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Summary 
We know the various sorting algorithms available today. 
Sorting has become one of the most essential parts of the 
artificial intelligence algorithms these days. We have so many 
algorithms like Quick Sort, Hash Sort, Bucket Sort, Radix Sort, 
Insertion Sort, etc. All these are applied to various problems in 
their own way. In this paper we present a new sorting algorithm. 
This algorithm works on the principle of calculating the 
position of each and every node and then placing it onto that 
position. The algorithm does not start sorting on an extreme 
end and march towards the other end, as the other algorithms. 
Also it does not use a divide and conquer approach. Because in 
both these approaches, after half time of sorting, one half is 
completely sorted, but the other half is completely unsorted. 
Here we consider the case where a huge data is to be sorted. 
Our algorithm sorts this data evenly with respect to time. Hence 
after half of the time of algorithmic run, we can predict the 
appropriate position of any of the node. The basic applicability 
of such an algorithm lies in situations where there is no time to 
sort the entire data, but we need approximate positions of node 
in the final answer. Such an algorithm can be used for weather 
forecasts where usually the data is very big, or for sorting the 
raw data generated by GPS for fast data processing. The 
algorithm was implemented and tested in a random set of data. 
The results clearly proved the working of the algorithm. The 
accuracy of the algorithm improved very rapidly at each 
iteration. This further emphasized on the efficiency of the 
algorithm. This means that with a small increase in number of 
iterations, we may be able to get a high gain in performance.     
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1. Introduction 

Sorting is definitely the most basic operations which is 
widely used for data processing and data analysis in 
various ways. We have numerous sorting algorithms that 
have been developed over the period. All of these have 
their own philosophy of design, working, time and space 
complexities. All of these algorithms solve the problem 
of sorting data in their own way. Various algorithms 
exist like Selection Sort, Hashing, Quick Sort, Heap Sort, 
Bucket Sort etc. As a result the user has to choose 
between these algorithms, depending on input 
specifications. Quick sort with an average time 
complexity of θ(n lg n) happens to be quite efficient. 
Radix sort is another algorithm useful in its own way. 
 

These algorithms work well on limited data where the 
result comes in finite time, but if the total sorting time is 
infinite, any algorithm will fail. Hence it is not possible 
to fully sort the data. But the problem may only require 
us to know the approximate places where given input 
elements may be located in the whole sequence. Even 
though the total sorting time might be infinite, it is 
possible to find these in finite amount of time. This is 
with the help of partial sorting. 
The purpose of this algorithm is to introduce a new 
approach that would sort the given huge amount of data. 
The algorithm can be stopped any moment to get the 
partially sorted data. This partially sorted data is 
uniformly distributed throughout the array. Hence we 
can get a fair idea about the position of any element any 
given point of time. 
The algorithm is named as predictive sort, as using this 
algorithm, we may be able to predict the position of an 
element in sequence, without even fully sorting the 
sequence. The more time we give for sorting algorithm, 
the better or closer would the result be. If left 
uninterrupted, the input sequence would be sorted. 
In section 2 we have a look at the present algorithms and 
their strengths and weaknesses. In Section 3 we would 
discuss the general properties, the algorithm and the 
various factors affecting the algorithm. Section 4 gives 
the results. Section 5 gives the conclusion.  

2. Present Algorithms 

Presently we have many algorithms being used for 
sorting. All these algorithms take the input sequence as 
the input and sort the data to generate the output. In the 
subsequent sections we take a brief look over few of 
these algorithms. 
 
2.1 Insertion Sort 
This algorithm selects elements, one by one. It inserts the 
selected element into the sorted sequence, so that at the 
end of all the elements being selected, the final list is 
sorted[8][10][13]. 
Strengths: Easy to implement. Good if the sequence is 
already sorted or almost sorted 
Weakness: Large time complexity θ(n2) 
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2.2 Quick Sort 

This algorithm uses divide and conquer approach to sort. 
The problem is divided into two problems and then this 
algorithm is applied recursively. The results are 
combined to solve the problem[1][11] 
Strengths: Good average time complexity θ(n lg n) 
Weakness: In case the sequence is already sorted, time 
complexity is O(n2). 

