
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

329

A Java-Based Programming Language Support of Location
Management in Pervasive Systems

Sherif G. Aly

The American University in
Cairo

Sarah Nadi

The American University in
Cairo

Karim Hamdan

The American University in
Cairo

Summary
 In this paper, we present an effort towards incorporating
programming language support for pervasive systems
development activities through extending on an already
existing and stable programming language, namely Java.
Pervasive systems research indicated the need for five main
cornerstone features in support for conducting efficient
pervasive systems development activities, namely
programming language support for context, location, actors,
sensors, and events. Herewith this article, we illustrate how we
utilized the extensible markup language (XML), along with the
Jini Javaspace technology, access rights definition, as well as
supporting libraries to incorporate the representation and
management of location in pervasive systems development
activities. Beyond presenting the details of this approach, we
demonstrate an actual example showing how location topology
can be defined, along with their associated fine-grain access
rights, how such topology can be stored and retrieved from
Javaspaces, how the Javaspaces themselves can be managed,
and how to query for location information taking into
consideration the enforcement of defined rules for access rights
to various locations.part of summary.
Key words:
Pervasive, location, Javaspace, XML, access.

1. Introduction

With the rapid spread of pervasive computing research,

computational devices have actually started to
interweave themselves into our daily lives, and are
affecting the daily lives of many people. Pervasive
systems in the form of intelligent environments rich in
sensing and computational ability are adapting and
reacting to the daily lives of many. It is Mark Weiser, the
founder of pervasive computing, who actually
anticipated this phenomena back in 1991 [1], and only
time proves the correctness of such prediction.

The development of various infrastructures, languages,
tools and environments that support the development of
pervasive systems must however be facilitated to the
greatest possible extent. Such support must be made

available in such way that may allow for the further
advancement of this field.

Unfortunately, a programming language with solid
features that can cater to the direct needs of pervasive
systems does not still exist. Much pervasive systems
research indicated the need for five essential features that
should exist in any programming language that will be
used in the development activity of pervasive systems.
Such features include the support for: Context, location,
actors, sensors and events. Many research efforts have
tackled one or more of these needs separately such as
that presented by Heutelbeck in [2] which suggests a data
structure for location information in the form of tuples.
The work proposed in [3] also states the requirements of
a programming language supporting context, and the
work in [4] provides a high-level programming language
for prototyping pervasive applications and also focuses
on modeling context information and events. Finally in
[5], location management in pervasive systems is
discussed.

Despite these research efforts, and many others, that
have produced valuable contributions to the pervasive
computing domain, a programming language that
encapsulates all such features together is still missing. It
is thus necessary to provide a programming language
that integrates all required features supporting the
development of pervasive systems. However, designing a
completely new programming language is not necessary
if existing solid and widespread programming languages
can be extended in a streamlined way to support the
programming of pervasive systems. A programming
language such as Java, one of the most widely used
programming languages in the world nowadays, already
has basic and abstracted features such as architecture
independence, networking, and multithreading abilities
that make it a very appealing candidate for the support of
pervasive systems and promote it as a solid baseline for
adding new data structures and features in support of
pervasive systems.

The advantage of choosing Java as well includes the
extensibility features that the language offers. Java offers

Manuscript received June 5, 2008.
Manuscript revised June 20, 2008.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

330

a considerable set of libraries and technologies that can
be extended to easily incorporate more capabilities into
the language. For example, Jini, a set of Java networking
APIs, could be considered a very appropriate networking
technology that may be used to support pervasive
systems [6]. More details about how Jini is incorporated
in this research will be given in Section 3.

Out of the five necessary aforementioned features that
need to exist in pervasive programming languages, this
article focuses on specifying appropriate data structure
support for location that meets the needs of pervasive
applications. It is worthy to mention that the support for
location identification, management and storage is an
essential requirement for the incorporation of context
awareness and reactivity in pervasive systems. Location
information is typically used as input to deducing context,
and as information for the actors themselves.

As indicated in [12], there are three major issues that
must be considered when dealing with context, namely:
Places, people, and things. The various attributes that
may describe these issues include: Identity, location,
status and time. Location is thus one of the key corner
stores of information used by context-aware systems.

Considering the following example that illustrates
the need for location support: A user with a pre-
scheduled meeting; their personal digital assistant (PDA)
automatically alerts them with an appointment ahead of
time, and provides the user with directions to an
indicated location of the meeting room. In order to
provide the needed directions in such a scenario, the
location topology of the area must be stored in an easily
accessible location, and in a way that considers the
distributed nature of pervasive systems. Eventually, an
application that maps a route to the indicated location
can use this information while visualizing the route to the
user.

