
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

104

Manuscript received July 5, 2008.
Manuscript revised July 20, 2008.

UML Modeling of Embedded Database through C++

Dr. Vipin Saxena† and Deepak Arora††,

Department of Computer Science, B.B. Ambedkar University (A Central University), Vidya Vihar Rae Bareli Road,
Lucknow U.P. 226025, India

Summary
Today in the market we find large number of database
applications designed according to the need of individual user. A
database needs to be fast and reliable, besides that it should be
compact and portable too. Nowadays devices require some new
kind of databases which consume less amount of memory and
can be installed easily on devices such as on mobile phones,
PDAs, set-top boxes and automotives, etc. It should be design to
use available resources, in an efficient way. These requirements
lead the developers towards the concept of Embedded Database.
In this paper authors have given the design of Embedded
Database through a well known modeling language i.e. Unified
Modeling Language (UML). Authors have also given a case
study of development of prototype for Embedded Database
Management System, implemented using C++ programming
language. Authors have tested the performance of developed
prototype and also reported the test result in this paper.
Key words:
UML class diagram, UML sequence diagram, Embedded
Database, C++

1. Introduction

The Embedded Database is installed as a software
component, with any application and that application can
invoke all the operation on Embedded Database. The
embedding of an Embedded Database can be done within
an application either by writing in-line code or by
providing linked libraries along with, unlike the traditional
general-purpose enterprise relational databases, which
normally run as the separate and independent applications
such as Oracle, DB2, and SQL Server etc. Another
important aspect of Embedded Database is to free users
and administrators from time-consuming installations and
maintenance work, as the Embedded Databases are easy to
install and maintain.

There is lot of research work on Unified Modeling
Language (UML) has been done related to the various
database technologies, few of them regarding Embedded
Database development, developed by Booch [1], is the
most suitable visual presentation platform for modeling
the real word problems. OMG [2, 3] describe the latest
UML specifications related to real world, modeling
aspects, the way of representation for XML metadata

specification in UML diagrams and the standard storage
representations through the Unified Modeling Language.
Pllana and Fahringer [4] suggested UML profiles, through
which one can model the high performance oriented
applications. Chen, R. et al. [5] defines a new UML profile
called UML platform, through which one can model the
embedded system platform. They have also proposed a set
of new building blocks, stereotypes for the representation
of specific platform and its services. Martin, G. [6] has
defined the nature of the embedded systems and real time
embedded system design methodology requirements. Also
suggested the important extensions required in UML, so
that one can better understand the hidden issues about real
time embedded system design. Kukkala, P. et al. [7] have
introduced a new UML 2.0 profile called TUT-Profile,
having a set of stereotypes, new platform components and
design rules for embedded system design. Through TUT-
Profile, one can establish the mapping between application
and platform description for the system. McUmber, W.E.
et al. [8], developed a framework to define the VHDL
specifications, which is IEEE adopted language used for
describing digital electronic hardware system, with the
help of class and state diagrams. They have established the
homomorphism between VHDL and UML diagrams. This
makes us capable, to understand the behavioural aspect of
any embedded systems. Lu, S. et al. [9] has combined the
Model Driven Architecture with UML models for
developing the software for embedded real time systems.
They also performed mapping from platform independent
model to platform specific model of an embedded real
time systems. Wehrmeister, M. A. et al. [10] introduced
the platform-based object oriented design methodology,
through which one can easily understand the design aspect
of any embedded real time system. One more important
reference, regarding mobile Embedded Database is from
Zhang, X. et al. [11]. They have proposed a mobile
Embedded Database along with its three-layer architecture,
in which the top layer is for embedded mobile database,
middle one is for synchronization server and the bottom is
for background multi-user database system server.

