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ABSTRACT 
Channel Capacity is the essential factor of wireless 
communications. Hence there are wide ranges of theories 
which strive for the effective usage of channels.  Those include 
implementing diversity at transmitter and receiver ends, 
frequency allocation so on so forth. In this paper, we have 
presented a new dimension in increasing the channel capacity.  
This is done through effective utilization of channel which is 
possible through an efficient channel estimation strategy.  That 
is channel estimation through training sequence method.  The 
impact of training sequence on the capacity of MIMO system is 
considered.  Based on the ML channel estimator, the 
estimation-error-involving capacity formula has been derived.  
We show that the estimation error may decrease the channel 
capacity significantly, while the optimal training sequences can 
achieve substantial improvement over the random ones. And in 
the second result we derived that the estimation-error-involving 
capacity approaches the ideal capacity as the training length 
increasing, while a long training length will not bring evident 
improvement on the capacity, which indicates that a suitable 
training length should be chosen in practice. Finally we 
estimate the training sequence length of the diversified values 
of SNR, number of transmitting and receiving antennas and 
percentage of ideal capacity.  And we conclude that the training 
sequences very much effect the channel capacity, and by 
implementing the optimal training sequence length we arrive at 
the improved channel capacity. 
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1.0 INTRODUCTION 

Capacity is the most interesting aspect, may be because 
of its challenges posed on the modern communication 
engineers. Previously we had many capacity 
improvement methods while having its own drawbacks. 
Most of these are due to ISI and Co-channel Interference. 
This occurs due to improper detection and reframing the 
actual signals. If this is done perfectly, we could find 
many solutions for these drawbacks. The perfect solution 
for this is channel estimation. With these we made an 
attempt to bring an distinguished relation between 
training sequences which are used in channel estimation 
and capacity, in MIMO channels. 

Based on the ML channel estimator, the estimation-error-
involving capacity formula has been derived. We show 
that the estimation error may decrease the channel 

capacity significantly, while the optimal training 
sequences can achieve substantial improvement over the 
random ones. The estimation-error-involving capacity 
approaches the ideal capacity as the training length 
increasing, while a long training length will not bring 
evident improvement on the capacity, which indicates 
that a suitable training length should be chosen in 
practice. 

2.0 CHANNEL ESTIMATION AND 
DETECTION IN THE BASE STATION 
 
 The main blocks in a base station receiver are as shown 
in below Figure. The channel is the wireless interface 
between the mobile user and the base station. Many 
undesirable effects such as interference from other users, 
delays from multiple paths, fading and noise occur on the 
signal as it passes through the channel. The detector 
needs to acquire synchronization with the input signal in 
order to correctly detect the incoming bit sequence. 
Hence the parameters of the channel need to be estimated 
for proper detection. Channel estimation involves 
estimating and tracking the delays of each users' bits and 
the channel attenuation over the different paths.  
 
One of the proposed methods for channel estimation is 
using the Maximum Likelihood method. There has been 
ongoing related research at Rice using the Maximum 
Likelihood algorithm for channel estimation. This 
algorithm is designed to handle time variations in the 
system, multiple propagation paths, and large number of 
users with varying level of transmitting power.          
                                     

 
Figure 2 Simplified view of the base station 
receiver for uplink 
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In the uplink, since all users are transmitting information, 
each desired user experiences direct interference from 
other users (Multiple Access Interference or MAI). Also, 
signals from users near the base station tend to be 
stronger and overshadow the signals from users far away 
from the base station (near-far effect). The optimal 
multiuser detector was first proposed by Verdbut several 
sub-optimal schemes have been proposed to reduce the 
complexity of the algorithm. 
 
This scheme was the iterative multistage method where 
the inputs of one particular stage are the estimated bits of 
the previous stage. After interference cancellation, the 
new estimates, which should be closer to the transmitted 
bits, are output and fed into the next stage. Ideally at the 
last iteration stage, the output and the input should be 
identical if the algorithm converges. Further 
optimizations have been made on the algorithm, making 
use of the fact that as the iterations progress, the solution 
becomes more and more invariant, i.e. more and more 
elements in the output vector turn out to be the same as 
the elements in the input vector. The proposed detection 
algorithm is the Differencing Multistage algorithm, 
which is based on the above principle. 
 

3.0 CHANNEL ESTIMATION TECHNIQUES 

For Channel State Information (CSI) acquisition, three 
classes of methods are available: 

1.   Blind Method - In  this method, estimation of CSI 
merely is from the received data. 

2.   Differential Ones This approach bypass CSI 
estimation by differential encoding  

3.  Training-based Method Which estimate CSI by the 
knowing training sequence. 

 Among them, the training based ones are the 
most attractive as they can decouple the 
demodulation/decoding from the CSI estimation and 
simplify the structure o the receiver.  