Another scenario relates to deducing context
information. If a fire emergency occurred in some
location, a relevant pervasive application may need to
deduce the actors who are in danger of getting hurt, and
then the relationship of the locations in that area must be
known. The application may need to know if the user in
a certain room is in the same floor as that on which the
fire occurred for example. All such information can be
deduced with the support of a data structure that can
contain location information and the relationships
between locations in an environment. Thus, to develop a
pervasive system, this information must be present in
some data structure that can be used by all participating
entities.

In our support for location, and as we will illustrate
later in the article, we used XML to represent the
location topology of a pervasive system, and provided
appropriate supporting libraries for manipulating and
interpreting such location topology. XML was chosen for

creating the location topology data structure support. As
stated in [4], “It provides a more open, flexible and
scalable solution for a common location representation
format in pervasive systems”. Furthermore, as stated in
[7], one of the problems with current approaches to
developing pervasive systems is the lack of separation
between data and functionality. It is highly
recommended to have location information data separate
from the functionalities that will use it. Representing
location information using XML is thus a very appealing
option.

Moreover, Jini was used in particular for the presence
of its JavaSpaces services to support the dynamic and
distributed nature of pervasive systems [8], and make the
location topology information available to all actors of
the system.

The rest of this paper is organized as follows: Section
2 discusses related work. Section 3 describes our
approach in detail. Section 4 gives an example on how to
use the different classes that we created. Section 5 has
the references that we used in order to complete our
work.

2. Related Work

The distributed nature of pervasive systems

enforces some requirements on the data structures used
to develop those systems. These requirements include
supplying the data structures with features which support
the various needs of the different entities collaborating in
this distributed environment. Location management is
one of the main critical functionalities in any pervasive
system. The research done in [2] suggests that the
location data structure used in pervasive systems should
be scalable, distributed and robust against failure of hosts.
In order to support those features, a data structure
containing tuples, each representing an object-location
relationship is used.

Although this architecture provides useful
information about the location of each object in the
system, redundant information about the same location is
stored in different tuples. This architecture does not take
into consideration the limited storage available on mobile
devices and the extensive need for accessing location
information. This deficiency will be overcome as will be
explained later through separating location information
from entity information. Thus, the entity can simply have
a reference to the location where it resides without
storing both sets of information together.

Another important concept in pervasive computing
applications, which depends on location information, is
context. Context can provide us with information about
the surrounding various physical spaces, situations, and
the location of persons and devices [4]. Location
information is one of the attributes of complex context

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

331

information. Location identification and management is
also a core functionality in a typical pervasive system,
providing users with information specific to user location,
activity and nearby objects [5, 6]. Typically, all such
information will need to be transferred across various
networks, thus raising difficulties such as firewall rules
that may block this critical information from being
delivered. Using XML to transfer information is a good
option since XML documents will be easy to transfer
from one network to another bypassing most firewall
obstacles

In [9], a survey of the approaches made towards
modeling context information is presented. One of such
ways is indeed done using XML. The representation has
a root element denoting the context that is represented.
Information describing the location of the context is
included as attributes in a sub-element called spatial
where the coordinates of the location, zone are
represented.

3. Supporting Location through Java

3.1. XML

The location topology is represented as an XML
structured document that contains all required
information necessary to describe a topology. The
Document Type Definition (DTD) of this XML structure
is shown in Figure 1. The information is organized in a
way that makes the document self-expressive and easy to
parse. Our XML representation of location has seven
main elements:

• LocationTopology: Is the root of the document. It

has one attribute, name, that identifies the name of
this location topology. It should have an instance of
each of read, write, description elements and one or
more location elements.

• Description: Carries the description information of
the location topology. It should have five attributes
that describe this location: country, state, suburb,
and building.

• Location: Represents the information of a
certain location in the topology. It has four required
attributes: floor, name, type and
inheritParentAccessRules. Floor represents the floor to
which this location belongs in a topology. Name is the
unique identifier for a location, so it should be unique
among all the location elements in the same document.
Type represents the type of that location; its value is
bound to the following list: room, meetingroom, office,
and floor. This list may be modified later to
accommodate for other room types in different
topologies. A location element may have nested child
location elements.

