
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

29

Manuscript received July 5, 2008.
Manuscript revised July 20, 2008.

Construction and Reconfiguration of a Component-based Embedded
JVM

Hiroo Ishikawa† and Tatsuo Nakajima††,

Department of Computer Science, Waseda University, Tokyo, Japan

Summary
Component software is a method to deal with the complexity of
software structures and configurations. Despite the increase of
complexity in systems software such as operating systems and
virtual machines, most of such software are configured under a
traditional way i.e. C preprocessor directives. This paper
explores a component software tool. We modularize an
implementation of Java virtual machine with a component
description language, called Knit. We show the difference
between the original implementation and the modularized one.
The modularization introduces little overhead despite the clearer
view of its architecture. Three case study on reconfiguration of
our JVM implementation show the benefits and problems of
current component software technology.
Key words:
Software components, component-based configuration, JVM,
case study, Earl Gray, Wonka

1. Introduction

The complexity of systems software such as language
runtime systems, operating systems has been increasing.
For example, an operating system includes a lot of device
drivers, different types of scheduling policies, memory
management strategies, file systems and network protocols,
and so forth. Consequently, it is difficult for programmers
to capture its structure for a short time. They have to look
though source code and identify the dependencies in it to
apply another configuration or extend the functionality of
a system. This prevents a system from evolving over time.
On the other hand, component software consists of
software modules with well-defined interfaces, thus it is
easier for programmers to configure or extend a system[1].

We explore the component software in the context of
systems software. While the notion of component
software has been applied to many kinds of middleware
and applications, it is less studied in the underlying
systems software such as operating systems.

The contribution of this paper consists of two folds. First,
we show tradeoffs in the component software. While we
divide an implementation of Java virtual machine (JVM)
into components and rebuild a component-based JVM, we

face on some tradeoffs in component software such as
granularity of components and interfaces. Second, we
conduct a case study under three different configurations
of the JVM. The configurations are performed by
replacing components with alternatives. Our experience is
summarized as lessons learned.

We develop a component-based JVM, called Earl Gray,
based on an open source JVM implementation for
embedded systems, Wonka[2]. The components of Earl
Gray are managed by a component description tool,
Knit[3]. Using the component description language, the
relationships between components and the structure of a
system become clear so that a programmer can easily
understand the relationships between functions of the JVM.

We conduct a case study on the reconfiguration of Earl
Gray. The case study shows the implicit dependency
between components, that is a kind of inter-component
dependency that is not described in an interface of a
component.

The paper is structured as follows. The next section
describes the relate work to explore the context of our
research. Section 3 gives an introduction to the Knit
component description language, which we adopted to
construct our component-based JVM, called Earl Gray.
Section 4 shows the design and implementation of Earl
Gray. Section 5 evaluates Earl Gray from the software
engineering and performance viewpoints. In Section 6,
we conduct a case study on reconfiguration of Earl Gray.
We enumerate the problems of component-based
configuration in practice through three types of
configurations. The paper is concluded in Section 7.

2. Related Work

The idea of component software is adopted by several
research-oriented systems software. They focus on the
construction of component software or component models,
while our research project addresses not only the
construction issues, but also the configuration of a system
in practice.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

30

Knit is adopted for building the latest version of OSKit[4].
The authors mentioned that Knit declarations for OSKit
components revealed many properties and interactions
among the components that a programmer would not have
been able to learn from the documentation alone[3]. This
is the same as our observation that a component-based
system contributes the comprehensibility of a large system.

Jupiter is a modular and extensible Java virtual machine
(JVM) developed from scratch[5]. It focuses on scalability
issues of the JVM for high-performance computing. The
principle of design and implementation of modules make
interfaces small and simple such that UNIX shells build
complex command pipelines out of discrete programs.
That principle facilitates to modification of JVM
functionality.

Kon and Campbell[6] proposed the inter-component
dependency management by the human readable
descriptions and event propagation mechanisms based on
CORBA[7]. Hardware and software requirements are
described in a file (e.g. machine type, native OS, minimum
RAM size, CPU speed/share, file system, and window
manager) with human readable descriptions. And inter-
component dependency is managed by the event
propagation mechanisms with (un)hook and
(un)registerClient methods. However, these methods don't
take into account of any component behaviors.