3.1 TRAINING SEQUENCE VERSUS BLIND 

ESTIMATION 

 In most communication systems, considerable 
distances separate the transmitter and receiver; therefore, 
the estimator at the receiver does not have practical 
access to the transmitted signal that enters the channel. 
Blind algorithms are those that do not rely upon this 
knowledge of the transmitted signal. A popular class of 
blind algorithms are decision directed or decision 
feedback algorithms. These algorithms rely upon the 

demodulated and detected sequence at the receiver to 
reconstruct the transmitted signal. An obvious downfall 
of these methods is that a decision or bit error at the 
receiver will cause the construction of an incorrect 
transmitted signal. In the case of channel estimation, this 
decision error will introduce a bias in the channel 
estimate, making it less accurate. In this paper, it is 
proposed that  modifications to standard adaptive 
algorithms to make them less susceptible to these 
decision errors. 

Although the receiver might not have direct access to the 
transmitted signal, if the transmitter periodically sends a 
known training or probe sequence, the receiver can use 
this training sequence to reconstruct the transmitted 
waveform. While this method will produce more 
accurate estimates of the channel during the training 
interval, these estimates become out of date between 
these intervals, unlike the continually updated estimates 
of the blind techniques. Another drawback of training 
sequence methods is that the training sequence occupies 
valuable bandwidth, reducing the throughput of the 
communication system. For example, training sequences 
account for 22% of GSM’s and 9% of IS-54’s total 
bandwidth. 

3.2 TYPES OF ESTIMATIONS 

 There are various types of channel estimation strategies 
like minimum mean square error (MMSE), Maximum 
likelihood estimation (MLE), Least Squares estimation 
(LSE) etc. 

3.2.1 Mean Square Error (MSE) 

In statistics and signal processing, a minimum mean 
square error (MMSE) estimator describes the approach 
which minimizes the mean square error (MSE), which is 
a common measure of estimator quality. The term 
MMSE specifically refers to estimation in a Bayesian 
setting. In this design we always aim to minimize the 
MSE of the CSI estimator. 

3.2.2 Maximum Likelihood Estimation 

Maximum likelihood estimation (MLE) is a popular 
statistical method used to calculate the best way of fitting 
a mathematical model to some data. Modeling real world 
data by estimating maximum likelihood offers a way of 
tuning the free parameters of the model to provide an 
optimum fit. 

In this paper we considered only the ML one because the 
MMSE estimator requires the knowledge of SNR which 
is still need to be estimated in practice. 
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3.3 ML APPROACH-CHANNEL 
IDENTIFICATION 
 
The Gaussian likelihood function is established making 
the hypothesis that unknown data symbols are Gaussian 
variables, hence uk = N(Tkh,Q). It has been shown that 
the Gaussian approach yields more accurate channel 
estimates than the deterministic approach where the 
unknown data symbols are considered as unknown 
deterministic disturbances. Adopting the Gaussian 
hypothesis, we can express (up to a constant term) the 
negative log likelihood function of the system as 

 
   Relying on the definition of Q, the log 
likelihood can be expressed as a direct function of the 
unknown parameters h and σ2. The corresponding ML 
channel estimate minimizes this expression with respect 
to h and σ2. This minimization problem boils down to a 
computationally demanding (L + 2)- dimensional 
nonlinear search. To overcome this complexity problem, 
we propose that the structure of Q be disregarded, and 
ignore the relation that binds it to the parameters h and 
σ2. We thus assume that the covariance matrix Q of the 
stochastic term _k can be any symmetric positive definite 
matrix, regardless of h and σ2. This hypothesis turns the 
initial ML problem into a new one. We call the initial 
problem the parametric ML problem; the problem 
resulting from the proposed approximations will be 
called the nonparametric ML problem. The 
nonparametric ML channel estimate thus maximizes the 
likelihood function with respect to h and Q (instead of h 
and σ2).  
 
These assumptions transform the parametric ML 
problem in h and σ2 into a new optimization problem 
that is separable in its two variables h and Q. We exploit 
this separability property in the next sections in order to 
solve the optimization problem in a less complex way 
than the (L + 2)-dimensional nonlinear search of the 
parametric ML problem. The solution of the 
nonparametric ML problem differs from the solution of 
the parametric ML problem. Hence, it is worthwhile to 
first check the impact of the proposed hypothesis on the 
accuracy of the resulting ML channel estimates. 
 