Figure 1 DTD Representation of the XML Location Topology

<?xml version='1.0' encoding='UTF-8'?>

<!ELEMENT locationTopology
(read,write,description,location*)>
<!ATTLIST locationTopology
 name CDATA #REQUIRED>

<!ELEMENT description EMPTY>
<!ATTLIST description
 country CDATA #REQUIRED
 state CDATA #REQUIRED
 suburb CDATA #REQUIRED
 street CDATA #REQUIRED
 building CDATA #REQUIRED>

<!ELEMENT location (read? , write? , location*) >
<!ATTLIST location
 floor CDATA #REQUIRED
 name ID #REQUIRED
 type (room | meetingroom | office | floor | kitchen)
#REQUIRED
 inheritParentAccessRule (true | false) "true" >

<!ELEMENT write (allow , deny?)>

<!ELEMENT read (allow , deny?)>

<!ELEMENT allow EMPTY>
<!ATTLIST allow
 users CDATA "*"
 roles CDATA #IMPLIED>

<!ELEMENT deny EMPTY>
<!ATTLIST deny
 users CDATA "*"
 roles CDATA #IMPLIED>

• Write: Represents the write access rules to a

specific node in the document. It should have an
allow element, while a deny element is optional.

• Read: Is similar in structure to the write element but
it defines the read access rules to a node.

• Allow: Lists the allowed users/roles. It has a
required attribute users that defines the list of the
users granted the access right. However, roles is an
optional attribute that may be used in case of the
need to define a list of roles granted by the access
right. Users can be listed as a comma separated list
of users or "*" denoting all users. Roles are treated
the same way.

• Deny: Has the same structure of the allow element
but it defines the users/roles denied by the access
right to a node.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

332

3.2. The Location Topology Parser

A set of functionalities is implemented in a utility
class called LocationTopologyParser that is used to parse
the XML document representing the location topology.
Any communication with the XML document is done
through this utility class. Each of the following functions
requires the name of the user initiating the function call
so that appropriate access rules may be enforced as
indicated later. The following functions are available in
the LocationTopologyParser:

• Location getLocation (String name, String
userName): Gets the location whose name holds the
given value. If no matching location is found a null
reference is returned.

• Location getParentLocation (String
locationName, String userName): Gets the parent
location of the location with the given name.

• Location findNearest(String locationName,
String locationType, String userName): Finds the
nearest location of a given type to the location with
the given name.

Each of the three methods above returns a Location
object that represents the requested location node in the
XML document. All three functions check for the access
rights granted to the requesting user before returning any
information. The username is passed to each of these
functions. For example, if findNearest should return
location X to a certain user while this user does not have
read access rights to this location, then location X will
not be returned and the next nearest location to which the
user has access to will be returned. If the user has no
access to any of the locations in the document then null
will be the return value.

To aid in the parsing of the XML document, five
classes have been implemented to represent the various
nodes in the XML document. These classes are Read,
Write, Allow, Deny, and Location. The Location class
represents the location node in the XML and contains
references to objects of each of the previous four classes
to resemble the structure in the XML. This methodology
has been followed to facilitate the usage of the location
information in the by developers to avoid the need to
communicate with the XML document redundantly.

3.3. Access rules

Implementing access rules for the different locations
in a pervasive system is of significant importance.
Various users may not be allowed to access information
related to certain locations. Typical known access rules
have been incorporated in the chosen XML structure.
The following strategy has been implemented to ensure
that only allowed users can access location information:

• Child locations inherit access rules by default from
their parent. An attribute named
Inheritparentaccessrules determines whether a child
location entry should inherit the access rules of its
parent or not. The default value of the attribute
Inheritparentaccessrules is true.

• Inheritparentaccessrules should be set to false if the
child location elements are not meant to inherit the
access rules of their parent location.

• Access rules of a child location, if present, override
that of the parent. It is optional for a location
element to have a read element and a write element.
Read and write elements allow a child to override
access rules set by its parent.

Each read or write element can contain allow or deny
elements. The following access rules apply:

• An empty allow or deny element means that its value
is “*” which means that all users are allowed or
denied.

• If an allow element with the value "*" for users is
present without a deny element, then all users are
allowed.

• If an allow element with the value "*" for users is
present, and a deny element with a list of users is
present, then all users but those in the user list of the
deny element are allowed.

• If a list of users exists in the users attribute for the
allow element, then only these users are allowed and
all other users are denied even if there is a list of
users in the deny element.