One of the important performance criteria of any
Embedded Database Management System is the access
time for manipulation of data. Since Embedded Database
Management System consists of a very large number of

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

105

complex utilities, it is extremely difficult to build it using
assembly language, through which, one can achieve fast
response time but it would cause a system to be very much
machine dependent. For attaining a good speed and at the
same time insuring portability, C++ programming
language is selected by the authors for developing such a
system. Well-written C++ program tends to match
assembly language in terms of speed of obviating the need
for going into lower languages and additionally portability
is also ensured. In this paper authors have used the
concept of linked libraries which provide all features of
database. By using it any user can easily embed the coding
written for accessing the Embedded Database, in any C++
program. Authors have given the UML Use Case, Class
Diagram and Sequence Diagram and discuss a case study
of a prototype development of Embedded Database
Management System. Authors have tested the query
performance of this prototype and test results are
mentioned in the paper.

2. Background

The perception of front end and back end is very common
to the existing database technologies, is also used in the
proposed Embedded Database Management System. In
this programmer or the user is provided with a data
definition writing tool that helps programmer in
performing complete database operations like writing
database definitions, table structures, indexes and record
insertion. Also the user is provided some linked libraries
along with, through which the embedding of code can be
done in a normal programming language, for accessing
and manipulating the database, created with the help of
aforesaid tool.

2.1 Objective of Proposed Embedded Database

The objective of the proposed Embedded Database is to
provide a convenient and effective method of defining and
retrieving the information contained in database, by
providing libraries of functions, which can be used to
manipulate the data in an efficient manner. The objectives
of proposed Embedded Database can be more magnify by
following points:

 To provide a user interface (Database

Management Utility) for creation of databases,
tables, indexes and handle the constraints applied
on tables.

 To provide a user interface for record insertion in
table.

 To provide proper management of indexes.
 To provide a mechanism for deletion of databases,

tables.

 To provide a mechanism for viewing records
modification of table structures.

 To provide a mechanism for creation of user
defined data-types.

 To provide password management.
 To provide database backup & recovery.

2.2 Features of Proposed Embedded Database

 Data independence allows dynamic changes and
growth potential.

 Data duplication elimination with controlled
redundancy.

 Enhanced data accessing.
 Security enforcement.

2.3 Advantages of Proposed Embedded Database

 The Embedded Database needs no any third party
database tool for manipulations regarding data.

 For accessing data there is no need of any driver
for establishing compatibility between database
(back end) and the program (front end) written
for accessing the database.

 Embedding can be done in any normal C++
program, gives the portability aspect with less
consumption of memory, facilitates it with the
efficient data fetching along with data security.

A programmer can include the libraries provided with
Embedded Database in a normal fashion as programmer
includes other header file in his program. Inclusion of the
header file doesn’t mean that user is capable to operate
any type of operation on any table which are included in
this database, besides that user has to establish the
connection to the Embedded Database by calling the
connect function along with a valid authentication identity.
User can access only those tables, which are contained in
the included database, not others. To perform any type of
operation on the particular table, the table has to be
opened first.

After opening the table the user will get all the rights to
take the full advantages of Embedded Database features
provide by the database and the libraries. Now user can
easily get all the structure variables defined at the time of
the creation of the objects like tables in the database using
data definition tool.

3. UML Modeling

The considered key design issues related to proposed
Embedded Database through UML are as follows,

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

106

3.1 Backend Support

The data definition tool or database management utility is
a menu-based program, in which there is no need to write
any complicated commands and syntaxes. Selection of
particular choice is enough to accomplish the specified
operation. Also the data definition tool will be protected
by the encrypted password security. The tool is capable to
open one database at a time but at the same time it can
access more than one table, exists in that opened database.

Database can be created after selecting the “New
Database” option from the database window. Once the
database is created, any one can easily create the tables in
this database. The system will also ensure that no user can
access the tables or other objects in the database without
giving the valid authentication identity, provides a
completely secured access to the Embedded Database.

Index can be created for one or more than field for any
table and for this purpose, a separate file having “.idx”
extension has to be created. Structure of any particular
table and available records can be viewed very easily by
selecting the table name. Creation of user defined data
type can also be possible. Moreover the indexes are self-
updated at the time of database start-up.

3.2 Embedding of Code

The embedding of code for accessing the Embedded
Database through any program can be done as follows:

 To access the structure variable “name” of table
“employee” of “payroll” database programmer
can write the command like,

cout<<payroll.employee.RecordSet.name;
or
strcpy(emp_name,payroll.employee.RecordSet.na
me);
cout<<emp_name;
Here emp_name can be any local variable in the
program.

