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Summary 
Component software is a method to deal with the complexity of 
software structures and configurations.  Despite the increase of 
complexity in systems software such as operating systems and 
virtual machines, most of such software are configured under a 
traditional way i.e. C preprocessor directives.  This paper 
explores a component software tool.  We modularize an 
implementation of Java virtual machine with a component 
description language, called Knit. We show the difference 
between the original implementation and the modularized one.  
The modularization introduces little overhead despite the clearer 
view of its architecture.  Three case study on reconfiguration of 
our JVM implementation show the benefits and problems of 
current component software technology. 
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1. Introduction 

The complexity of systems software such as language 
runtime systems, operating systems has been increasing.  
For example, an operating system includes a lot of device 
drivers, different types of scheduling policies, memory 
management strategies, file systems and network protocols, 
and so forth.  Consequently, it is difficult for programmers 
to capture its structure for a short time.  They have to look 
though source code and identify the dependencies in it to 
apply another configuration or extend the functionality of 
a system.  This prevents a system from evolving over time.  
On the other hand, component software consists of 
software modules with well-defined interfaces, thus it is 
easier for programmers to configure or extend a system[1]. 
 
We explore the component software in the context of 
systems software.  While the notion of component 
software has been applied to many kinds of middleware 
and applications, it is less studied in the underlying 
systems software such as operating systems. 
 
The contribution of this paper consists of two folds.  First, 
we show tradeoffs in the component software.  While we 
divide an implementation of Java virtual machine (JVM) 
into components and rebuild a component-based JVM, we 

face on some tradeoffs in component software such as 
granularity of components and interfaces.  Second, we 
conduct a case study under three different configurations 
of the JVM.  The configurations are performed by 
replacing components with alternatives.  Our experience is 
summarized as lessons learned. 
 
We develop a component-based JVM, called Earl Gray, 
based on an open source JVM implementation for 
embedded systems, Wonka[2]. The components of Earl 
Gray are managed by a component description tool, 
Knit[3].  Using the component description language, the 
relationships between components and the structure of a 
system become clear so that a programmer can easily 
understand the relationships between functions of the JVM. 
 
We conduct a case study on the reconfiguration of Earl 
Gray.  The case study shows the implicit dependency 
between components, that is a kind of inter-component 
dependency that is not described in an interface of a 
component. 
 
The paper is structured as follows.  The next section 
describes the relate work to explore the context of our 
research.  Section 3 gives an introduction to the Knit 
component description language, which we adopted to 
construct our component-based JVM, called Earl Gray.  
Section 4 shows the design and implementation of Earl 
Gray.  Section 5 evaluates Earl Gray from the software 
engineering and performance viewpoints.  In Section 6, 
we conduct a case study on reconfiguration of Earl Gray.  
We enumerate the problems of component-based 
configuration in practice through three types of 
configurations.  The paper is concluded in Section 7. 

2. Related Work 

The idea of component software is adopted by several 
research-oriented systems software. They focus on the 
construction of component software or component models, 
while our research project addresses not only the 
construction issues, but also the configuration of a system 
in practice. 
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Knit is adopted for building the latest version of OSKit[4].  
The authors mentioned that Knit declarations for OSKit 
components revealed many properties and interactions 
among the components that a programmer would not have 
been able to learn from the documentation alone[3]. This 
is the same as our observation that a component-based 
system contributes the comprehensibility of a large system. 
 
Jupiter is a modular and extensible Java virtual machine 
(JVM) developed from scratch[5]. It focuses on scalability 
issues of the JVM for high-performance computing. The 
principle of design and implementation of modules make 
interfaces small and simple such that UNIX shells build 
complex command pipelines out of discrete programs. 
That principle facilitates to modification of JVM 
functionality. 
 
Kon and Campbell[6] proposed the inter-component 
dependency management by the human readable 
descriptions and event propagation mechanisms based on 
CORBA[7]. Hardware and software requirements are 
described in a file (e.g. machine type, native OS, minimum 
RAM size, CPU speed/share, file system, and window 
manager) with human readable descriptions. And inter-
component dependency is managed by the event 
propagation mechanisms with (un)hook and 
(un)registerClient methods.  However, these methods don't 
take into account of any component behaviors. 

3. Component Description 

Earl Gray components are defined by Knit component 
description language, which is developed by the Flux 
research group at University of Utah[3].  A component in 
Knit is a source level component.  The Knit compiler 
parses component descriptions and generates a set of 
Makefiles for building the source code, which is written in 
a programming language such as C.  This section 
introduces Knit for readers to understand the following 
sections. 
 