For example, the XML snippet represented in Figure

2 shows that all users can read from and write to the
location topology “Main Campus”. However, the
location named “Blue Room” will override the write
access rules of its parent by denying the user
“username” from modifying the information of this
location while inheriting the read access rules of its
parent.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

333

Figure 2 Sample Section of a Location Topology

3.4. JavaSpaces

As indicated in [2], a pervasive computing
environment should support user mobility, adapt to
runtime changes, and provide a clean separation of
concerns between data and functionality [8]. Upon
reviewing the various Java technologies that support this
behavior, the JavaSpace services of the Jini technology
of Java proves itself to be the technology that best fits the
required pervasive nature.

Jini is a Java based technology that is built on top of
the Java remote method invocation system, RMI [12]. A
Jini system is a distributed system based on the idea of
federating groups of users and the resources required by
those users [12]. The goal of such system is to make the
resources easily accessible by different users of the
system. Jini is totally independent of the underlying
network, thus it can work with wired as well as wireless
networks, which in return extends the area that a
pervasive system will serve.

In an attempt to exploit such features of Jini, we
shall store the location topology using the JavaSpace
technology, thus ubiquitous access to this information is
guaranteed. It is worthy to note that Jini deals with a
JavaSpace as a service that is offered through the Jini
network. Security is an important feature that also adds
to the advantages of using Jini, as it extends Java, thus
providing some level of protection against execution of
malicious code on the JVM.

The JavaSpaces service, along with other services,
represents one of the main three segments of the
architecture of Jini. A JavaSpace can hold any kind of
data as long as this data can be serialized while writing it

to the JavaSpace, and deserialized while taking/reading it
from the JavaSpace.

3.5. Storing Location Topology using JavaSpaces.

The XML documents representing the various
location topologies in a system will be stored in
JavaSpaces using the Jini technology. Fetching location
information from the XML structured document is done
through utilizing the dynamic and distributed nature of
JavaSpace services. There are two classes that we created
and are responsible for managing the JavaSpace
component in the system.

• LocationTopologyEntry: Represents the XML
document of the location topology that will be saved
in the JavaSpace, and implements the
net.jini.core.entry. The entry interface in JavaSpaces
holds various types of entries [12], and it also has
data as an attribute that is used to create a search
template to search for a topology in a JavaSpace.

• JavaSpaceManager: Manipulates the pool of
available JavaSpaces. The user can add a new
JavaSpace to the pool or remove an existing
JavaSpace. There is, however, always a default
JavaSpace available in the pool called JavaSpace
that uses the default Jini service for JavaSpaces.

The user can add a new topology to a specific
JavaSpace. If no JavaSpace is specified, it will be added
to the default JavaSpace. A specific topology can either
be retrieved from any of the available JavaSpaces or in
specific from a particular JavaSpace. A topology can also
be removed completely from the JavaSpace where it
resides, and hence, it will no longer be available for the
actors in the pervasive system.

A set of functions offered by the classes we created
can be used to manage the JavaSpace and extract
information from a location topology.

Figure 3 shows a set of function that can be used to
manage the different JavaSpaces that the application may
have access to. Such methods provide functionalities to
add and remove Java Spaces, and to add, remove, and
retrieve topologies from the Java Spaces.

<locationTopology name="Main Campus">
 <read><allow /></read>
 <write><allow /></write>
 <description

country="Egypt"
state=""
suburb=""
street="Main" building="14"/>

 <location floor="1"
name="Blue Room"

 type="meetingroom">
 <write>
 <allow />
 <deny users="username" />
 </write>
 </location>

…
</locationTopology>

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

334

Figure 3 Functions Created for Managing Available JavaSpaces

4. Example

After discussing how we supported location for

pervasive systems through Java, a concrete example will
help visualize and comprehend how the various classes
we created can be used. A sample XML document that
represents the topology of some hypothetical university
is described in Figure 4.

The document should comply with the rules and
specifications set in the Document Type Definition
(DTD) aforementioned in this article. Consequently,
using the classes we created to manage the JavaSpaces
present in the Jini network, this topology can be written
to the JavaSpace thus making it available to all the users
who can access this network.