 To save the record in any particular table user has

to place the required value in the available
structure variables by using commands like above,
and to save the record, user has to call the inbuilt
function like,
strcpy(payroll.employee.RecordSet.name,emp_na
me);

 payroll.employee.saveRecord();

 To traverse all records in any table, programmer
can use simple commands, are given below,

payroll.employee.movefirst()
while !payroll.employee.eof()
{
cout<<payroll.employee.RecordSet.name;
payroll.employee.moveNext();
 }

 If user opens the index file of any table then

database provides the whole record set in the
indexed order according to specified field in the
table.

 If user wants to delete any table from the
database one can write the command like,

payroll.dropTable(“employee”);

3.1 Data Integrity

Constraints can be defined on data in a table to ensure the
integrity by means of indexes. Database integrity can be
enforced, by specifying the constraints at the time of table
creation using data definition tool. These constraints are
called declarative Embedded Database integrity constrains,
are given below:

I. Unique constraints

Ensures uniqueness that no two rows have the same values
in the same specified column(s).

II. Primary Key

Avoids duplication of row and does not allow Null values,
when enforced on a table.

III. Null Values

Ensures that Embedded Database table can’t accept blank
value in the specified field.

IV. Default Value

A default value can be specified for a column in the table.

V. Check Constraints

It specifies the data range that can be inserted into a
column of a table.

The class diagram for the Table, Database and
Recordset_Base are given below in Fig. 1(a), Fig. 1(b) and
Fig. 1 (c) respectively.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

107

T a b le

l i s t : s t r u c tu r e
t b : s t r u c t u r e
t b _ s t r u c t : s t r u c tu r e
in d e x l i s t : s t r u c tu r e
r e c o r d L e n g t h : in t e g e r
r e c o r d C o u n t : in t e g e r
in d e x f ie ld n o : I n te g e r
in d e x f ie ld s iz e : i n te g e r

v o id c le a r ()
v o id a d d r e c o r d ()
v o id c r e a te ()
v o id d is p la y R e c o r d ()
v o id d e s c ()
v o id D e le te R e c o r d ()
v o id e m b e d e d _ C la s s _ S t r u c t u r e ()
v o id e m b e d e d _ D a t a b a s e _ S t r u c t u r e ()
v o id f ie ld F o r I n d e x ()
v o id f e t c h F r e s h R e c o r d s ()
in t f in d C o d e ()
in t f in d C o d e 1 (in t c h e c k e m p ty)
v o id f e t c h R e c o r d ()
v o id i n d e x F e t c h R e c o r d ()
v o id i n d e x E n t r y (c h a r * s t r)
v o id i n d e x E n t r y (in t s t r)
v o id i n d e x E n t r y (f lo a t s t r)
v o id i n d e x E n t r y (d o u b le s t r)
v o id i n d e x E n t r y (lo n g s t r)
v o id l i s t t a b le ()
v o id l i s t d a t a ()
v o id m a k e I n d e x ()
v o id m o d i f y ()
v o id n e w T a b le ()
v o id p r in th e a d s ()
in t p r im a r y K e y C h e c k (c h a r * s t r)
in t p r im a r y K e y C h e c k (in t s t r)
in t p r im a r y K e y C h e c k (f lo a t s t r)
in t p r im a r y K e y C h e c k (lo n g s t r)
in t p r im a r y K e y C h e c k (d o u b le s t r)
in t r a n g e C h e c k (in t s t r)
in t r a n g e C h e c k (f lo a t s t r)
in t r a n g e C h e c k (lo n g s t r)
in t r a n g e C h e c k (d o u b le s t r)
v o id s t r u c t u r e s c r e e n ()
v o id s o r t I n d e x l i s t ()
v o id t a b le O p e n ()
v o id u p d a te I n d e x ()
v o id w r i t e F r e s h R e c o r d s ()