2.3 Hash Sort 

The algorithm uses the principle of hashing to sort the 
given input sequence. The hash function maps the inputs 
to the keys. Sorting is done by iterating these keys[5][9]. 
Strengths: Good average time complexity θ(n) 
Weakness: Very poor memory complexity 

2.4 Radix Sort 

The algorithm iterates through the digits from one end to 
the other to sort the given input data[3][6][7][12]. 
Strengths: Good average time complexity θ(n) 
(Assuming constant number of digits) 
Weakness: Complexity high for large number of digits, 
large number of elements with same digit. 

2.5 Heap Sort 

The algorithm generates a max-heap or a min-heap out of 
the given input and then solves the sorting 
problem[2][14] 
Strengths: Good average time complexity θ(n lg n)  
Weakness: Provides the sorted sequence from start to 
end. 

3. Predictive Sort 

In this section we will discuss the algorithm and the way 
we implement it. We know that the task is to implement 
partial sorting, at the same time take care of the time and 
memory complexities. Here we design an efficient 
algorithm that sorts the input sequence. 

3.1 General Properties 

The algorithm works in any given input sequence. The 
following are the main properties of the algorithm 

• The algorithm is a stable sort algorithm 
• The performance of the algorithm depends on 

the division factor (α). The division factor is 
defined as the number of sub problems, the 
original problem is divided into. 

• For α=2, the time average complexity is θ(n lg 
n). The worst case time complexity is O(n2) and 

the best case time complexity is ώ(n lg n). 
Hence the asymptotic behavior is similar to that 
of quick sort 

• For α=2, the memory complexity is O(n). This 
is also same as quick sort, but it requires 2 times 
more memory as compared to quick sort. 

3.2 Algorithm Description 

The algorithm works by constantly dividing the problems 
and solving a unit step of every sub problem. The 
following are the main concepts of the algorithm 

3.2.1 Priority Queue 

The basic idea of this algorithm is to maintain a priority 
queue. The given problem is divided into a set of sub 
problems. These sub problems are inserted into the 
priority queue with a priority of the problem size. At any 
step the highest priority sub problem is selected for 
further solving. Hence the main loops runs to find a sub 
problem in the queue. If more than one sub problems are 
found, the largest one is chosen. 

3.2.3 Answer Vector 

The answer vector stores the answer after every stage. 
This vector is a collection of NULLs and numbers. If a 
number is stored, it means that this is the final number 
that would be stored in that location, when the sorting 
ends. If NULL is found, it means that the algorithm still 
doesn’t know the final element that would occupy this 
position. At any time the user can interrupt the algorithm 
to see this vector, which would give an idea of how all 
the elements would occupy the positions. 

3.2.3 Sub Problem 

A sub problem is defined by <SQ,SS,SE,C>. Here SQ is 
the sequence of numbers it has to ‘sort’. Here sorting 
means to find the right index of any input element. Every 
sub problem has a cost C which is the associated size of 
the sub problem. The elements of sub problem always 
occupy continuous positions in the final answer (SS to 
SE). This means that the sub problem is a sequence of 
input numbers such that all the numbers in it lie in a 
closed range [MIN,MAX]. It also means that if x is a 
member of any sub problem and x lies in the interval 
[MIN,MAX], then x must be in SQ. Here SS is the start 
index (sequence start) from where the sub problem starts 
filling its answers and SE is the last index (sequence end) 
in the final answer vector. 
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3.2.4 Method of sub division of problem 

The whole problem <SQ,SS,SE,C> is to be subdivided 
into α sub problems (<SQ1,SS1,SE1,C1>, 
<SQ2,SS2,SE2,C2>…..<SQα,SSα,SEα,Cα >). Hence we 
need to find relations between the corresponding 
quantities.  
Since we have the input sequence SQ, we may divide 
this range into α sub ranges, starting from the lowest to 
the highest. Hence if the range of input sequence SQ be 
MIN to MAX, we will have the range of various 
sequences of the sub problems as: 
 