A LocationTopology object should be created as
such. This object will include the XML document along
with a name to identify the document. The code in Figure
5 illustrates the creation of a JavaSpaceManager,
followed the creation of a LocationTopology object,
binding it to a name, populating it with the required
topology defined in the XML document, and then
eventually storing it onto the JavaSpace.

public void addJavaSpace(String javaSpaceName)

public void removeJavaSpace(String
javaSpaceName)

public void addTopology(LocationTopologyEntry
locTopEntry)

public void addTopology(LocationTopologyEntry
locTopEntry, String spaceName)

public void
removeTopology(LocationTopologyEntry
locTopEntry)

public void
removeTopology(LocationTopologyEntry
locTopEntry, String spaceName)

public LocationTopologyEntry
retrieveTopology(String name)

public LocationTopologyEntry
retrieveTopology(String name, String
spaceName)

<locationTopology name="Main Campus">
 <read><allow /></read>
 <description

country=" "
state=""
suburb=""
street="Main" building="14"/>

 <location floor="1"
name="Blue Room"

 type="meetingroom">
 <write>
 <allow />
 <deny roles="guest" />
 </write>
 <location floor="1"

type="kitchen"
name="Buffet">

 <read>
 <allow />
 <deny users="user" />
 </read>
 <write><allow /></write>
 </location>
 </location>
 <location floor="2"

name="Manager Room"
type="office">

 <write>
 <allow users="manager"/>
 <deny users="*" />
 </location>
</locationTopology>

Figure 4 Sample Location Topology for a University

JavaSpaceManager manager =
new JavaSpaceManager();

LocationTopologyEntry locationTopology =

new LocationTopologyEntry();

locationTopology.data = "name";

locationTopology.document =

DocumentBuilderFactory.newInstance().
newDocumentBuilder().parse(new
File("path/docment.xml"));

manager.addTopology(locationTopology);

Figure 5 Creating a LocationTopology object and Writing it to a
JavaSpace

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

335

In order to retrieve the LocationTopology object that
has just been written onto the JavaSpace, we need to pass
its name to one of the search functions in the
JavaSpaceManager class. We can either retrieve the
topology by taking a copy from it, or we can totally
remove it. Figure 6 shows how we can retrieve the
LocationTopology object that was written above.

LocationTopologyParser parser =
new LocationTopologyParser
(locationTopology.document);

Location location =

parser.findNearest ("Buffet",
LocationType.MEETING_ROOM,
"user1");

Figure 6 Retrieving a Location Topology from the JavaSpace Pool

manager.retrieveTopology("name");

Once the topology is retrieved, all the functions that

the LocationTopologyParser class offers can be used in
order to extract location related information. Assuming
the following scenario: A user with the user name
“user1” who is present in a kitchen of the first floor,
wishes to retrieve the location information regarding the
nearest office to his current location. All what needs to
be done to get such information is to call the function
findNearest, and passing the proper arguments as shown
in Figure 7.

Typically, finding the nearest location could be
achieved using multiple approaches. For one, it may
include finding the Euclidean distance between two
points. However, although two locations may be
geometrically close to one another, their accessibility to
one another may make them very far away from one
another. According to the topology we have in the XML
representation of the location information we can know
given a certain location what the nearest location is of a
given type to that location by parsing this XML
document. Locations on the same level are considered
closer to each other than locations in sub-levels or
previous levels.

Figure 7 Finding the Nearest Office

Access to the nearest location of type office is

restricted to the user having the user name “manager”
and there are no other offices in the topology. Therefore,
the return value of the location will be null denoting that
no such location can be found in the given topology.
However, if “user1” wishes to know where the nearest
meeting room is, an object containing the information of
the “Blue Room” (See Figure 4) will be retrieved given it
is the nearest location of type meeting room that such
user has access to. Figure 8 illustrates this kind of query.

Figure 8 Finding the Nearest Meeting Room

Another scenario assumes that the user “user” wants

to get the location information of the Buffet that is
present on campus. However, it happens that such user is
denied any read access to this location, so a null object
will be the result. Figure 9 shows how to get the location
information of the Buffet.

Figure 9 Finding a Location

LocationTopologyParser parser =
new LocationTopologyParser
(locationTopology.document);

Location location =

parser.getLocation("Buffet", "user");

5. Conclusion

In this article, we presented an approach for building
programming language support for pervasive systems
development activities by extending the Java
programming language. Typically, support for context,
location, actors, sensors, and events is needed in the
efforts made towards building complex pervasive
systems. We demonstrated in this article our
programming language support for location and its
associated management and retrieval through utilizing
the extensible markup language, Javaspaces, access
rights, and eventually supporting libraries. We finally
demonstrated an example that illustrates the utilization of
this approach for supporting location related
development activities.