Fig. 1(a) Class diagram for Table

Databse

db: structure
fp: pointer
int open()
v oid newDatabase()
v oid listdata()
v oid changePasswd()
int dbaO pen()
int dbapass()

Fig. 1(b) Class diagram for Database

Recordset_Base

file: pointer
tab: pointer

int recordLength;
int recordCount;
int recordNum ber;
int bof;
int eof;
int Error;
int fileCheck(char *f ileNam e)
int open(char *fileNam e)
int saveRecord()
int refreshRecord()
int m oveLast()
int m ovePrev ious()
int m oveNext()

Fig. 1(c) Class diagram for Recordset_Base

Table class is responsible not only for the management of
records and indexes but also for generating embedded
class definitions, which include all the databases and table
definitions defined by the user created with the help of
data definition tool. This will help to implement the
embedding feature of Embedded Database, in any normal
C++ program, through which one can embed the code for
accessing the data from Embedded Database, within a
normal programming.

Fig. 2 Single and multiple instance of Table class

Embedded Database can open multiple tables at a time.
Single and multiple instance of table class are shown in
Fig. 2. Here Recordset_Base class is responsible for
providing all the necessary library functions through
which a programmer or user can manipulate the
Embedded Database records.

Fig. 3 Communication between program and embedded database

In Fig. 3, one can see that there is one-to-one
correspondence between the program and Embedded
Database. Code embedded for accessing the records, when

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

108

executed, submits the query to the Embedded Database
and accordingly Embedded Database responses. Screen

class is shown in Fig. 4, which is responsible for
managing all the display activities required by the data
definition tool like display of window (DOS based)
creation, menu creation and all the basic controls like
combo box, list box and scroll bars related operations.

Screen_Capture

buffer: character
void saveScreen()
void restoreScreen()

Fig. 5 Class Diagram for Screen_Capture

Screen_Capture class shown in Fig. 5 will incorporate the
saving and restoring the graphical sessions to avoid
flickering during the change of subsequent screen. Here
Screen class is managing all the display activities in text
mode not in graphical mode, designed for less memory
requirements.

4. A Case Study: Design of Proposed
Embedded Database System

For showing the issues related to the design of proposed
Embedded Database, authors have given a case study of
development of an Embedded Database prototype using
C++ programming language. The UML use case diagram
for the developed prototype is given in Fig. 6. There are

three actors exist in the system, DBA, USER and C++
Program. One can see the use case diagram that the use

case “Create Table” further includes the other use cases
like Create Structure, Create Index and Create Embedded
Table, Create Embedded Database class definitions.

Fig. 6 Use case diagram for embedded database prototype

Fig. 4 Class diagram for Screen

S cre en

b lack : S c reen _C ap tu re
v o id sta rtD a ta base ()
v o id say (ch a r *m s,in t rw ,in t c l)
v o id accep t(cha r *str, in t row ,in t co l, in t sho w ,in t te x tba ck)
in t m en u (cha r tx [][40],in t no e ,in t rw ,in t c l, in t de fch= 1)
in t ra d iobu tton (cha r tx [][40], in t no e ,in t tx tco lo r,in t tx tback ,in t po in tco lo r,in t rw ,in t
 c l, in t de fch= 1)
in t b u tton (in t r, in t c ,cha r *ch ,in t w indo w bkco lo r, in t b u ttonbkco lo r, in t f lag)
v o id sc ro llba r(in t rw ,in t c l, in t n oe ,in t pos)
in t m en usp (cha r tx [][40],in t no e ,in t rw ,in t c l, in t s ize= -1)
in t w indow (in t row 1 ,in t co l1 ,in t ro w 2 ,in t co l2 ,in t w ind ow sty le ,in t sh ade ,in t
 se lec tion ,in t n oe ,cha r a rray [][4 0], in t b kco lo r, in t bo rd e rco lo r, in t head bkco lo r, in t
 he ad frco lo r,cha r *head m sg ,in t ins idem sgco lo r,ch a r *ins ide m sg ,in t f tbkco lo r, in t
 f t f rco lo r,cha r *f tm sg ,cha r *f tp ,ch a r *str, in t te x tb kco lo r, in t w indo w f lag ,in t
 bu tton co lo r= R E D)
v o id e rro r(in t e rno)
cha r *co rrec t(ch a r *str)
in t com bobox (ch a r tx [][40], in t noe ,in t rw ,in t c l)
v o id accep tp ro (cha r *str, in t row ,in t co l)
cha r *rec_a ccep t(in t row ,in t co l,in t f ie ld_ type ,in t f ie ld_size ,ch a r a llow nu ll)
v o id m a inM en u(in t rw ,in t co l,in t n oe)
v o id bo x (ch a r bc ,in t r1 ,in t c1 ,in t r2 ,in t c2)
v o id co v e rsc reen ()
v o id he ad ing ()
in t ca lend e r()
v o id asc ii()