3. Component Description

Earl Gray components are defined by Knit component
description language, which is developed by the Flux
research group at University of Utah[3]. A component in
Knit is a source level component. The Knit compiler
parses component descriptions and generates a set of
Makefiles for building the source code, which is written in
a programming language such as C. This section
introduces Knit for readers to understand the following
sections.

A component in Knit consists of a set of typed input ports
and output ports. The advantage of this model is that a
connection between two components is explicitly
described outside the components. Each port bundles
some interfaces, and the interfaces are implemented by a
set of functions written in C. The input ports of a
component specify the services that the component
requires, while the output ports specify the services that
the component will provide. An interface type consists of
a set of methods, named constants, and the other interface
types. A component in Knit is a black box component. The

implementation of a component is hidden from other
components.
There are two types of components in Knit as shown in
Figure 1 and 2. An atomic component is the smallest unit
to compose programs, while a compound component
consists of atomic components and/or other compound
components. A system is structured by composing these
two types of components.

Fig 1. An example of atomic components. bundletype defines an
interface of a component in which function names in C are described. The
depends block indicates dependencies between interfaces in imports
and that in exports. The files block indicates an implementation of

the component.

Fig 2. An example of compound components. A compound component
includes the link block that explicitly connects atomic component and
other compound components. MethodArea and Heap component is

connected with thread interface from outside of Collector
component. Malloc is an internal component of

RuntimeMemoryArea component and it connects to Heap and
MethodArea components.

A components in Knit is a compile-time component.
Components are statically combined into one executable
binary after the compilation. Unlike CORBA or COM[8],
component binding at run-time is not supported by Knit.
The advantage of Knit is to keep the system small without

unit RuntimeMemoryArea = {
 imports [thread : Thread_T,
 exception : Exception_T,
 ...];
 exports [gc : Collector_T,
 method : Method_T,
 ...];
 link {
 [method] <- MethodArea
 <- [thread,malloc,...];
 [gc] <- Heap
 <- [except,thread,malloc,...];
 [malloc] <- Malloc <- [];
 }
}

bundletype Collector_T = {
 gc_collect,
 gc_create,
 ...
}

unit Collector = {
 imports [heap : Memory_T];
 exports [gc : Collector_T];
 depends { exports needs imports;};
 files { "src/heap/collector.c" }
}

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

31

communication overhead among components, discovery
and binding mechanism. The compilation of Knit is
executed in the following way: (1) Knit compiler checks
syntax and dependencies between ports. (2) The compiler
creates a rename table according to the link description
in the compound components. (3) It compiles each
component to a binary file by using GCC. (4) It renames
entries in the symbol table in each object file according to
the rename table created in (2). This is because Knit
allows more than one components to be implemented the
same interface. The compiler distinguishes components
with the same interface by referring the renaming table.
(5) The LD linker program links all object files into one
executable program. The implementation of an atomic
component in Knit is written in C or assembly languages.
The atomic component may consist of more than one
source files written in C or assembly language.

4. Design and Implemenation

We have developed a component-based Java virtual
machine, named Earl Gray, based on an open source JVM
implementation, Wonka. Wonka is an open source Java
virtual machine implementation for embedded systems. It
supports the Java Virtual Machine specification provided
by Sun Microsystems, Java 1.2 APIs with AWT, and
several I/O devices such as RS232C ports. Earl Gray
components are written in a component description
language, Knit. During the process of decomposition of
the system, we had to make several decisions on
component granularity, and component interface
definitions.

4.1 Architecture Overview

Earl Gray is divided into three compound components,
Kernel, Middleware, and VM, as shown in Figure 3.
The kernel and the middleware components provide
interfaces described in Knit to their upper layers. The
kernel component provides low level services such as
thread management and memory management. The
middleware component provides common services for the
VM component, such as string operations and network and
serial port drivers. The VM component contains the basic
functionality to implement Java virtual machine such as
class loader, a runtime memory area, an execution engine,
and native interfaces bridging to JavaAPI[9].