A component in Knit consists of a set of typed input ports 
and output ports. The advantage of this model is that a 
connection between two components is explicitly 
described outside the components.  Each port bundles 
some interfaces, and the interfaces are implemented by a 
set of functions written in C. The input ports of a 
component specify the services that the component 
requires, while the output ports specify the services that 
the component will provide.  An interface type consists of 
a set of methods, named constants, and the other interface 
types. A component in Knit is a black box component. The 

implementation of a component is hidden from other 
components. 
There are two types of components in Knit as shown in 
Figure 1 and 2. An atomic component is the smallest unit 
to compose programs, while a compound component 
consists of atomic components and/or other compound 
components. A system is structured by composing these 
two types of components. 
 

 

Fig 1. An example of atomic components. bundletype defines an 
interface of a component in which function names in C are described. The 
depends block indicates dependencies between interfaces in imports 
and that in exports. The files block indicates an implementation of 

the component. 

 

Fig 2. An example of compound components. A compound component 
includes the link block that explicitly connects atomic component and 
other compound components. MethodArea and Heap component is 

connected with thread interface from outside of Collector 
component. Malloc is an internal component of  

RuntimeMemoryArea component and it connects to Heap and 
MethodArea components. 

A components in Knit is a compile-time component. 
Components are statically combined into one executable 
binary after the compilation.  Unlike CORBA or COM[8], 
component binding at run-time is not supported by Knit. 
The advantage of Knit is to keep the system small without 

unit RuntimeMemoryArea = {  
  imports [ thread : Thread_T,  
            exception : Exception_T, 
            ... ];  
  exports [ gc : Collector_T,  
            method : Method_T, 
            ... ];  
  link { 
    [method] <- MethodArea 
    <- [thread,malloc,...]; 
    [gc] <- Heap 
    <- [except,thread,malloc,...];  
    [malloc] <- Malloc <- [];  
  } 
} 

bundletype Collector_T = { 
  gc_collect, 
  gc_create, 
    ... 
} 
 
unit Collector = { 
  imports [ heap : Memory_T ]; 
  exports [ gc : Collector_T ]; 
  depends { exports needs imports;}; 
  files { "src/heap/collector.c" } 
} 
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communication overhead among components, discovery 
and binding mechanism. The compilation of Knit is 
executed in the following way: (1) Knit compiler checks 
syntax and dependencies between ports.  (2) The compiler 
creates a rename table according to the link description 
in the compound components. (3) It compiles each 
component to a binary file by using GCC. (4) It renames 
entries in the symbol table in each object file according to 
the rename table created in (2). This is because Knit 
allows more than one components to be implemented the 
same interface. The compiler distinguishes components 
with the same interface by referring the renaming table. 
(5) The LD linker program links all object files into one 
executable program.  The implementation of an atomic 
component in Knit is written in C or assembly languages. 
The atomic component may consist of more than one 
source files written in C or assembly language. 

4. Design and Implemenation 

We have developed a component-based Java virtual 
machine, named Earl Gray, based on an open source JVM 
implementation, Wonka.  Wonka is an open source Java 
virtual machine implementation for embedded systems.  It 
supports the Java Virtual Machine specification provided 
by Sun Microsystems, Java 1.2 APIs with AWT, and 
several I/O devices such as RS232C ports. Earl Gray 
components are written in a component description 
language, Knit.  During the process of decomposition of 
the system, we had to make several decisions on 
component granularity, and component interface 
definitions. 

4.1 Architecture Overview 

Earl Gray is divided into three compound components, 
Kernel, Middleware, and VM, as shown in Figure 3.  
The kernel and the middleware components provide 
interfaces described in Knit to their upper layers.  The 
kernel component provides low level services such as 
thread management and memory management.  The 
middleware component provides common services for the 
VM component, such as string operations and network and 
serial port drivers. The VM component contains the basic 
functionality to implement Java virtual machine such as 
class loader, a runtime memory area, an execution engine, 
and native interfaces bridging to JavaAPI[9]. 

Runtime 
Memory AreaClass Loader Execution 

Engine Native Interface

Device DriversJava StringAbstract Data 
Types

Thread 
Synchronization 

Support

Memory 
Allocator

Thread 
Scheduler

VM

Middleware

Kernel

 

Fig 3. The architecture of Earl Gray 

4.2 Component Granularity 

The flexibility of the configuration of component software 
relies on the granularity of a component because the 
configuration is done by replacing, adding, or removing 
components.  To translate Wonka into Earl Gray 
components, we first identified its functionality so that 
each atomic component provides one functionality.  
Wonka is fortunately a well-structured implementation 
and we followed the structure at the design level. 
 