4.0 DATA MODEL 
 
We consider a finite impulse response (FIR) convolutive 
channel of order  L : h = [h[0] · · · h[L]]T. A burst x[n], n 
=1, . . . , N, of symbols is transmitted over the channel. 
Considering that the coherence time of the channel is 
larger than the duration of the transmitted burst, the 

received sequence y[n] is the linear convolution of the 
transmitted sequence with the channel impulse response 

 

where η[n] is the AWGN at the receiver. A total number 
of K training sequences is inserted in the burst. The kth 
training sequence, tk = [tk[1] · · · tk [nt]]T, starts at 
position nk : [x[nk ] · · · x[nk  + nt − 1]]T = tk. Two 
possibilities are considered in the text: either the same 
training sequence is repeated after each block of data 
(constant-training sequence case), or the training 
sequence is changed after each block (changing-training-
sequence case). Define the vector uk of received symbols 
that contain a contribution from the kth           
transmitted training sequence: uk = [y[nk] · · · y[nk + nt 
+L − 1]]T. It is the sum of a deterministic and a 
stochastic term 
                           uk = Tkh + εk (2) 
where Tk is an (nt + L) × (L + 1) tall Toeplitz matrix 
with[t Tk0 · · · 0]T as its first column and [tk [1] 0 · · · 0] 
as its first row. The stochastic term εk is described as 

 

where sk =[ sk [1] · · · sk [2L]]T =[x[nk −L] · · · x[nk −1] 

x[nk + nt] · · · x[nk + nt + L − 1]]T is the vector of 

surrounding data symbols, and ηk = [η[nk] . . . η[nk + nt 

+L − 1]]T is the AWGN term. Assuming that both the 

noise and the data are white and zero mean (E{ sk [i] sk 

[j]∗} =E{η[i]η[j]∗} = 0, ∀i, j, k : i _= j, and E{ sk [i]} = 

E{η[k]} =0), we can say that _k is zero mean. Defining ns 

as the length of the shortest sequence of data symbols (ns 

= mink{nk+1 − (nk + nt − 1)}), we assume ns  2L. This 

ensures that the sk’s are uncorrelated, i.e., E{ sk sHl } = 

0 ∀k, l : k _= l. Defining the signal and noise variances 

as λ2 = E{ sk [i] sk [i]∗} and σ2 = E{η[k]η[k]∗}, 

respectively, we can derive the first- and second order 

statistics of εk 

 

At present we are aware of data and system model of 
estimation process through various methods viz. ML, 
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MMSE, LSE etc. The other important part of our motto 
is knowing about training sequences, its properties and 
its functionality in various methods. 

5.0 TRAINING SEQUENCE: 

In most communication systems, considerable distances 
separate the transmitter and receiver; therefore, the 
estimator at the receiver does not have practical access to 
the transmitted signal that enters the channel. Although 
the receiver might not have direct access to the 
transmitted signal, if the transmitter periodically sends a 
known training or probe sequence, the receiver can use 
this training sequence to reconstruct the transmitted 
waveform. While this method will produce more 
accurate estimates of the channel during the training 
interval, these estimates become out of date between 
these intervals. 

 

Figure 3  Data format sturcture 

5.1 Minimum Number of Training Symbols  

  For channel estimation there are NT (L + 1) unknowns 
in every MISO channel, as remarked before. There have 
to be leastwise as many training symbols as unknowns to 
estimate the channel and as only the last NP −L training 
symbols may be used for the estimation, the number of 
training symbols NP per transmit antenna and per frame 
has to be at least 
       
    NP >NT (L + 1) + L. 

 

Figure 4 Number Of Transmitting Antennas And 
Receiving Antennas 

 
5.1.1 Criterion for Optimal Training Sequences  
   The training sequences should be designed so 
that the Mean Square Error of the channel estimation is 
minimized. Such training sequences are called optimal. 
The energy of the training sequences s2 m(k) = a2 = 
constant > 0 8k  should be constant and equal. The SISO 
channels of the MIMO channel as well as the elements of 

the channel impulse responses are assumed to be 
uncorrelated from each other. Additive white Gaussian 
noise is assumed. If the matrix S, which contains the 
training sequences, holds the criterion 

 

5.1.2 Design of Optimal Training Sequences 
 
   The matrix S is cyclic. A matrix which holds 
(34) has orthogonal columns. A cyclic matrix S with 
orthogonal columns can be constructed by writing a 
perfect root-of-unity sequence (PRUS) into the first row 
of S and then filling any next row with the one element 
right shifted version of the previous row .A root-of-unity 
sequence s(k) of length N has complex root-of-unity 
elements with absolute value one and may have P 
different phases. The elements of a root-of-unity 
sequence s(k) are of the form  s(k) = ej 2_P f(k) with k = 
0, ...,N − 1 and 0 _ f(k) _ P, with f(k) as a whole-number 
sequence. A root-of-unity sequence is said to be perfect 
if all of its out-of-phase periodic autocorrelation terms 
are equal to zero. A perfect root-of-unity sequence s(k) 
can be constructed for any length N by the Frank-Zad 
off-Chu-sequences  