Runtime
Memory AreaClass Loader Execution

Engine Native Interface

Device DriversJava StringAbstract Data
Types

Thread
Synchronization

Support

Memory
Allocator

Thread
Scheduler

VM

Middleware

Kernel

Fig 3. The architecture of Earl Gray

4.2 Component Granularity

The flexibility of the configuration of component software
relies on the granularity of a component because the
configuration is done by replacing, adding, or removing
components. To translate Wonka into Earl Gray
components, we first identified its functionality so that
each atomic component provides one functionality.
Wonka is fortunately a well-structured implementation
and we followed the structure at the design level.

The granularity of compound components varies
depending on their functionality. For example, the native
library component is the largest component of Earl Gray,
because it includes many components implementing Java
API. On the other hand, the Class Loader component
contains only four atomic components.

4.3 Component Interface

A component interface is a definition of an end point
which other components connect to and communicate with.
Port is an instance of the component interface. The
number of links among ports depends on how many ports
each component provides. The ports are classified into
two types, input ports and output ports. Components are
explicitly composed by connecting an input port and an
output port by a connector. This approach makes the
system architecture clearer than the original source code.
For example, it is difficult to understand the relationship
among the functions without examining all source code
files of usual C programs. However, it is much easier to
understand the relationship among components by
examining component description files.

In our design, an atomic component offers only one
interface to make an atomic component as simple as
possible in order to clearly separate the roles of atomic
components and compound components. If a component

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

32

needs to offer two interfaces, we decompose the
component into two atomic components, and create a
compound component from the two atomic components.
For example, Runtime Memory Area component
consists of two atomic components, the heap component
and the method area component. The heap and method
area components provide Collector_T and
MethodArea_T interfaces respectively.

4.4 Implementation

Earl Gray supports Java Virtual Machine Specification
provided by Sun Microsystems, Java 1.2 APIs, and several
I/O devices such as RS232C ports. It does not support JIT
(just-in-time) compilation. The current version of Earl
Gray runs on Linux for the Intel x86 family processors.
Knit allows an atomic component to be implemented in
more than one files, but we defined an atomic component
consists of only one file to avoid a dependency problem
within an atomic component. Most of its implementation
files (i.e. .c files) are individually wrapped by an atomic
component.

In the current implementation, the kernel component
contains 16 atomic components and 1 compound
component when the default scheduler is selected. The
middleware component contains 25 atomic components
and 3 compound components. Lastly, the VM component
contains 108 atomic components and 8 compound
components. All the atomic components are described in
Knit and implemented in C.

5. Evaluation

This section compares Earl Gray with Wonka which is the
original JVM of Earl Gray in terms of program size and
performance. Despite using Knit, Earl Gray is as almost
same size and performance as Wonka. Each JVM is
compiled by GCC version 2.95 with -O6 option without
any debugging options, and doesn't include JIT compiler
nor AWT support.

5.1 Program Size

The sizes of each JVM are very close (Table 1). We
stripped out the symbol information of them. The
component descriptions are dealt with in order to check
the connections among components and rename the
symbol tables. Thus, the descriptions are not compiled
into the binary file. Earl Gray is 128byte bigger than
Wonka. This is because Knit generates additional files in
order to initialize and finalize the program.

Table 1. Size comparison between Earl Gray and Wonka
Program Size (byte)
Earl Gray 567496
Wonka 567 368

5.2 Performance

The performance of Earl Gray is measured by the
Richards and DeltaBlue benchmarks[10]. The Richards is
a medium-sized language benchmark that simulates the
task dispatcher of an operating system kernel. The
DeltaBlue is a constraint solver benchmark. We compare
the result of the benchmarks on EarlGray to that of Wonka.