Sub Problem 1: min to min+(1*(max-min+1))/α -1 
Sub Problem 2: min+(1*(max-min+1))/α to 
min+(2*(max-min+1))/α -1 
…………………… 
Sub Problem i: min+((i-1)*(max-min+1))/α to 
min+(i*(max-min+1))/α -1 
…………………... 
Sub Problem α: min+((i-1)*(max-min+1))/α to 
min+(i*(max-min+1))/α -1 
 
This means that if we get any input element ‘x’, then it 
must belong to the Sub Problem i,  
Where i= ((x-min)*α)/(max-min+1)+1 
Also we know that the original problem had SS to SE as 
the start and end of its scope in the final answer. Hence 
the start and end of the scope of any of the sub problems 
would be as follows 
 
Sub Problem 1: SS1=SS, SE1=SS1 + number of elements 
in SQ1
Sub Problem 2: SS2=SE1+1, SE2=SS2 + number of 
elements in SQ2

…………………… 
Sub Problem i: SSi=SEi-1+1, SEi=SSi + number of 
elements in SQi
……………………. 
Sub Problem α: SSα=SEα-1+1, SEα=SSα + number of 
elements in SQα
 
This method works for subdividing a problem into sub 
problems. But while implementing, we always process 
the greatest and smallest element of every sub problem 
before adding it onto the queue. In other words, we know 
that the minimum most element of every sub problem i, 
will occupy the position SSi. Similarly the maximum 
most element of any sub problem will always occupy the 
last position, SEi. Hence we store these two elements in 
their corresponding positions in the final answer vector. 
Since these have been solved, the following 
transformations are applied for every sub problem i. 
SQi ← SQi – {maximum most element of SQi, minimum 
most element of SQi} 
SSi ← SSi +1 
SEi ← SEi  -1   
 
To predict the position of the element at any general time, 
we first find out the range between which the element is 
sure to happen. This may be found by iterating through 
the final answer array. We say that this element lies 
between indices start and end. The position of any 
element p may be calculated by assuming that all 
elements between these are equally distributed. The 
formula for the index j of the element in such a case is 

j = start (if start = end)(end-start) / 
(finalAnswer[end]-finalAnswer[start]) * 
(p-finalAnswer[start]) + start(in all other cases) 

3.3 Algorithm 

Step 1: q ← priority queue 
Step 2: add a node s in q such that SQ(s) = input sequence, SS(s)=1, SE(s)=n(input size) with priority n (input size) 
Step 3: while q is not empty 
 Do 
Step 4:    remove node s from q with the maximum cost 
Step 5:  if SS(s)>SE(s) continue 
Step 6:  find sub problems s1,s2,s3,s4….sα 
Step 7:  for all sub problems si,  
Step 8:   if SQi contains at least 1 element 
Step 9:    finalAnswer[SSi]= Minimum most element of SQi 
Step 10:   if SQi contains at least 2 elements 
Step 11:    finalAnswer[SEi]= Maximum most element of SQi 
Step 12:   SQi ← SQi – {maximum most element of SQi, minimum most element of SQi} 
Step 13:   SSi ← SSi +1 
Step 14:   SEi ← SEi  -1   
Step 15:   add sub problem to queue   
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3.4 Loop Invariants of the algorithm 

In order to ensure that the algorithm works correctly, we 
must ensure that it obeys the conditions of initialization, 
maintenance and termination 

3.4.1 Initialization 

Here we insert one sub problem of input size. The whole 
SQ is the complete input sequence. The SS and SE and 
the entire dimensions of the final answer vector. At the 
first run of the loop, this is extracted and is divided into 
sub problems. The sub problems and generated and 
added to queue. 

3.4.2 Maintenance 

Whenever a sub problem is chosen, we divide its entire 
range into α sub ranges. Since we have covered the entire 
range, all elements of the problem must be members of 
any one of the sub problem. Also using the above 
equations, we may say that these are closed ranges. Also 
SS and SE are correctly calculated using the above 
equations. Hence the generation of sub problems is valid. 

3.4.3 Termination 

Whenever the size of the input sequence SQ in any of the 
sub problems falls to a level such that there are no 
elements in it, the condition SSi > SEi becomes true and 
the loop simply extracts the element from queue without 
further processing. At every iteration, the size of sub 
problem is first reduced by division, and then by 2 units 
of replacement. Hence every sub problem finally meets 
this condition and gets extracted from queue. This 
terminates the loop at last. 