  
With k=o,1,,,,N-1 M is a natural number greater than 
zero and needs to becoprime to N.The length N = NT 
(L+1) of the required perfect root-of unity sequence s(k) 
is equal to the number of columns of S.The sequence s(k) 
is written into the first row of S. Any next row is the one 
element right shifted version of the previous row. The 
training sequence for each transmit antenna can be 
extracted from the matrix S. 
 
5.1.3 Required Number of Training Symbols 
 
The MSE related to one of the NT · NR SISO channels 
of the MIMO channel is given by 

 
To preserve the comparability with a single-input single-
output (SISO) system in terms of equal total transmit 
energy P, the transmit symbols are multiplied by the 
factor 1 pNT before transmission. The energy of a 
training symbol is given by 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008 325

 

with the transmit power PS of each transmit antenna and 
the total transmit power P = 1. The Minimum Mean 
Square Error of the Least Square channel estimation 
follows to 

 

If the channel matrices fulfill the normalization condition 
(4), the term P/ σ2n  can be replaced by the average 
signal to noise ratio ρ . The Minimum Mean Square 
Error (MMSE) of the Least Square channel estimation 
follows to 

 
 
with the signal to noise ratio  as a non-logarithmic value. 
The required number of training symbols for the Least 
Square channel estimation depending on the signal to 
noise ratio (SNR) and the required accuracy of the 
channel estimate. The required accuracy of the channel 
estimate is specified by the MMSE. shows lines with the 
same MMSESISO,LS. For an accuracy of the channel 
estimate of MMSESISO,LS = 5·10−3 for each of the NT 
·NR SISO channels of the MIMO channel, at least NP = 
2·NT (L+1)+L training symbols per transmit antenna are 
required for a SNR of 20dB. 
 

5.1.4 Impact of training sequences on capacity 

 The impact of training sequence on the capacity 
of MIMO system is considered. Based on the ML 
channel estimator, the estimation-error-involving 
capacity formula has been derived. We show that the 
estimation error may decrease the channel capacity 
significantly, while the optimal training sequences can 
achieve substantial improvement over the random ones. 
The estimation-error-involving capacity approaches the 
ideal capacity as the training length increasing, while a 
long training length will not bring evident improvement 
on the capacity, which indicates that a suitable training 
length should be chosen in practice. 
 

 
 

Figure 5 Basic model of MIMO Sytem 

The basic model of a MIMO system is illustrated in 
above figure 5. A finite sequence of information bits is 
encoded by a space-time encoder and then transmitted 
across parallel transmit antennas. After the propagation 
in mobile fading channels, the receive sequence is sent 
into the space-time decoder to recover the original 
transmit information. In this paper, we assume the 
channel is i.i.d. Rayleigh block-fading. The mathematical 
model for a MIMO system with M transmit antennas and 
N receive antennas over a T symbol block can be written 
as  
  

Y=HX+N 
where T is also the training length, X is the training 
sequence, Y is the corresponding received training 
sequence, H is the CSI matrix and , where CN denotes 
the complex Gaussian distribution with zero mean and 
covariance matrix I, N is complex Gaussian white noise 
independent of X. The well-known ML CSI estimation is 
given by 

 
Then CSI-estimation-involving model for the MIMO 
system can be presented by 

 
where x and y are the transmitted data and received data 
respectively. Here we assume x ~ CN(0,σP

2 ) and n ~ ~ 
CN(0,σN

2 )  where σP
2 and σN

2 are the power of the 
transmitted symbol and the noise respectively, 
consequently the average SNR at each receive antenna 
can be computed by M σP

2 /σN
2 The sum of the last two 

terms in the above equation can be regarded as 

equivalent noise(denoted by ) and its covariance 
matrix is given by 

 
 
From the above equation we can see that the equivalent 
noise is usually correlated across the receive antennas. 
For simplicity, we assume the autocorrelation of the 
training sequence XXH is a diagonal matrix such that the 

noise is spatial uncorrelated, then the effective average 
receive SNR can be computed by 
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The coherent MIMO channel capacity is given by                     

 
Inserting SNR into capacity it  yields                       

 
In the high-SNR region, the channel capacity can be 
approximated as 

 

Where k=min{M,N} and K’=max{M,N} and χ2i
2   is a 

chi-square random variable with 2i degrees of freedom. 