Table 2. Performance evaluation (execution time)
Benchmarks Wonka Earl Gray
richards_gibbons 198ms 198ms
richards_gibbons_final 195ms 195ms
richards_gibbons_no_switch 231ms 231ms
richards_deutsch_no_acc 322ms 321ms
richards_deutsch_acc_final 700ms 697ms
richards_deutsch_acc_virtual 700ms 700ms
richards_deutsch_acc_interface 755ms 753ms
DeltaBlue 87ms 88ms

Table 1 shows the results of the benchmarks on Earl Gray
and Wonka. All benchmarks were measured on a 1.2GHz
Pentium III with 1024MB of RAM running Linux version
2.4.20. The result is reported by using the benchmark
programs themselves. Therefore, the time for JVM
initialization is excluded from the results. Each result is
the average of 100 times benchmarking.

There are a few differences between Earl Gray and Wonka.
This is because the relocation policy of Knit is different
from the normal build process. The atomic components in
the same compound component are placed closely in the
executable file, which is not the case for the normal build
process.

6. Case Study

The case study shows Earl Gray under three different
configurations. The configurations are done at
component-level. In other words, when we add a new
functionality to Earl Gray, we don't extend the existing
component, but we developed an alternative component.
The case study shows the side effect of the configurations.
We expect the system consistency is kept as far as we
satisfy the dependency at the component interface level.
However, we found another kind of inter-component
dependency, that we call implicit dependency.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

33

In this section, we examine the following three
configurations:

Using a platform functionality: Replacing the default
scheduler involved in Earl Gray with a scheduler provided
by a host operating system.

Using a remotely available resource: Replacing the default
bytecode verifier with a bytecode verifier executed in a
remote machine.

Adding a new feature: Adding scoped memory, that is one
of the features described in the Real-time Specification for
Java[11], to Earl Gray.

6.1 Using a Platform Functionality

This experiments aims at changing a system to use
alternative functionality provided by its underlying
platform, instead of ones included originally. This change
is realized by replacing components. This experiment
changes a scheduler component and investigates the effect
of the change to the entire virtual machine.

6.1.1 Implementation

We replaced the thread scheduler component in the kernel
component. Similar to a user-level thread library, the
original thread scheduler of Earl Gray includes a thread
dispatcher mechanism that runs as a single Linux thread.
The alternative thread scheduler does not include a thread
dispatcher mechanism, but maps each Java thread to a
pthread. This change takes a scheduler mechanism away
from Earl Gray, and the Linux kernel schedules the Java
threads on behalf of it. The monitor and mutex
components in the thread synchronization support
component are also replaced.

As a result of direct mapping to the scheduler provided by
the host operating system, the number of components in
the kernel component was decreased from 21 to 13. The
number of components of the kernel component are
originally 17 core components and 4 sub components.
The 8 components out of 17 core components are used
only inside of the kernel component. They contain
mechanisms for thread management such as interrupt
handling, timer, generating random number, and so on.
The direct mapping implementation does not need these
implementations. The remaining 9 components are still
used when the new scheduler component is selected.

Since the kernel component is completely separated from
other components, the new implementation does not affect
other components from the architectural point of view.

6.1.2 Implicit Dependency on the Scheduling Policy

We observed that Earl Gray with the alternative thread
scheduler component was terminated unexpectedly. A
race condition occurred in a component for ZIP file
decompression (JAR file format is a superset of ZIP file
format). The component called Deflate Driver
didn't acquire a mutex to access to the fraction of a JAR
file, which was supposed to be a critical region.

The original implementation assumes that the scheduler is
not preemptive. Therefore, the queue structure in the
Deflate Driver component does not need to be protected
from concurrent accesses while accessing it. However,
Linux kernel threads are preemptive, thus we need to use
mutex variables to protect the queue. Moreover, adding
critical sections requires the initialization of the mutex
variables, and this requires to modify the initialization
component.

6.2 Using a Remotely Available Resource

The second experiment changes a system to use
components on a remote machine, instead of ones on the
local machine, assuming load balancing. We investigate
on the difference between a local component and a remote
component, and the effect of the replacement.

A bytecode verifier is replaced for the experiment. A
bytecode verifier generates an exception when it detects an
invalid bytecode sequence. In the case of a remote
bytecode verifier, the exceptions have to be invoked not
only by invalid bytecode sequence, but also by network
errors. The remote bytecode verifier requires a virtual
machine to manage the exceptions raised by network
errors in addition to the default exceptions.