The granularity of compound components varies 
depending on their functionality. For example, the native 
library component is the largest component of Earl Gray, 
because it includes many components implementing Java 
API. On the other hand, the Class Loader component 
contains only four atomic components. 

4.3 Component Interface 

A component interface is a definition of an end point 
which other components connect to and communicate with.  
Port is an instance of the component interface.  The 
number of links among ports depends on how many ports 
each component provides.  The ports are classified into 
two types, input ports and output ports.  Components are 
explicitly composed by connecting an input port and an 
output port by a connector.  This approach makes the 
system architecture clearer than the original source code.  
For example, it is difficult to understand the relationship 
among the functions without examining all source code 
files of usual C programs.  However, it is much easier to 
understand the relationship among components by 
examining component description files. 
 
In our design, an atomic component offers only one 
interface to make an atomic component as simple as 
possible in order to clearly separate the roles of atomic 
components and compound components.  If a component 
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needs to offer two interfaces, we decompose the 
component into two atomic components, and create a 
compound component from the two atomic components.  
For example, Runtime Memory Area component 
consists of two atomic components, the heap component 
and the method area component.  The heap and method 
area components provide Collector_T and 
MethodArea_T  interfaces respectively. 

4.4 Implementation 

Earl Gray supports Java Virtual Machine Specification 
provided by Sun Microsystems, Java 1.2 APIs, and several 
I/O devices such as RS232C ports. It does not support JIT 
(just-in-time) compilation. The current version of Earl 
Gray runs on Linux for the Intel x86 family processors. 
Knit allows an atomic component to be implemented in 
more than one files, but we defined an atomic component 
consists of only one file to avoid a dependency problem 
within an atomic component.  Most of its implementation 
files (i.e. .c files) are individually wrapped by an atomic 
component. 
 
In the current implementation, the kernel component 
contains 16 atomic components and 1 compound 
component when the default scheduler is selected. The 
middleware component contains 25 atomic components 
and 3 compound components. Lastly, the VM component 
contains 108 atomic components and 8 compound 
components. All the atomic components are described in 
Knit and implemented in C. 

5. Evaluation 

This section compares Earl Gray with Wonka which is the 
original JVM of Earl Gray in terms of program size and 
performance.  Despite using Knit, Earl Gray is as almost 
same size and performance as Wonka.  Each JVM is 
compiled by GCC version 2.95 with -O6 option without 
any debugging options, and doesn't include JIT compiler 
nor AWT support. 

5.1 Program Size 

The sizes of each JVM are very close (Table 1).  We 
stripped out the symbol information of them.  The 
component descriptions are dealt with in order to check 
the connections among components and rename the 
symbol tables.  Thus, the descriptions are not compiled 
into the binary file. Earl Gray is 128byte bigger than 
Wonka.  This is because Knit generates additional files in 
order to initialize and finalize the program. 
 

Table 1. Size comparison between Earl Gray and Wonka 
Program Size (byte) 
Earl Gray 567496 
Wonka 567 368 

5.2 Performance 

The performance of Earl Gray is measured by the 
Richards and DeltaBlue benchmarks[10]. The Richards is 
a medium-sized language benchmark that simulates the 
task dispatcher of an operating system kernel.  The 
DeltaBlue is a constraint solver benchmark.  We compare 
the result of the benchmarks on EarlGray to that of Wonka. 

Table 2. Performance evaluation (execution time) 
Benchmarks Wonka Earl Gray
richards_gibbons 198ms 198ms
richards_gibbons_final 195ms 195ms
richards_gibbons_no_switch 231ms 231ms
richards_deutsch_no_acc 322ms 321ms
richards_deutsch_acc_final 700ms 697ms
richards_deutsch_acc_virtual 700ms 700ms
richards_deutsch_acc_interface 755ms 753ms
DeltaBlue 87ms 88ms

 
Table 1 shows the results of the benchmarks on Earl Gray 
and Wonka. All benchmarks were measured on a 1.2GHz 
Pentium III with 1024MB of RAM running Linux version 
2.4.20.  The result is reported by using the benchmark 
programs themselves. Therefore, the time for JVM 
initialization is excluded from the results. Each result is 
the average of 100 times benchmarking. 
 
There are a few differences between Earl Gray and Wonka.  
This is because the relocation policy of Knit is different 
from the normal build process.  The atomic components in 
the same compound component are placed closely in the 
executable file, which is not the case for the normal build 
process. 

