
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008 314

Predictive Sort

Dr. Anupam Shukla and Rahul Kala,

Indian Institute of Information Technology and Management Gwalior, Gwalior, Madhya Pradesh, INDIA

Summary
We know the various sorting algorithms available today.
Sorting has become one of the most essential parts of the
artificial intelligence algorithms these days. We have so many
algorithms like Quick Sort, Hash Sort, Bucket Sort, Radix Sort,
Insertion Sort, etc. All these are applied to various problems in
their own way. In this paper we present a new sorting algorithm.
This algorithm works on the principle of calculating the
position of each and every node and then placing it onto that
position. The algorithm does not start sorting on an extreme
end and march towards the other end, as the other algorithms.
Also it does not use a divide and conquer approach. Because in
both these approaches, after half time of sorting, one half is
completely sorted, but the other half is completely unsorted.
Here we consider the case where a huge data is to be sorted.
Our algorithm sorts this data evenly with respect to time. Hence
after half of the time of algorithmic run, we can predict the
appropriate position of any of the node. The basic applicability
of such an algorithm lies in situations where there is no time to
sort the entire data, but we need approximate positions of node
in the final answer. Such an algorithm can be used for weather
forecasts where usually the data is very big, or for sorting the
raw data generated by GPS for fast data processing. The
algorithm was implemented and tested in a random set of data.
The results clearly proved the working of the algorithm. The
accuracy of the algorithm improved very rapidly at each
iteration. This further emphasized on the efficiency of the
algorithm. This means that with a small increase in number of
iterations, we may be able to get a high gain in performance.
Key Words:
Sorting, algorithms, partial sorting.

1. Introduction

Sorting is definitely the most basic operations which is
widely used for data processing and data analysis in
various ways. We have numerous sorting algorithms that
have been developed over the period. All of these have
their own philosophy of design, working, time and space
complexities. All of these algorithms solve the problem
of sorting data in their own way. Various algorithms
exist like Selection Sort, Hashing, Quick Sort, Heap Sort,
Bucket Sort etc. As a result the user has to choose
between these algorithms, depending on input
specifications. Quick sort with an average time
complexity of θ(n lg n) happens to be quite efficient.
Radix sort is another algorithm useful in its own way.

These algorithms work well on limited data where the
result comes in finite time, but if the total sorting time is
infinite, any algorithm will fail. Hence it is not possible
to fully sort the data. But the problem may only require
us to know the approximate places where given input
elements may be located in the whole sequence. Even
though the total sorting time might be infinite, it is
possible to find these in finite amount of time. This is
with the help of partial sorting.
The purpose of this algorithm is to introduce a new
approach that would sort the given huge amount of data.
The algorithm can be stopped any moment to get the
partially sorted data. This partially sorted data is
uniformly distributed throughout the array. Hence we
can get a fair idea about the position of any element any
given point of time.
The algorithm is named as predictive sort, as using this
algorithm, we may be able to predict the position of an
element in sequence, without even fully sorting the
sequence. The more time we give for sorting algorithm,
the better or closer would the result be. If left
uninterrupted, the input sequence would be sorted.
In section 2 we have a look at the present algorithms and
their strengths and weaknesses. In Section 3 we would
discuss the general properties, the algorithm and the
various factors affecting the algorithm. Section 4 gives
the results. Section 5 gives the conclusion.

2. Present Algorithms

Presently we have many algorithms being used for
sorting. All these algorithms take the input sequence as
the input and sort the data to generate the output. In the
subsequent sections we take a brief look over few of
these algorithms.

2.1 Insertion Sort
This algorithm selects elements, one by one. It inserts the
selected element into the sorted sequence, so that at the
end of all the elements being selected, the final list is
sorted[8][10][13].
Strengths: Easy to implement. Good if the sequence is
already sorted or almost sorted
Weakness: Large time complexity θ(n2)

Manuscript received June 5, 2008.
Manuscript revised June 20, 2008.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

315

2.2 Quick Sort

This algorithm uses divide and conquer approach to sort.
The problem is divided into two problems and then this
algorithm is applied recursively. The results are
combined to solve the problem[1][11]
Strengths: Good average time complexity θ(n lg n)
Weakness: In case the sequence is already sorted, time
complexity is O(n2).

