
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

7

Manuscript received June 5, 2008

Manuscript revised June 20 2008

Performance Evaluation of Several Efficient RSA Variants

Md. Ali-Al-Mamun†, Mohammad Motaharul Islam††, S.M. Mashihure Romman†
and A.H. Salah Uddin Ahmad†

†Islamic University of Technology, Board Bazar, Gazipur-1704, Bangladesh
††Training & Instrumentation Division, UGC, Agargaon, Dhaka-1207, Bangladesh

Summary
This paper includes survey on various research areas,
such as efficient implementation of RSA which
includes RSA key generation, its application, different
RSA variants, faster RSA implementation and
performance evaluation of those based on speed and
memory consumption.

Key words:
Square & multiply method, public key, private key, CRT.

1. Introduction

The RSA Problem is now over two and half decades old.
The elegant simplicity of the problem has led to numerous
observations over the years, some trying to attack, others
avoiding them. Public-key encryption schemes and digital
signature schemes have been developed, whose strength is
derived fully from the RSA Problem. The strength of RSA
comes from the fact that factoring large numbers is
difficult. The best-known factoring methods are still very
slow.

2. RSA Cryptosystem

Before we present the evaluation result of several variants
of RSA cryptosystem, we review the three basic
algorithms that constitute the RSA, together with two
frequently used optimization techniques. Compare to
symmetric-key crypt-osystems, two key types are
employed in public-key syste-ms: RSA public key (e, n)
and RSA private key (d, n).

RSA - Key generation:

The plaintext m can be encrypted with Algorithm 2:

The cipher text c can be decrypted with Algorithm 3:

This specification supports are called multi-prime RSA
where the modulus may have more than two prime factors.
The benefit of multi-prime RSA is lower computational
cost for the decryption and signature primitives, provided
that the CRT [1, 2] (Chinese Remainder Theorem) is used.
Better performance can be achieved on single processor
platforms, but to a greater extent on multiprocessor
platforms, where the modular exponentiations involved
can be done in parallel.

Another technique where secret exponent [6] d has binary
notation (di-1, di-2, · · · , d1, d0)2 , and di-1 = 1 denotes the
most significant bit. Modular exponentiation is performed
bit by bit by repeated modular multiplications. The
algorithm is Square & Multiply method.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

8

We have used both the techniques in this paper to evaluate
the performance of various known RSA variants [1, 3].

3. Results

All performance measurements were conducted on an
AMD Athlon; Win XP and Linux platform, with 256 MB
of RAM and using C language with GNU MP [9] (library
GMP). For figure, charts we used Microsoft excel.

3.1 Speed comparison

What we can suggest after all these discussion is, we
should not analyze cryptographic algorithms with a fixed
key length; rather evaluate speed and memory
requirements depending on the key length, so that our
results won’t be out of date if the recommended key length
becomes larger in future. Below it is shown the speed up
of different RSA implementation. First simple RSA and
RSA with CRT [2]:

Table 1: With CRT and without CRT
Key Length Speedup

768 1024 2048
RSA without

CRT
1.0 1.0 1.0

RSA with
CRT

3.24 3.32

3.47

Now the comparison among other variants:

Table 2: Major RSA variants
Speedup Key Length

Variant 768 1024 2048

Mprime 1.95 1.89 1.97

Mpower 2.49 2.54 2.79

Rebalanced 2.52 3.02 5.98

Rprime 3.00 3.88 7.83

Batch 2.47 2.78 3.42

 Practical speedup for Decryption process where b=4(no.
of messages), k=3(no. of primes), s=160

For 768-bits moduli the variant that exhibits better
performance would be Batch RSA, but for 1024 and 2048
bits moduli Rprime RSA presents the best performance.
Notice that while the speedup of Batch, MPrime and
MPower variants is fixed regardless of the size of the used
moduli, speedup of the Rebalanced and the RPrime
variants[11] significantly increases with larger moduli.
This happens because the consideration s fixed and equal
to 160 bits (remember that s is the size of the exponent
used in decryption algorithm), while this exponent
increases for all other variant. Here speedup comparisons
are shown in the form of chart; first for 768 bits, next 1024
bits and next 2048 bits.