LocationTopologyParser parser =
new LocationTopologyParser
(locationTopology.document);

Location location = parser.findNearest("Buffet",
LocationType.OFFICE, "user1");

References

[1] M. Weiser. “The computer for the 21st Century.

Scientific American, September, 1991.
[2] D. Heutelbeck and M. Hemmje. “A peer-to-peer

data structure for Dynamic Location Data.” In
Proceedings of the Fourth Annual IEEE
International Conference on Pervasive Computing
and Communications (PERCOM’06), 2006.

[3] S. Fritsch, A. Senart, and S. Clarke. “Addressing
dynamic contextual adaptation with a domain-
specific language.” 29th International Conference of

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008

336

Software Engineering Workshops (ICSEW’07),
2007.

[4] T. Weis, M. Knoll, A. Ulbrich, G. Muhl, and A.
Brandle. “Rapid Prototyping for Pervasive
Applications.” IEEE Computer Society. pp. 76-84,
2007.

[5] J. Indulska and P. Sutton. “Location management in
Pervasive Systems.” Appeared at Workshop on
Wearable, Invisible, Context-Aware, Ambient,
Pervasive and Ubiquitous Computing, Adelaide,
Australia, 2003.

[6] S.W. Loke. “Logic programming for context-aware
pervasive computing: Language support,
characterizing situations, and integration with the
web.” Proceedings of the IEEE/WIZ/ACM
International Conference on Web Intelligence
(WI’04), 2004.

[7] R. Grimm, J. Davis, B. Hendrickson, E. Lemar, A.
MacBeth, S. Swanson, T. Anderson, B. Bershad, G.
Borriello, S. Gribble, and D. Wetherall. “Systems
Directions for Pervasive Computing.” Proceedings
of the Eighth Workshop on Hot Topics in Operating
Systems (HotOS-VIII’01), 2001.

[8] K. Harihar and S. Kurkovsky. “Using Jini to enable
pervasive computing environments.” 43rd ACM
Southeast Conference, March 18-20, 2005.

[9] G. K. Mostefaoui, J. Pasquier-Rocha, and P.
Brézillon , “Context Aware Computing: A Guide for
the Pervasive Computing Community”, Proceedings
of the IEEE/ACS International Conference on
Pervasive Services(ICPS’04), 2004.

[10] M. Baldauf, S. Dustdar and F. Rosenberg. “A survey
on context-aware systems.” Int. J. Ad Hoc and
Ubiquitous Computing, vol 2, pp 263 – 277, 2007.

[11] "Jini Specifications Archive - v2.1." Sun Developer
Network (SDN). 2007. Sun Microsystems, Inc. 29
Sep 2007
<http://java.sun.com/products/jini/2.1/doc/specs/htm
l/js-spec.html>.

[12] "Jini Technology Architectural Overview." Sun
Microsystems. January 1999. Sun Microsystems,
Inc.. 20 Oct 2007
<http://www.sun.com/software/jini/whitepapers/arch
itecture.html>.

Sherif G. Aly received his B.S.
degree in Computer Science from the
American University in Cairo, Egypt,
in 1996. He then received his M.S.
and Doctor of Science degrees in
Computer Science from the George
Washington University in 1998 and
2000 respectively. He worked for
IBM during 1996, and later taught at
the George Washington University

from 1997 to 2000 where he was nominated for the
Trachtenberg prize-teaching award for his current scholarship
and scholarly debate. He spent two years as a guest researcher
for the National Institute of Standards and Technology at
Gaithersburg, Maryland from 1998 to 2000. Dr. Aly also
worked as a research scientist at Telcordia Technologies in
Morristown, New Jersey, in the field of Internet Service
Management Research, and as a Senior Member of Technical
Staff at General Dynamics Network Systems. He also consulted
for Mentor Graphics and taught at the German University in
Cairo. He is currently a faculty member at the Department of
Computer Science and Engineering at the American University
in Cairo, and recipient of the Egypt National State Prize for
research. Dr. Aly published numerous papers in the area of
distributed systems, multimedia, digital design, and
programming languages. His current research interests include
pervasive systems, programming languages, multimedia,
directory enabled networks, and image processing. Dr. Aly is a
member of IEEE.

Sarah Nadi and Karim Hamdan received their B.Sc. from the
Computer Science and Engineering Department of The
American University in Cairo. Both have graduated with high
honors, and are different recipients of the best senior project
awards during their respective semesters. Their research
interests include programming languages, and mobile and
pervasive systems. They are currently Masters degree
candidates in Canada.