2.3 Hash Sort

The algorithm uses the principle of hashing to sort the
given input sequence. The hash function maps the inputs
to the keys. Sorting is done by iterating these keys[5][9].
Strengths: Good average time complexity θ(n)
Weakness: Very poor memory complexity

2.4 Radix Sort

The algorithm iterates through the digits from one end to
the other to sort the given input data[3][6][7][12].
Strengths: Good average time complexity θ(n)
(Assuming constant number of digits)
Weakness: Complexity high for large number of digits,
large number of elements with same digit.

2.5 Heap Sort

The algorithm generates a max-heap or a min-heap out of
the given input and then solves the sorting
problem[2][14]
Strengths: Good average time complexity θ(n lg n)
Weakness: Provides the sorted sequence from start to
end.

3. Predictive Sort

In this section we will discuss the algorithm and the way
we implement it. We know that the task is to implement
partial sorting, at the same time take care of the time and
memory complexities. Here we design an efficient
algorithm that sorts the input sequence.

3.1 General Properties

The algorithm works in any given input sequence. The
following are the main properties of the algorithm

• The algorithm is a stable sort algorithm
• The performance of the algorithm depends on

the division factor (α). The division factor is
defined as the number of sub problems, the
original problem is divided into.

• For α=2, the time average complexity is θ(n lg
n). The worst case time complexity is O(n2) and

the best case time complexity is ώ(n lg n).
Hence the asymptotic behavior is similar to that
of quick sort

• For α=2, the memory complexity is O(n). This
is also same as quick sort, but it requires 2 times
more memory as compared to quick sort.

3.2 Algorithm Description

The algorithm works by constantly dividing the problems
and solving a unit step of every sub problem. The
following are the main concepts of the algorithm

3.2.1 Priority Queue

The basic idea of this algorithm is to maintain a priority
queue. The given problem is divided into a set of sub
problems. These sub problems are inserted into the
priority queue with a priority of the problem size. At any
step the highest priority sub problem is selected for
further solving. Hence the main loops runs to find a sub
problem in the queue. If more than one sub problems are
found, the largest one is chosen.

3.2.3 Answer Vector

The answer vector stores the answer after every stage.
This vector is a collection of NULLs and numbers. If a
number is stored, it means that this is the final number
that would be stored in that location, when the sorting
ends. If NULL is found, it means that the algorithm still
doesn’t know the final element that would occupy this
position. At any time the user can interrupt the algorithm
to see this vector, which would give an idea of how all
the elements would occupy the positions.

3.2.3 Sub Problem

A sub problem is defined by <SQ,SS,SE,C>. Here SQ is
the sequence of numbers it has to ‘sort’. Here sorting
means to find the right index of any input element. Every
sub problem has a cost C which is the associated size of
the sub problem. The elements of sub problem always
occupy continuous positions in the final answer (SS to
SE). This means that the sub problem is a sequence of
input numbers such that all the numbers in it lie in a
closed range [MIN,MAX]. It also means that if x is a
member of any sub problem and x lies in the interval
[MIN,MAX], then x must be in SQ. Here SS is the start
index (sequence start) from where the sub problem starts
filling its answers and SE is the last index (sequence end)
in the final answer vector.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

316

3.2.4 Method of sub division of problem

The whole problem <SQ,SS,SE,C> is to be subdivided
into α sub problems (<SQ1,SS1,SE1,C1>,
<SQ2,SS2,SE2,C2>…..<SQα,SSα,SEα,Cα >). Hence we
need to find relations between the corresponding
quantities.
Since we have the input sequence SQ, we may divide
this range into α sub ranges, starting from the lowest to
the highest. Hence if the range of input sequence SQ be
MIN to MAX, we will have the range of various
sequences of the sub problems as:

Sub Problem 1: min to min+(1*(max-min+1))/α -1
Sub Problem 2: min+(1*(max-min+1))/α to
min+(2*(max-min+1))/α -1
……………………
Sub Problem i: min+((i-1)*(max-min+1))/α to
min+(i*(max-min+1))/α -1
…………………...
Sub Problem α: min+((i-1)*(max-min+1))/α to
min+(i*(max-min+1))/α -1

This means that if we get any input element ‘x’, then it
must belong to the Sub Problem i,
Where i= ((x-min)*α)/(max-min+1)+1
Also we know that the original problem had SS to SE as
the start and end of its scope in the final answer. Hence
the start and end of the scope of any of the sub problems
would be as follows

Sub Problem 1: SS1=SS, SE1=SS1 + number of elements
in SQ1
Sub Problem 2: SS2=SE1+1, SE2=SS2 + number of
elements in SQ2