6. Case Study 

The case study shows Earl Gray under three different 
configurations.  The configurations are done at 
component-level.  In other words, when we add a new 
functionality to Earl Gray, we don't extend the existing 
component, but we developed an alternative component.  
The case study shows the side effect of the configurations.  
We expect the system consistency is kept as far as we 
satisfy the dependency at the component interface level.  
However, we found another kind of inter-component 
dependency, that we call implicit dependency. 
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In this section, we examine the following three 
configurations: 
 
Using a platform functionality: Replacing the default 
scheduler involved in Earl Gray with a scheduler provided 
by a host operating system. 
 
Using a remotely available resource: Replacing the default 
bytecode verifier with a bytecode verifier executed in a 
remote machine. 
 
Adding a new feature: Adding scoped memory, that is one 
of the features described in the Real-time Specification for 
Java[11], to Earl Gray. 

6.1 Using a Platform Functionality 

This experiments aims at changing a system to use 
alternative functionality provided by its underlying 
platform, instead of ones included originally.  This change 
is realized by replacing components.  This experiment 
changes a scheduler component and investigates the effect 
of the change to the entire virtual machine. 

6.1.1 Implementation 

We replaced the thread scheduler component in the kernel 
component.  Similar to a user-level thread library, the 
original thread scheduler of Earl Gray includes a thread 
dispatcher mechanism that runs as a single Linux thread.  
The alternative thread scheduler does not include a thread 
dispatcher mechanism, but maps each Java thread to a 
pthread. This change takes a scheduler mechanism away 
from Earl Gray, and the Linux kernel schedules the Java 
threads on behalf of it.  The monitor and mutex 
components in the thread synchronization support 
component are also replaced. 
 
As a result of direct mapping to the scheduler provided by 
the host operating system, the number of components in 
the kernel component was decreased from 21 to 13. The 
number of components of the kernel component are 
originally 17 core components and 4 sub components.  
The 8 components out of 17 core components are used 
only inside of the kernel component. They contain 
mechanisms for thread management such as interrupt 
handling, timer, generating random number, and so on.  
The direct mapping implementation does not need these 
implementations.  The remaining 9 components are still 
used when the new scheduler component is selected. 
 
Since the kernel component is completely separated from 
other components, the new implementation does not affect 
other components from the architectural point of view. 

6.1.2 Implicit Dependency on the Scheduling Policy 

We observed that Earl Gray with the alternative thread 
scheduler component was terminated unexpectedly.  A 
race condition occurred in a component for ZIP file 
decompression (JAR file format is a superset of ZIP file 
format).  The component called Deflate Driver  
didn't acquire a mutex to access to the fraction of a JAR 
file, which was supposed to be a critical region. 
 
The original implementation assumes that the scheduler is 
not preemptive. Therefore, the queue structure in the 
Deflate Driver component does not need to be protected 
from concurrent accesses while accessing it. However, 
Linux kernel threads are preemptive, thus we need to use 
mutex variables to protect the queue. Moreover, adding 
critical sections requires the initialization of the mutex 
variables, and this requires to modify the initialization 
component. 

6.2 Using a Remotely Available Resource 

The second experiment changes a system to use 
components on a remote machine, instead of ones on the 
local machine, assuming load balancing.  We investigate 
on the difference between a local component and a remote 
component, and the effect of the replacement. 
 
A bytecode verifier is replaced for the experiment.  A 
bytecode verifier generates an exception when it detects an 
invalid bytecode sequence. In the case of a remote 
bytecode verifier, the exceptions have to be invoked not 
only by invalid bytecode sequence, but also by network 
errors. The remote bytecode verifier requires a virtual 
machine to manage the exceptions raised by network 
errors in addition to the default exceptions. 

6.2.1 Implementation 

The remote bytecode verifier consists of two components, 
a stub component and a remote verifier component. The 
VM component requires a component providing the 
service with the Verifier_T interface.  The original 
verifier component, which runs on local, implements the 
Verifier_T interface. 
 
The stub component provides the same interface as the 
local bytecode verifier component. Therefore, the default 
verifier can be replaced by the remote bytecode verifier 
without modifying the other components. 
 
The remote bytecode verifier communicates with the stub 
component by using the remote procedure call (RPC). We 
have adopted ORBit[12], which is one of the CORBA 
implementations, as an RPC mechanism. 
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6.2.2 Implicit Component Behavior 

Since the alternative verifier component is located on a 
remote machine, we have to consider the effect of the 
network connection between Earl Gray and the verifier 
component.  The original verifier component is composed 
within Earl Gray statically, thus it returns the result 
immediately after finishing verification and the behavior 
of the verifier component is defined as verifying bytecode 
sequences. In the case of using the remote bytecode 
verifier component, however, it is unsure whether the 
result of verification is returned immediately after the 
verification. 
 