6.2.1 Implementation

The remote bytecode verifier consists of two components,
a stub component and a remote verifier component. The
VM component requires a component providing the
service with the Verifier_T interface. The original
verifier component, which runs on local, implements the
Verifier_T interface.

The stub component provides the same interface as the
local bytecode verifier component. Therefore, the default
verifier can be replaced by the remote bytecode verifier
without modifying the other components.

The remote bytecode verifier communicates with the stub
component by using the remote procedure call (RPC). We
have adopted ORBit[12], which is one of the CORBA
implementations, as an RPC mechanism.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

34

6.2.2 Implicit Component Behavior

Since the alternative verifier component is located on a
remote machine, we have to consider the effect of the
network connection between Earl Gray and the verifier
component. The original verifier component is composed
within Earl Gray statically, thus it returns the result
immediately after finishing verification and the behavior
of the verifier component is defined as verifying bytecode
sequences. In the case of using the remote bytecode
verifier component, however, it is unsure whether the
result of verification is returned immediately after the
verification.

The problem here is that it is impossible for the current
component interfaces to restrict the implementation of
them. The original components cannot handle the remote
extension properly. The Verify_T interface includes a
function that generates an instance of
java.lang.VerifyError, which is thrown when the
verifier detects the inconsistency of bytecode. The
interface does not include any other functions that handle
network errors. Thus, the system cannot detect any
network errors related to the remote bytecode verifier with
the original interface.

6.3 Adding a New Feature

We examine how to extend a component-based system
here. Comparing to replacing components, extending the
structure may require changes in the existing interfaces.
We investigate on the effect of adding a new component
through this subsection.

6.3.1 Implementation

The scoped memory support is added to Earl Gray. The
scoped memory is one of the features described in Real-
time Specification for Java[11]. The scoped memory
enables an application to deallocate memory area
explicitly when a program exits from the current scope.
For example, if a method allocates a local (within the
method) instance in the scoped memory area, the scoped
memory feature makes sure that the instance is deallocated
when the method is returned. In other words, instances in
the scoped memory area are never collected by the
garbage collector, instead, applications need to manage
memory allocation and deallocation explicitly.

The scoped memory feature is implemented in two
components. One is a scoped memory allocator
component. This component has its own memory area in
order to allocate scoped objects, while the default allocator
instantiates objects on the heap and then registers them to

the garbage collector. The other component provides the
native interface for Java real-time APIs.

6.3.2 Extending the Core of the System

The implementation of the scoped memory API requires
the thread structure to be extended to store a pointer to the
scoped memory area. The specification defines that a
scoped memory area is bound to a thread and destroyed
when the thread is terminated.

The extension of the thread data structure did not affect to
the other components. However, the modification of a data
structure might affect the implementation of the other
components because the memory layout is changed if the
data structure is modified. This causes a chain of the
modifications of components.

6.4 Discussions

The series of the experiments have shown the implicit
dependencies among components due to the limitation of
the current component interface descriptions; The current
component interfaces cannot represent the component
behavior. Consequently another method is required to
specified the behavior.

The following sentences summarize the implicit
dependencies described in those experiments.

• A critical section in the decompressor component

depends on the original scheduler, thus a race
condition occurs with a new scheduler component.
This dependency is completely implicit. That is to say,
the dependency is not appeared until the system is
built and runs.

• The behavior of components that invokes bytecode

verifiers depends on whether the bytecode verifier
runs on local or remote. A stub component allows us
to replace from a local one to a remote one in a simple
way. However, the networked components have to be
taken into account of response delay and exceptions
due to the network faults.

• The scoped memory manager component depends on

several other components. A programmer needs to
understand the internal of the components, and the
side effects of the extension at the same time.

The result of the case study indicates the existence of
behavioral dependencies among components, despite a

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

35

component is generally defined as a unit of independent
deployment. The number of software components will be
increased much more, and the constraints for deploying
components will become stricter. The behavioral
dependencies have to be considered to build a component-
based system in a correct way.