……………………
Sub Problem i: SSi=SEi-1+1, SEi=SSi + number of
elements in SQi
…………………….
Sub Problem α: SSα=SEα-1+1, SEα=SSα + number of
elements in SQα

This method works for subdividing a problem into sub
problems. But while implementing, we always process
the greatest and smallest element of every sub problem
before adding it onto the queue. In other words, we know
that the minimum most element of every sub problem i,
will occupy the position SSi. Similarly the maximum
most element of any sub problem will always occupy the
last position, SEi. Hence we store these two elements in
their corresponding positions in the final answer vector.
Since these have been solved, the following
transformations are applied for every sub problem i.
SQi ← SQi – {maximum most element of SQi, minimum
most element of SQi}
SSi ← SSi +1
SEi ← SEi -1

To predict the position of the element at any general time,
we first find out the range between which the element is
sure to happen. This may be found by iterating through
the final answer array. We say that this element lies
between indices start and end. The position of any
element p may be calculated by assuming that all
elements between these are equally distributed. The
formula for the index j of the element in such a case is

j = start (if start = end)(end-start) /
(finalAnswer[end]-finalAnswer[start]) *
(p-finalAnswer[start]) + start(in all other cases)

3.3 Algorithm

Step 1: q ← priority queue
Step 2: add a node s in q such that SQ(s) = input sequence, SS(s)=1, SE(s)=n(input size) with priority n (input size)
Step 3: while q is not empty
 Do
Step 4: remove node s from q with the maximum cost
Step 5: if SS(s)>SE(s) continue
Step 6: find sub problems s1,s2,s3,s4….sα
Step 7: for all sub problems si,
Step 8: if SQi contains at least 1 element
Step 9: finalAnswer[SSi]= Minimum most element of SQi
Step 10: if SQi contains at least 2 elements
Step 11: finalAnswer[SEi]= Maximum most element of SQi
Step 12: SQi ← SQi – {maximum most element of SQi, minimum most element of SQi}
Step 13: SSi ← SSi +1
Step 14: SEi ← SEi -1
Step 15: add sub problem to queue

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

317

3.4 Loop Invariants of the algorithm

In order to ensure that the algorithm works correctly, we
must ensure that it obeys the conditions of initialization,
maintenance and termination

3.4.1 Initialization

Here we insert one sub problem of input size. The whole
SQ is the complete input sequence. The SS and SE and
the entire dimensions of the final answer vector. At the
first run of the loop, this is extracted and is divided into
sub problems. The sub problems and generated and
added to queue.

3.4.2 Maintenance

Whenever a sub problem is chosen, we divide its entire
range into α sub ranges. Since we have covered the entire
range, all elements of the problem must be members of
any one of the sub problem. Also using the above
equations, we may say that these are closed ranges. Also
SS and SE are correctly calculated using the above
equations. Hence the generation of sub problems is valid.

3.4.3 Termination

Whenever the size of the input sequence SQ in any of the
sub problems falls to a level such that there are no
elements in it, the condition SSi > SEi becomes true and
the loop simply extracts the element from queue without
further processing. At every iteration, the size of sub
problem is first reduced by division, and then by 2 units
of replacement. Hence every sub problem finally meets
this condition and gets extracted from queue. This
terminates the loop at last.

4. Results

The algorithm was implemented and tested. Various test
cases were given to the algorithm. The condition of the
final answer vector was seen at each iteration. It can be
clearly seen that the algorithm works as desired. As the
loop proceeded, the positions of elements started
becoming clearer and clearer. We could see that the loop
evenly filled the entries of the final answer vector.
A total of 100 test cases were randomly generated and
the answer was seen at frequent iterations. The input size
of these test cases was varied from 100 to 5000. The
final answer was made to print on the screen. We also
sorted these numbers using standard sorting technique
(selection sort). We found out that for all inputs the final
result of the standard algorithm and our algorithm
matched. Hence the algorithm worked for all inputs.