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

109

This will complete the create table use case executed by
DBA. DBA has right to perform all the cases of USER,
whereas the USER is abstained by some cases, which

includes data definition like activities like Database and
Table creation, can be performed by DBA only. The actor

C++ Program is designed to act on Access Embedded
Database, Access Embedded Tables and Access Records,
like use cases.

In this, one can say that this system represents two levels
for accessing the database and its functionality. DBA is
responsible for creating database and tables while user not,
except that user is entitle to access and manipulate the
records in the tables as needed.

The class diagram for Embedded Database is given in Fig.
7. Here Database class is responsible for the creation of
database and giving access to the database created. More
than one table can be created in a database and Database
class will interact with the Table class for accessing the
table’s structure information and records contained. Table
class is responsible for the creation of indexes,
maintaining table structure information, writing embedded
class definitions for the databases and tables created.

The generated embedded class definitions,
Embedded_Table and Embedded_database will facilitate
the creation of record set and accessing the records from
the needed table within any C++ program. Also the
Recordset_Base class will interact with the Table class, so
that the records can be accessed and navigated in an
efficient way. The Screen class will interact with table and
database class directly for providing graphical user
interface to the data definition tool, through which user or
DBA can perform all the necessary operation on the

Fig. 7 Class diagram for embedded database

Fig. 8 Sequence diagram of embedded database

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

110

Embedded Database.

The sequence diagram represents the scenario for
accessing the Embedded Database through C++ program,
which is shown below in Fig. 8. In this diagram one can
see that how the objects are getting communicated and
what are the messages are passed during the execution of
C++ program for accessing the Embedded Database, for
which the embedding was done. One can initialize the
Embedded_Database object created by the system, acts as
container object for the table objects, contained in it. The
initialization of Embedded_Database object will cause the
container Embedded_Table objects initialization too.
When initialization of Embedded_Database completes,
then record set creation will start.

The Recordset_Base object will retrieve the records from
Table object in to the structure specified by the
Embedded_Table definition. The created record set base
object will be assigned to the caller C++ program along
with end of file (EOF) and beginning of file (BOF) marker.
Now fetching of records from Embedded_Database will
start. From calling move next operation, one can easily
navigate the complete record set and access all the records.
Embedded_Table can be closed, by passing close message
to Embedded_Table object, and now a close record set
message will also send to the record set base by
Embedded_Table object. This will close the
Embedded_Table object. When C++ program finishes, it
will send the close message to the Embedded_Database.

5. Queries and Performance Evaluation

The above design of Embedded Database system is easy to
use and portable. The developed prototype supports the
conventional method of accessing the records from any
database management system. It consumes less efforts of
writing code and gives higher degree of easiness to the
programmers and its users. The code written for accessing
the records is more understandable and consumes less
record fetching cycles.