768 bits

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50

Sim
ple

 R
SA

RSA w
ith

 C
RT

Mpri
me R

SA

Mpo
wer

RSA

Reb
alan

ce
d

Rpri
me

Batc
h

Variants

Sp
ee

du
p

Fig. 1 Comparison of RSA variants using 768 bits

1024 bits

0.00
1.00
2.00
3.00
4.00
5.00

Sim
ple

 R
SA

RSA w
ith

 C
RT

Mpri
me R

SA

Mpo
wer

RSA

Reb
alan

ce
d

Rpri
me

Batc
h

Variants

Sp
ee

du
p

Fig. 2 Comparison of RSA variants using 1024 bits

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

9

2048 bits

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

Sim
ple

 R
SA

RSA w
ith

 C
RT

Mpri
me R

SA

Mpo
wer

RSA

Reb
ala

nc
ed

Rpri
me

Batc
h

Variants

Sp
ee

du
p

Fig. 3 Comparison of RSA variants using 2048 bits

For good encryption and decryption performance [2] and
interoperability with systems that already implement the
PKCS#1 [5]. We found out the use of MPrime RSA is the
best. Although MPower and Batch RSA achieve better
performance than MPrime and hence constitute better
option when high speed is desired, they are not specified
in PKCS#1. For the applications that prioritize the
performa-nce the decryption and the signature generation,
the best choice is RPrime RSA, which for 2048-bits
moduli got a gain of 30% with relation to Rebalanced
RSA and is there-fore about 27 times faster than original
RSA. Besides, this variant can interoperate with systems
that already use the PKCS #1 [5]. Another fact that favors
this variation is that current systems that use MPrime RSA
can easily be adap-ted to it, it is enough to modify the key
generation algori-thm or create a hybrid key system.

3.2 Memory Comparison

We will show now the memory requirement of different
RSA implementation [2, 7]. Below it is shown simple
RSA and RSA with CRT implementation.

Table 3: With CRT and without CRT
 Total Memory

RSA without CRT 4n or 4096 bits

RSA with CRT 8n or 8192 bits
 Here n=1024 bits

Here memory requirement of other variants of RSA are
shown in tabular as well as in the form of chart:

Table 4: Major RSA variants
 Total Memory
Mprime (p r q) 26n/3 bits=8875 bits

Mpower (p2q) 25n/3 bits=8534 bits

Rebalanced (k=160) 7n+2k bits =7200 bits

Batch (b=4) 67n/2+784 bits=35088 bits

Here n=1024 bits

1024 bits

0
5000

10000
15000
20000
25000
30000
35000
40000

Sim
ple

 R
SA

RSA w
ith

 C
RT

Mpri
me R

SA

Mpo
wer

RSA

Reb
alan

ce
d

Batc
h

Variants

M
em

or
y

in
 b

its

Fig. 4 Comparison of memory of RSA variants using 1024 bits

The idea of reducing the decryption time in detriment of
the encryption, used by Rebalanced RSA and Rprime RSA
[2], seems first sight not to present advantages in practical
terms. However, there are applications where the
balancing characteristic of these algorithms is desirable.
Consider, for instance, a situation where the signature
generation is executed much more often than verification.
A bank, for example, can emit many digital signatures in a
single day (in documents, receipts), while the user that
receives this signature, has usually a much smaller burden.
In this situation is reasonable to transfer the computational
effort demanded for the signatures generation to the party
verifying them.

