-law distributions on the 
router-level Internet topology measuring samples were 
studied in this paper. The frequency-degree power-law 
relation is obvious and the power-exponent is found to be 
2.1406. While for the degree-rank power-law, two phases 
of power-law relationships were found with power-
exponents of 0.29981 and 0.84639, respectively. However, 
the CCDF(d)-degree power-law relationships were not 
clearly found in the research.  

With the power-law relations and power-exponents 
found in the experiments, we began to construct an 
Internet topology model by two steps. Step 1, we 
improved traditional BA model through optimizing its 
parameter ε by GA and SLS eigenvector. Step 2, 
modulation by two-phase degree-rank power-law 
distributions was introduced to promote accuracy of the 
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model. Generating algorithm of the constructed model was 
finally given in this paper.  
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