The following is one of the input given which clearly
illustrates the point:
{61,78,33,24,13,65,80,58,91,76,4,9,25,28,99,82,31,94,68
,17,66,3,75,54,88,43,63,51,60,9,2,76,19,20}

The condition of the final answer vector at various
iterations is as follows:

Iteration 1
{2, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL,
43, 51, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, 99}

Iteration 2
{2, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL,
43, 51, 54, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, 75, 76, NULL, NULL, NULL, NULL, NULL,
NULL, 94, 99}

Iteration 3
{2, 3, NULL, NULL, NULL, NULL, NULL, NULL, 20,
24, NULL, NULL, NULL, 33, 43, 51, 54, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, 75, 76, NULL,
NULL, NULL, NULL, NULL, NULL, 94, 99}

Iteration 4
{2, 3, NULL, NULL, NULL, NULL, NULL, NULL, 20,
24, NULL, NULL, NULL, 33, 43, 51, 54, 58, NULL,
NULL, 63, 65, NULL, 68, 75, 76, NULL, NULL, NULL,
NULL, NULL, NULL, 94, 99}

Iteration 5
{2, 3, NULL, NULL, NULL, NULL, NULL, NULL, 20,
24, NULL, NULL, NULL, 33, 43, 51, 54, 58, NULL,
NULL, 63, 65, NULL, 68, 75, 76, 76, NULL, NULL, 82,
88, 91, 94, 99}

Iteration 6
{2, 3, 4, NULL, 9, 13, NULL, 19, 20, 24, NULL, NULL,
NULL, 33, 43, 51, 54, 58, NULL, NULL, 63, 65, NULL,
68, 75, 76, 76, NULL, NULL, 82, 88, 91, 94, 99}

Iteration 7
{2, 3, 4, NULL, 9, 13, NULL, 19, 20, 24, 25, 28, 31, 33,
43, 51, 54, 58, NULL, NULL, 63, 65, NULL, 68, 75, 76,
76, NULL, NULL, 82, 88, 91, 94, 99}

Iteration 8
{2, 3, 4, NULL, 9, 13, NULL, 19, 20, 24, 25, 28, 31, 33,
43, 51, 54, 58, 60, 61, 63, 65, NULL, 68, 75, 76, 76,
NULL, NULL, 82, 88, 91, 94, 99}

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

318

Iteration 9
{2, 3, 4, NULL, 9, 13, NULL, 19, 20, 24, 25, 28, 31, 33,
43, 51, 54, 58, 60, 61, 63, 65, NULL, 68, 75, 76, 76, 78,
80, 82, 88, 91, 94, 99}

Iteration 10
{2, 3, 4, NULL, 9, 13, NULL, 19, 20, 24, 25, 28, 31, 33,
43, 51, 54, 58, 60, 61, 63, 65, 66, 68, 75, 76, 76, 78, 80,
82, 88, 91, 94, 99}

Iteration 11
{2, 3, 4, 9, 9, 13, NULL, 19, 20, 24, 25, 28, 31, 33, 43,
51, 54, 58, 60, 61, 63, 65, 66, 68, 75, 76, 76, 78, 80, 82,
88, 91, 94, 99}

Iteration 12
{2, 3, 4, 9, 9, 13, 17, 19, 20, 24, 25, 28, 31, 33, 43, 51, 54,
58, 60, 61, 63, 65, 66, 68, 75, 76, 76, 78, 80, 82, 88, 91,
94, 99}

ANSWER
{2, 3, 4, 9, 9, 13, 17, 19, 20, 24, 25, 28, 31, 33, 43, 51, 54,
58, 60, 61, 63, 65, 66, 68, 75, 76, 76, 78, 80, 82, 88, 91,
94, 99}

As we know that the basis of this algorithm is to predict
the position of any element, when its final position is not
determined. In order to test this capability of the
algorithm we conducted another simple test. We
randomly generated 1000 elements and sorted them
using our algorithm. At each iteration we calculated the
Root Mean Square Error (RMS Error).

The RMS Error was defined as:
RMS Error= square root of ∑ (Predi - Acti)2
 N
Here Predi is the predicted position of the element
Acti is the actual position in the sorted sequence
N is the number of elements in the sequence
The summation is performed over all elements. This
means for all elements we predict the position and add it
to the RMS error.

The results of two consecutive runs are given by the Fig
1(a) and Fig 1(b)

Fig. 1 : The RMS Error v/s Number of Iterations

We can clearly see that as the number of iterations
increase, the RMS Error drastically decreases. This
proves the efficiency of the algorithm. This also proves
the fact that by increasing the number of iterations by
small margin, the accuracy can be increased a lot.

We also know the fact that many people are interested in
finding the exact position of the element, rather than the
approximate value.

Fig. 1(a) RMS Error for Input 1.

Fig. 1 (b) RMS Error for Input 2.

For this we also calculated the percentage of elements
whose positions were predicted precisely by the
algorithm. The Fig 2(a) and Fig 2(b) shows this
percentage for various iterations for 2 consecutive runs.