So far we have derived an intuitive relationship between 
the training sequence and the capacity in. Here we can 
build up the training sequence design criteria in the 
capacity sense.  
 
Since the logarithm function is monotonic increasing, the 
maximization of is equivalent to the minimization of 
Tr[(XXH  )-1 ] which coincides with the existing MSE-
based training sequence design criteria. According to, the 
minimum of is achieved if and only if  

 
By substituting above equality  into capacity relation , 
we can further obtain the upper bound of the channel 
capacity as 
                                                                                  
C=Klog2(SNR/(M+(M2/T)))+ΣE[log2χ2i

2]      =K1-K+1               

                                                   

The equality holds if and only if the training sequence 
satisfies, which implies that the OSTBC codes or Walsh 

codes are the optimal training sequences. In the sufficient 
high-SNR region, by neglecting the last constant sum-

term in, we can get                               

 
Which we can use for deriving optimal training length in 
the next section 

 

 

6.0 Derivation of Optimum Training length 

The corresponding capacity relation indicate that training 
length T is included in a logarithm function, if we want 
to get a bit more capacity, much larger T is needed. 
Hence, a large T will not bring evident performance 
improvement, a suitable training length should be chosen 
in practice. Capacity could also become a benchmark for 
us to determine how long the training sequence is 
necessary in the design of a MIMO system. If we need 
Cest>γC( γ is percentage), the following relation should 
be satisfied.

 
  Klog2  - Klog2  ≥ γ K log2  

As K is common on both sides cancel it, we get 

log2  - log2 ≥ γ log2  

As we know that      a log b= log ba 

The above equation can be re written as 

log2  - log2 ≥ log2   

As we know that  log a – log b = log  

The above Equation can be written as 

log2  ≥ log2  

As we have logarithm to the base to on both sides we can 
remove it and can be written as 

   ≥  

Interchanging the terms   and  we get 

   ≥   

The above equation can be modified and written as  

 ≥   



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008 327

By brining the 1 on right hand side to left hand side , the 

equation is modified as 

  1 ≥   

Now interchange the terms  -  1  and T We get, 

     T  ≥  

For example if we want to get at least 80 percent of the 
ideal capacity in a (4,4) MIMO system at SNR=10dB, 
the training length must be at least 

T  ≥   =   ≈ 20 

And if we want 90 or 95 percent, the corresponding 
results are 42 and 84 respectively 

7.0 RESULTS AND CONCLUSIONS   

The result illustrates curves from figures 6-8 are  channel 
capacity versus SNR for different training sequences and 
training sequence length in the case of (M=8, N=8). It is 
noted that the random training sequence might degrade 
the capacity seriously, while the optimal training 
sequences can achieve substantial performance 
improvement over the random training ones. 

And we can see in figure 7 SNR=5dB, the optimal 
training sequence in the (M=16, N=8, T=16) case even 
outperforms the optimal one in the (M=8, N=8, T=8) in 
figure 6 case. From all the results, it was shown that the 
optimal training sequence is crucial in the design of a 
MIMO system and longer training length is needed with 
the increasing the numbers of transmit and receive 
antennas. 

 

Figure 6 SNR Vs Capacity (constant training) 

. 

 
Figure 7 Capacity vs. SNR for varied training 

 

 

Figure 8 Training Length Vs Capacity 

The result in figure 8 shows curves of the channel 
capacity versus the training length for different SNRs in 
the (M=4, N=4) case. It is not surprising that the 
estimation error-involved capacity is approaching the 
ideal capacity with increasing training length T and the 
corresponding  indicate that training length T is included 
in a logarithm function, if we want to get a bit more 
capacity, much larger T is needed. Hence, a large T will 
not bring evident performance improvement, a suitable 
training length should be chosen in practice could also 
become a benchmark for us to determine how long the 
training sequence is necessary in the design of a MIMO 
system.  

 

Figure 9 Graph showing the capacity vs. SNR 
characteristics for 95% efficiency. 
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Figure 10 Graph showing the capacity vs. SNR 
characteristics for 90% efficiency 

 
Figure 9 and 10 shows the graph for capacity vs SNR 
characteristics for the expected values of 90 and 95 
percentages. Here it was shown that “error involved” 
capacity is closely related to SNR and also Training 
sequence, by graphical analysis this was justified in this 
paper. Also it was proven that the long training length 
will not bring evident improvement on the capacity, only 
an optimum length of training would allow error 
involved capacity and actual capacity to go in parallel. 
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