The problem here is that it is impossible for the current 
component interfaces to restrict the implementation of 
them.  The original components cannot handle the remote 
extension properly.  The Verify_T interface includes a 
function that generates an instance of 
java.lang.VerifyError, which is thrown when the 
verifier detects the inconsistency of bytecode. The 
interface does not include any other functions that handle 
network errors. Thus, the system cannot detect any 
network errors related to the remote bytecode verifier with 
the original interface. 

6.3 Adding a New Feature 

We examine how to extend a component-based system 
here.  Comparing to replacing components, extending the 
structure may require changes in the existing interfaces.  
We investigate on the effect of adding a new component 
through this subsection. 

6.3.1 Implementation 

The scoped memory support is added to Earl Gray.  The 
scoped memory is one of the features described in Real-
time Specification for Java[11]. The scoped memory 
enables an application to deallocate memory area 
explicitly when a program exits from the current scope. 
For example, if a method allocates a local (within the 
method) instance in the scoped memory area, the scoped 
memory feature makes sure that the instance is deallocated 
when the method is returned. In other words, instances in 
the scoped memory area are never collected by the 
garbage collector, instead, applications need to manage 
memory allocation and deallocation explicitly. 
 
The scoped memory feature is implemented in two 
components. One is a scoped memory allocator 
component.  This component has its own memory area in 
order to allocate scoped objects, while the default allocator 
instantiates objects on the heap and then registers them to 

the garbage collector. The other component provides the 
native interface for Java real-time APIs. 

6.3.2 Extending the Core of the System 

The implementation of the scoped memory API requires 
the thread structure to be extended to store a pointer to the 
scoped memory area.  The specification defines that a 
scoped memory area is bound to a thread and destroyed 
when the thread is terminated. 
 
The extension of the thread data structure did not affect to 
the other components. However, the modification of a data 
structure might affect the implementation of the other 
components because the memory layout is changed if the 
data structure is modified. This causes a chain of the 
modifications of components. 

6.4 Discussions 

The series of the experiments have shown the implicit 
dependencies among components due to the limitation of 
the current component interface descriptions;  The current 
component interfaces cannot represent the component 
behavior.  Consequently another method is required to 
specified the behavior. 
 
The following sentences summarize the implicit 
dependencies described in those experiments. 
 
• A critical section in the decompressor component 

depends on the original scheduler, thus a race 
condition occurs with a new scheduler component. 
This dependency is completely implicit. That is to say, 
the dependency is not appeared until the system is 
built and runs. 

 
• The behavior of components that invokes bytecode 

verifiers depends on whether the bytecode verifier 
runs on local or remote. A stub component allows us 
to replace from a local one to a remote one in a simple 
way. However, the networked components have to be 
taken into account of response delay and exceptions 
due to the network faults. 

 
• The scoped memory manager component depends on 

several other components. A programmer needs to 
understand the internal of the components, and the 
side effects of the extension at the same time. 

 
The result of the case study indicates the existence of 
behavioral dependencies among components, despite a 
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component is generally defined as a unit of independent 
deployment. The number of software components will be 
increased much more, and the constraints for deploying 
components will become stricter.  The behavioral 
dependencies have to be considered to build a component-
based system in a correct way. 
 
Component behavior should be taken into account when 
building component-based systems, since the behavior 
causes the inter-component dependency that may prevent 
the component-based system from configuring in a 
flexible way.  Currently, we are designing a new 
component framework to allow us to specify implicit 
dependencies among components by representing the 
behavior of components explicitly such as IOA[13], 
CORAL[14] and Sing#[15]. 

7. Conclusion 

Component software is an important notion to deal with 
the complexity of a system.  It is expected to enhance easy 
reconfigurations, component reuse, etc.  This papers 
explores component software in the context of systems 
software such as language runtime and operating systems, 
by implementing and reconfiguring a component-based 
Java virtual machine, called Earl Gray.  While a 
component description we used provided us a 
comprehensive view of the entire structure of JVM 
without any serious overhead of size and performance, we 
encountered the implicit inter-component dependencies 
which cause unexpected behavior of a system.  This is 
because the current component description focuses on the 
interfaces of components.  Our experiments have shown 
that the behavioral description of a component is 
necessary. 
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