4. Results 

The algorithm was implemented and tested. Various test 
cases were given to the algorithm. The condition of the 
final answer vector was seen at each iteration. It can be 
clearly seen that the algorithm works as desired. As the 
loop proceeded, the positions of elements started 
becoming clearer and clearer. We could see that the loop 
evenly filled the entries of the final answer vector. 
A total of 100 test cases were randomly generated and 
the answer was seen at frequent iterations. The input size 
of these test cases was varied from 100 to 5000. The 
final answer was made to print on the screen. We also 
sorted these numbers using standard sorting technique 
(selection sort). We found out that for all inputs the final 
result of the standard algorithm and our algorithm 
matched. Hence the algorithm worked for all inputs. 

The following is one of the input given which clearly 
illustrates the point: 
{61,78,33,24,13,65,80,58,91,76,4,9,25,28,99,82,31,94,68
,17,66,3,75,54,88,43,63,51,60,9,2,76,19,20} 
 
The condition of the final answer vector at various 
iterations is as follows: 
 
Iteration 1  
{2, NULL, NULL, NULL, NULL, NULL, NULL, 
NULL, NULL, NULL, NULL, NULL, NULL, NULL, 
43, 51, NULL, NULL, NULL, NULL, NULL, NULL, 
NULL, NULL, NULL, NULL, NULL, NULL, NULL, 
NULL, NULL, NULL, NULL, 99} 
 
Iteration 2  
{2, NULL, NULL, NULL, NULL, NULL, NULL, 
NULL, NULL, NULL, NULL, NULL, NULL, NULL, 
43, 51, 54, NULL, NULL, NULL, NULL, NULL, NULL, 
NULL, 75, 76, NULL, NULL, NULL, NULL, NULL, 
NULL, 94, 99} 
 
Iteration 3 
{2, 3, NULL, NULL, NULL, NULL, NULL, NULL, 20, 
24, NULL, NULL, NULL, 33, 43, 51, 54, NULL, NULL, 
NULL, NULL, NULL, NULL, NULL, 75, 76, NULL, 
NULL, NULL, NULL, NULL, NULL, 94, 99} 
 
Iteration 4 
{2, 3, NULL, NULL, NULL, NULL, NULL, NULL, 20, 
24, NULL, NULL, NULL, 33, 43, 51, 54, 58, NULL, 
NULL, 63, 65, NULL, 68, 75, 76, NULL, NULL, NULL, 
NULL, NULL, NULL, 94, 99} 
 
Iteration 5 
{2, 3, NULL, NULL, NULL, NULL, NULL, NULL, 20, 
24, NULL, NULL, NULL, 33, 43, 51, 54, 58, NULL, 
NULL, 63, 65, NULL, 68, 75, 76, 76, NULL, NULL, 82, 
88, 91, 94, 99} 
 
Iteration 6 
{2, 3, 4, NULL, 9, 13, NULL, 19, 20, 24, NULL, NULL, 
NULL, 33, 43, 51, 54, 58, NULL, NULL, 63, 65, NULL, 
68, 75, 76, 76, NULL, NULL, 82, 88, 91, 94, 99} 
 
Iteration 7 
{2, 3, 4, NULL, 9, 13, NULL, 19, 20, 24, 25, 28, 31, 33, 
43, 51, 54, 58, NULL, NULL, 63, 65, NULL, 68, 75, 76, 
76, NULL, NULL, 82, 88, 91, 94, 99} 
 
Iteration 8 
{2, 3, 4, NULL, 9, 13, NULL, 19, 20, 24, 25, 28, 31, 33, 
43, 51, 54, 58, 60, 61, 63, 65, NULL, 68, 75, 76, 76, 
NULL, NULL, 82, 88, 91, 94, 99} 
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Iteration 9 
{2, 3, 4, NULL, 9, 13, NULL, 19, 20, 24, 25, 28, 31, 33, 
43, 51, 54, 58, 60, 61, 63, 65, NULL, 68, 75, 76, 76, 78, 
80, 82, 88, 91, 94, 99} 
 