Another example is provided by applications running on
handheld devices (PDAs), which generally possess limited
computational resources. In communications with servers
(or even with notebooks or desktop computers), we could
leave the task of decryption (fast) for the small device, and
the encryption (slow) for the computers with more compu-
tational resources. A still better alternative would be to use
an implementation of MPrime RSA with keys of the
MPrime and RPrime RSA, with the use depending on the
type of communication (desktop/desktop, or desktop/hand-
held), in other words, to use a scheme of hybrid keys.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

10

4. Conclusion

The main security parameter of current cryptographic
algorithms is the key length. We compare the different
decryption schemes that have been described in terms of
speed and memory. A big key will ensure a high level of
security but the operations will also take a long time and
consume a lot of memory. Currently, the recommended
key length for the big standard cryptosystem RSA is more
[2, 4, 7] than 512 bits. If 1024 bits or 2048 bits could be
used that is safer. This key length is believed to be secure
regarding the current computing abilities of our computers.
But this length will probably be sooner or later too short.

References
[1] D. Boneh and H. Shacham. Fast Variants of RSA. RSA

Laboratories, 2002.
[2] Cesar Alison,” An efficient variant of the RSA cryptosystem”

2002.
[3] M. Jason Hinek. Low Public Exponent Partial Key and Low

private Exponent Attacks on Multi-prime RSA. Master
Thesis, Waterloo, Ontario - Canada, 2002.

[4] D. Boneh and G.Durfee. Cryptoanalysis of RSA with private
key d less than n0.292.IEEE Trans. on Info. Th., 46(4):1339–
1349, Jul. 2000.

[5] RSA Laboratories. PKCS#1 v. 2.1: RSA cryptography
standard. June 2002.

[6] Camille Vuillaume. Efficiency Comparison of Several RSA
Variants Master Thesis, Fachbereich Informatik der TU-
Darmstadt, 2003.

[7] T. Takagi. Fast RSA-type cryptosystem modulo pk q. In
Advances in cryptology, volume 1462, pages 318–326.
Springer-Verlag, 1998.

[8] R. L. Rivest, ”RSA Problem” 2003
[9] GNU MP. GMP. Version 4.1 -2002, available in http: //www.

swox.com/gmp/.

Md. Ali-Al-Mamun received the B.Sc.
in Computer Science and IT from
Islamic University of Technology,
Bangladesh in 2002 and Masters Degree
in Computer Applications from
University of Hyderabad, India in 2006.
He now working as a Lecturer in
Computer Science & IT department in

IUT, Bangladesh. In addition he is the member of Institute of
Engineers Bangladesh (IEB).

Mohammad Motaharul Islam is senior
lecturer and course coordinator in
Computer Science and Engineering
program at Training and Instrumentation
Division of University Grants
Commission of Bangladesh. He holds
Bachelor degree in Computer Science and
Information Technology from the Islamic

University of Technology (IUT), a subsidiary organ of
Organization of Islamic Conference (OIC) in 2002. In addition
he is the member of Institute of Engineers Bangladesh (IEB) and
Bangladesh Computer Society (BCS). Mr. Motahar has around
six years of experience in teaching and IT-related projects. Mr.
Motahar supervises postgraduate and undergraduate students in
high-speed networking, Open source operating system,
information management and human computer interaction. He
also leads and teaches modules at both BSc and postgraduate
diploma levels in Computer Networking, operating system etc.

S. M. Mashihure Romman is pursuing
B.Sc. in Computer Science and IT in
Islamic University of Technology,
Bangladesh. He is now in final semester
of his final year. He has plan to continue
his higher study in the relevant field of
Computer Science.