Fig. 2 : The Performance of the Algorithm v/s The
Number of Iterations

It can again be seen that the efficiency keeps on
improving. We get an accuracy of more than 80% in
about 60% of the number of iterations.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

319

Fig. 2 (a) The accuracy for Input 1.

Fig. 2 (b) The accuracy for Input 2.

It may be noted that these only includes the exact results.
The RMS Error method of finding accuracy is more
practical in implementation, as we expect that the user
wants to know the approximate positions. An index up or
down would not make a difference.

5. Conclusion

We saw that using this algorithm we were able to sort the
given input sequence. The algorithm uniformly filled the
elements in the final answer vector. These were filled at
their correct places to give the correct final answer. We
also observed that the filling of the numbers in the final
answer made it possible for us to predict the appropriate
position for any of the elements. Hence if we needed to

know approximate position of all the elements, complete
sorting was not needed. Hence, this algorithm can be
used as an effective partial sorting algorithm.
The algorithm used a priority queue to implement the
approach. The given problem was divided into sub
problems. The maximum and minimum most element of
each of these sub problems was placed at the division
itself. This process continued to give us the final answer.
We know that α controls the working of the algorithm. If
we only want to reduce the final total time, we may set it
to 2. But if we want to control the number of elements, in
a given time span, it may take different values. The exact
relation of this is yet to be studied.

References

[1] Khreisat Laila, “QuickSort A Historical Perspective
and Empirical Study”, IJCSNS International Journal
of Computer Science and Network Security, VOL.7
No.12, December 2007

[2] Sharma Vandana, Singh Satwinder and Kahlon K.
S.,“Performance Study of Improved Heap Sort
Algorithm and Other Sorting Algorithms on
Different Platforms”, IJCSNS International Journal
of Computer Science and Network Security, VOL.8
No.4, April 2008

[3] Amer Al-Badarneh, Fouad El-Aker, “Efficient
Adaptive In-Place Radix Sorting”, Informatica,
2004, Vol. 15, No. 3, 295–302, 2004 Institute of
Mathematics and Informatics, Vilnius

[4] Islam Tarique Mesbaul, Kaykobad M., “Worst-case
analysis of generalized heapsort algorithm
revisited”, International Journal of Computer
Mathematics, Vol. 83, No. 1, January 2006, 59–67

[5] Bratbergsengen Kjell, “Hashing Methods And
Relational Algebra Operations”

[6] Khurana Udayan, “Decision Sort and its Parallel
Formulation”

[7] Maus Arne, “Sorting by generating the sorting
permutation, and the effect of caching on sorting”

[8] Astrachan Owen, “Bubble Sort: An Archaeological
Algorithmic Analysis”

[9] Shakhnarovich Gregory, Viola Paul, Darrell Trevor,
“Fast Pose Estimation with Parameter Sensitive
Hashing”

[10] Nevalainen Olli, Raita Timo, Thimbleby Harold,
“An improved insert sort algorithm”

[11] Chen Jing-Chao, “Quick Sort on SCMPDS”,
Journal Of Formalized Mathematics, Volume 12,
Released 2000, Published 2003, Inst. of Computer
Science, Univ. of Białystok

[12] Franceschini1Gianni, Muthukrishnan S., Patrascu
Mihai, “Radix Sorting With No Extra Space”

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

320

[13] Michael A., Martın Farach-Colton, Miguel Mosteiro,
“INSERTION SORT is O(n log n)”

[14] Li-Jen Mao, Sheau-Dong Lang, “An Empirical
Study of Heap Traversal and Its Applications”

Dr. Anupam Shukla is an Associate
Professor in the ICT Department of the
Indian Institute of Information
Technology and Management Gwalior.
He has 19 years of teaching experience.
His research interest includes Speech
processing, Artificial Intelligence, Soft
Computing and Bioinformatics. He has
published around 62 papers in various

national and international journals/conferences. He is referee
for 4 international journals and in the Editorial board of
International journal of AI and Soft Computing. He received
Young Scientist Award from Madhya Pradesh Government and
Gold Medal from Jadavpur University.

Rahul Kala is a student of 3rd Year
Integrated Post Graduate Course (BTech
+ MTech in Information Communication
Technology) in Indian Institute of
Information Technology and
Management Gwalior. His fields of
research are robotics, design and analysis
of algorithms, artificial intelligence and

soft computing. He secured 7th position in the ACM
International Collegiate Programming Contest, Kanpur
Regionals. He is a student member of ACM. He also secured
Al India 8th position in Graduates Aptitude Test in
Engineeging-2008 with a percentile of 99.84.