Component behavior should be taken into account when
building component-based systems, since the behavior
causes the inter-component dependency that may prevent
the component-based system from configuring in a
flexible way. Currently, we are designing a new
component framework to allow us to specify implicit
dependencies among components by representing the
behavior of components explicitly such as IOA[13],
CORAL[14] and Sing#[15].

7. Conclusion

Component software is an important notion to deal with
the complexity of a system. It is expected to enhance easy
reconfigurations, component reuse, etc. This papers
explores component software in the context of systems
software such as language runtime and operating systems,
by implementing and reconfiguring a component-based
Java virtual machine, called Earl Gray. While a
component description we used provided us a
comprehensive view of the entire structure of JVM
without any serious overhead of size and performance, we
encountered the implicit inter-component dependencies
which cause unexpected behavior of a system. This is
because the current component description focuses on the
interfaces of components. Our experiments have shown
that the behavioral description of a component is
necessary.

References
[1] Clemens Szyperski, Dominik Gruntz, and Stephan Murar.

Component Software: Beyond Object-Oriented
Programming, 2nd ed. Addison-Wesley, 2002.

[2] Wonka – The Embedded VM from ACUNIA.
[3] Alastair Reid, Matthew Flatt, Leigh Stoller, Jay Lepreau,

and Eric Eide. Knit: Component Composition for Systems
Software. In proceedings of the Fourth Symposium on
Operating Systems Design and Implementation (OSDI
2000), October 2000.

[4] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau,
Albert Lin, and Olin Shivers. The Flux OSKit: A Substrate
for Kernel and Language Research. In Proceedings of the
16th ACM Symposium on Operating Systems Principles,
October 1997.

[5] Patrick Doyle and Tarek S. Abdelrahman. A Modular and
Extensible JVM Infrastructure. In proceedings of the 2nd
Java Virtual Machine Research and Technology Symposium
2002 (JVM'02), August 2002.

[6] Fabio Kon and Roy H. Campbell. Dependence Management
in Component-Based Distributed Systems. IEEE
Concurrency, 8(1):26-36, January-March 2002.

[7] CORBA. http://www.corba.org
[8] Don Box. Essential COM. Addison-Wesley, December

1997.
[9] Bill Venners. Inside The Java 2 Virtual Machine. MacGraw

Hill, 2000.
[10] Mario Wolczko. Benchmarking Java with the Richards

benchmark.
http://research.sun.com/people/mario/java_benchmarking/ri
chards/richards.html

[11] Gregory Bollella, James Gosling, Benjamin Brosgol, Peter
Dibble, Steve Furr, and Mark Turnbull. The Real-Time
Specification for Java. Addison-Wesley, 2000.

[12] ORBit. http://orbit-resource.sourceforge.net
[13] Stephen J. Garland, Nancy A. Lynch, and Mandana Vaziri.

IOA: A Language for Specifying, Programming, and
Validating Distributed Systems. MIT Laboratory for
Computer Science, October 2001.

[14] Vugranam C. Sreedhar. ACOEL on CORAL: A Component
Requirement and Abstraction Language. In OOPSLA
workshop on Specification of Component-Based Systems,
October 2001.

[15] Galen C. Hunt, James R. Larus, Martin Abadi, Mark Aiken,
Paul Barham, Manuel Fahndrich, Chris Hawblitzel Orion
Hodson, Steven Levi, Nick Murphy, Bjarne Steensgaard,
David Tarditi, Ted Wobber, and Brian Zill. An overview of
the Singularity project. Microsoft Research Technical
Report MSR-TR-2005-135, Microsoft Corporation, October
2005.

Hiroo Ishikawa received the B.S. and
M.S. degrees in Computer Science from
Waseda University in 2001 and 2003,
respectively. He have developed a reliable
operating system research at Waseda
University since 2004.

Tatsuo Nakajima is a professor of
Department of Computer Science and
Engineering in Waseda University. His
research interests are embedded systems ,
operating systems and ubiquitous
computing.