A. H. Salah Uddin Ahmad is doing
B.Sc. in Computer Science and IT in
Islamic University of Technology,
Bangladesh. He is now in final semester
of his final year. He is very eager to
continue his higher study in the relevant
field of Computer Science.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

11

Appendix A

RSA Key generation examples

1024-bits

e=9a6519976940da2189796fbc1fdc8611d0b74
233b2d784ab03c86dd89bbd8631b4731167e8ae
d28fca657958c395eac8f7f5839f82def66bde4
36836f103c98b37dfd68e5d5aa5eee529327ada
13c12b764bdc10fc152105cf3e9d57cda97acf5
70386976bdee4d12b15d133f3a3e62b00d80248
bd066a7a74e82df2e7f972f

d=99b1313d4c61d22a73e7e81ef282f3e2c4141
4c1d0a7e8ab28e3ed18a986876e344170640091
a7e87c46112bd6bbdf6694db4d48a9b755ac02b
70c4331597cf2b12c804484ca3ca9d9b25cc8ea
f8364f48d5c11ae51d2f94607056c363f44845e
34b3dd5fbd1ac7c532fa3fbc86b7be60ab99fed
d7b5b562c4f20f506a3ed4f

n=c6f4db66d824d75d5ee8dbd0fa6911ad109c3
526ee5efbe5fa4d8dbdf1be1c8ccb5b28beecb6
870eef55913865b50952e99a56ca5826e82578a
95fbeecfa33a02465ee2598e56cf6c50ac20f0e
16c4080051d3e7dacf34273147ba39447a98fc5
7f3044da3b6dd4c784ac29374b61cffe4530cc6
48da5f870c29eb3258940ad

2048-bits

e=128b2c987d7b61a13cd19c5d2a11fff8a3d8e
4b0957b910761e0c45a24f6a447bb9e3ee5cd87
c84cb2750f5cd169ef2d1280b7dc976f4107f5f
f328ac1d392884fadc657ea8868c709a1e5bd0d
5205798ca38be9c0fd6cdeef66cdd7acd65ec35
5a525eb9b98e5b5da569258b352cf4d309a231b
de159ade344c1ed944e1f37e0e91b800f2ff339
85de7dfc7986a2a7044517bdda75125cc85c517
8ed51551fd702c36617cb71f05fbdfcf2a73f55
06aff720ddfd93ec6cbe203a76def6a7c54f1e6
d46660fccdf17b3d5210fb16ca9e9015746cc2d
1ec1ff6a2d9259ceb2d84c1902c275ec02c4ec6
443e6fa347c4aa874b46cb580817a58b941610b
eae0e9b

d=b8f91effd76ad445519525597247d7a8511c6
4f3eb5d984462824ad2059971df9d8de4ba152e
82fdc810880d072e9d486960db1c9d78e5ef9c4
713f9807beb67d85294297a1e338c1510994422
62eb69d125d3fe8cf97b98daff899e659b77bad
d7e7896642b82b9becef4eae85ff81f7ea9d792
66ecdbe97314e6694e21286317e8fd34821fb60
9126f069a58ec0e3910ac3c7a4677ba6dc523df
f123200d2d761e40daa7269dba91ed02d87778f
a50a27526aed40fb5b15b6c8e3d9ef2f66519d1

1ac9c382496af817910cbdbab933740ebffb757
7f00f36efab487b9b1e82aa29093b8b103e5c5e
8ca5402f62d33fd683ecb279e1fdbfb53723723
f466d3

n=1957dbd9276d6168213b706b6aa9b1aa8cfd1
65c7fb9092b282a0f11a520417b7b40a5f61404
2d6e33bd3b4a95367d8d4c1d97e3057438f9a6d
695ad2e2442260a444e58087c3b6a7b3e941cbb
afb774a241df1dd93464cdaa99a3581ef0b1ef1
2c9813a70b227da440951c99753507312702a86
51788ff825d12bcc7d47831899377a4896f8dfd
dfc790e68d0a9b5d67e0298b8274e44ed2a6f89
2de7425ffa51bb6976a7418e25deaf45c1ce8a6
fd38d104a63900d51c4fb496ad18a8647b09476
1c672b720ae1d9e5798728071f30150decb2e49
7b805b823e917a735ff1ade1b61cabf7062a1ed
7d5f5d2eb1eb98869fcce3133bec02d40db827e
5a8c605