Iteration 10 
{2, 3, 4, NULL, 9, 13, NULL, 19, 20, 24, 25, 28, 31, 33, 
43, 51, 54, 58, 60, 61, 63, 65, 66, 68, 75, 76, 76, 78, 80, 
82, 88, 91, 94, 99} 
 
Iteration 11 
{2, 3, 4, 9, 9, 13, NULL, 19, 20, 24, 25, 28, 31, 33, 43, 
51, 54, 58, 60, 61, 63, 65, 66, 68, 75, 76, 76, 78, 80, 82, 
88, 91, 94, 99} 
 
Iteration 12 
{2, 3, 4, 9, 9, 13, 17, 19, 20, 24, 25, 28, 31, 33, 43, 51, 54, 
58, 60, 61, 63, 65, 66, 68, 75, 76, 76, 78, 80, 82, 88, 91, 
94, 99} 
 
ANSWER 
{2, 3, 4, 9, 9, 13, 17, 19, 20, 24, 25, 28, 31, 33, 43, 51, 54, 
58, 60, 61, 63, 65, 66, 68, 75, 76, 76, 78, 80, 82, 88, 91, 
94, 99} 
 
As we know that the basis of this algorithm is to predict 
the position of any element, when its final position is not 
determined. In order to test this capability of the 
algorithm we conducted another simple test. We 
randomly generated 1000 elements and sorted them 
using our algorithm. At each iteration we calculated the 
Root Mean Square Error (RMS Error). 
 
The RMS Error was defined as: 
RMS Error= square root of   ∑ (Predi - Acti)2                     
       N 
Here Predi is the predicted position of the element 
Acti is the actual position in the sorted sequence 
N is the number of elements in the sequence 
The summation is performed over all elements. This 
means for all elements we predict the position and add it 
to the RMS error.  
  
The results of two consecutive runs are given by the Fig 
1(a) and Fig 1(b) 
 
Fig. 1 : The RMS Error v/s Number of Iterations 
 
We can clearly see that as the number of iterations 
increase, the RMS Error drastically decreases. This 
proves the efficiency of the algorithm. This also proves 
the fact that by increasing the number of iterations by 
small margin, the accuracy can be increased a lot. 

We also know the fact that many people are interested in 
finding the exact position of the element, rather than the 
approximate value. 
 

 

Fig. 1(a)  RMS Error for Input 1. 

 

Fig. 1 (b)  RMS Error for Input 2. 

For this we also calculated the percentage of elements 
whose positions were predicted precisely by the 
algorithm. The Fig 2(a) and Fig 2(b) shows this 
percentage for various iterations for 2 consecutive runs. 
 
Fig. 2 : The Performance of the Algorithm v/s The 
Number of Iterations  
 
It can again be seen that the efficiency keeps on 
improving. We get an accuracy of more than 80% in 
about 60% of the number of iterations.  
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Fig. 2 (a)  The accuracy for Input 1. 

 

Fig. 2 (b)  The accuracy for Input 2. 

It may be noted that these only includes the exact results. 
The RMS Error method of finding accuracy is more 
practical in implementation, as we expect that the user 
wants to know the approximate positions. An index up or 
down would not make a difference.  

5. Conclusion 

We saw that using this algorithm we were able to sort the 
given input sequence. The algorithm uniformly filled the 
elements in the final answer vector. These were filled at 
their correct places to give the correct final answer. We 
also observed that the filling of the numbers in the final 
answer made it possible for us to predict the appropriate 
position for any of the elements. Hence if we needed to 

know approximate position of all the elements, complete 
sorting was not needed. Hence, this algorithm can be 
used as an effective partial sorting algorithm. 
The algorithm used a priority queue to implement the 
approach. The given problem was divided into sub 
problems. The maximum and minimum most element of 
each of these sub problems was placed at the division 
itself. This process continued to give us the final answer. 
We know that α controls the working of the algorithm. If 
we only want to reduce the final total time, we may set it 
to 2. But if we want to control the number of elements, in 
a given time span, it may take different values. The exact 
relation of this is yet to be studied. 
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