In the Fig. 9, a sample code segment shows that how one
can embed the system generated class definitions for
accessing the desired Embedded Database, through a
normal C++ program. Here authors have taken a sample
database named “demo”, created with data definition tool
by the DBA. This “demo” database contains a table
“employee”, which has some sample records entered by
the user. The creation of table “employee” and sample
records are inserted with the help of data definition tool
performed by the DBA and USER respectively. This code
is written for printing of all the records exist in
“employee” table one by one. To access and navigate the
records contained in the table, one must have inclusion of
a library of record set related functions, called “dbutil.edc”
in the C++ program, which contains the functions like
open Table(), moveNext(), movePrev(), closeTable() etc.
The code segment depicted in Fig. 9 also has an inclusion
of the file “demo.db”, which is a system generated file,
contains all the embedded class definitions related to the
“employee” table and an object of the container database
“demo”, shown in Fig. 10. The system generated

#include"dbutil.edc"
#include"demo.db"
#include<conio.h>
void main()
{
demo.openTable("employee");
while(demo.employee.eof==FALSE)
{
 clrscr();
 cout<<"Detail of Employees \n";
 cout<<"--------------------\n";
 cout<<"\n\n\n";
 cout<<"Total Records : "<<demo.employee.recordCount<<endl;
 cout<<"==\n";
 cout<<"Record Number : "<<demo.employee.recordNumber<<endl;
 cout<<"Employee Code : "<<demo.employee.RecordSet.emp_code<<endl;
 cout<<"Employee Name : "<<demo.employee.RecordSet.emp_name<<endl;
 cout<<"Employee Address : "<<demo.employee.RecordSet.emp_address<<endl;
 cout<<"Employee Salary : "<<demo.employee.RecordSet.salary<<endl;
 cout<<"PF Deduction : "<<demo.employee.RecordSet.pf<<endl;
 cout<<"\n\n\n";
 cout<<"Press any key to resume";
 getch();
 demo.employee.moveNext();
}
demo.closeTable("employee");
getch();
}

Fig. 9 Code segment shows the implementation of embedding feature

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

111

embedded class definitions written in “demo.db”, is
responsible for giving access to the database and tables
contained in it, as desired by the user. The output
generated from the execution of code segment given in Fig.
9, is shown in Fig. 11.
 struct s001 { int isDeleted;char emp_code [6];char

emp_name [30];char emp_address [40];float salary;
int pf; };
class t001 :public RecordSetBase
{
 public:
 s001 RecordSet;
 void open(char *fileName)
 {
 RecordSetBase::tab=&RecordSet;
 RecordSetBase::recordLength=sizeof(RecordSet);
 RecordSetBase::open(fileName);
 }
};
class DB001
{
 public:
 t001 employee;
 void openTable(char *file)
 {
 if(strcmp(file,"employee")==0)
 employee.open("employee");
 }
 void closeTable(char *file)
 {
 if(strcmp(file,"employee")==0)
 employee.close();
 }

};
DB001 demo;

Fig. 10 System generated embedded class definitions

Fig. 11 Output of code segment given in Fig. 9

The prototype is developed, using C++ programming
language and is based on binary file system. There is no
graphical initialization used in the system, in spite of
simple text based graphical user interface is provided to
the users, result into faster response by the side of
database. The Databases, Tables, Indexes, Table
Structures and embedded class definitions, all uses binary
file system, which provides the reliability and security and
fast record accessibility like features to the system.

The Authors have also evaluated the performance of
Embedded Database prototype and found it, satisfactory.
Fig. 12 shows the test results and authors have measured
the performance by assigning various tasks and calculate
the time interval between the submission and competition
of that task to the system. Testing is done on a low
configuration node, and the performance will be higher on
a high configuration node.

Also the security is a very important aspect for any
Embedded Database Management System. System is
equipped with encrypted password securities for the DBA
as well as its users. In case of improper shut down, the
Embedded Database Management System auto recovers
and updates the required items.

Embedded Database Management System
Query Performance Evaluation

1.152

0.809

0.587

0.073

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

R
ec

or
d

Se
t I

ni
tia

liz
at

io
n

Ac
ce

ss
in

g
Fi

rs
t R

ec
or

d

R
ec

or
d

Se
t O

pe
ni

ng
 a

nd
 C

lo
si

ng

Sw
itc

hi
ng

 B
et

w
ee

n
Tw

o
C

on
se

cu
tiv

e
R

ec
or

ds

Task Performed

A
ve

ra
ge

 T
im

e
(m

ic
ro

 s
ec

on
ds

)

Fig. 12 Query performance evaluation of embedded database prototype

Following are few output screens of Database
Management Utility, of developed prototype of Embedded
Database prototype, shown from Fig. 13 to Fig. 20:

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

112

Fig. 13 Login window

 Fig. 14 Task menu

Fig. 15 Table structure creation utility

Fig. 16 Table structure view utility

 Fig. 17 Record insertion utility

Fig. 18 Constraint violation message

Fig. 19 Record-viewing utility

Fig. 20 Database recovery

The above system is designed with the help of well
adopted visual modeling language used for modeling real
word problems i.e. Unified Modeling Language. As the
UML has adopted bottom up approach, supports faster and
reliable application development as comparer to the earlier
approaches based on top down approach. The system is
developed by using C++ programming language, gives it
high memory utilization, less space complexity and greater
efficiency over other approaches.

6. Concluding Remarks

From the above it is concluded that the designed
embedded prototype database system is a very convenient
and effective system for receiving the information
contained in the database. The importance of Embedded
Database system is defined in the paper. The designed
model by the use of UML and then implemented the
model through C++ is a security protected system and

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

113

performance of the system is evaluated by considering the
numerous queries. This work can be further extended for
the development of Embedded Database for the real time
system through the UML modeling.

References

[1] Booch, G., Rumbaugh, J., Jacobson, I., 1999, The Unified
Modeling Language User Guide, Addison Wesley, Reading,
MA 1999.

[2] OMG Unified Modeling Language Specification, 2001.
Available online via http://www.omg.org.

[3] OMG XML Metadata Interchange (XMI) Specification,
2002. Available online via http://www.omg.org.

[4] Pllana, S. and T. Fahringer, 2002, On Customizing the
UML for Modeling Performance Oriented Applications. In
<<UML>>, Model Engineering Concepts and Tools,
Springer-Verlag., Dresden, Germany, 2002.

[5] Chen, R., Sgroi, M., Edmund Martin, G., Lavagno, L.,
Sangiovanni-Vincentelli, A. and Rabaey, J., 2002,
Embedded System Design Using UML and Platforms,
Proceedings of Forum on Specification and Design
Languages (FDL'02), 2002.

[6] Martin, G., 2002, UML for embedded systems specification
and design: motivation and overview, IEEE Proceedings,
Design, Automation and Test in Europe Conference and
Exhibition, 2002, pp. 773-775.

[7] Kukkala, P., Riihimaki, J., Hannikainen, M., Hamalainen,
T.D., Kronlof, K., 2005, UML 2.0 profile for embedded
system design, IEEE Proceedings, Design, Automation and
Test in Europe, Vol. 2, 2005, pp. 710-715.

[8] McUmber, W.E., and Cheng, B.H.C., 1999, UML-based
analysis of embedded systems using a mapping to VHDL,
IEEE Proceedings, High-Assurance Systems Engineering,
1999, pp. 56-63.

[9] Shourong Lu, Halang, W.A., Lichen Zhang, 2005, A
component-based UML profile to model embedded real-
time systems designed by the MDA approach, IEEE,
Embedded and Real-Time Computing Systems and
Applications, 2005, pp. 563-566.

[10] Wehrmeister, M.A., Becker, L.B., Wagner, F.R. and Pereira
C.E, 2005, An object-oriented platform-based design
process for embedded real-time systems, Eighth IEEE
Proceedings, Object-Oriented Real-Time Distributed
Computing, 2005. Volume, Issue, 18-20, May 2005, pp.
125–128.

[11] Zhang, X., Meng, X. and Wang, S., 2000, KingBase Lite: a
smart mobile embedded database system, IEEE Proceedings,
High Performance Computing in the Asia-Pacific Region
Volume 2, 2000, pp. 806–811.

Dr. Vipin Saxena: He is a Reader & Head,
Dept. of Computer Science, Babasaheb
Bhimrao Ambedkar University, Lucknow,
India. He got his M.Phil. Degree in
Computer Application in 1991 & Ph.D.
Degree work on Scientific Computing from
University of Roorkee (renamed as Indian
Institute of Technology, India) in 1997. He

has more than 12 years teaching experience and 16 years
research experience in the field of Scientific Computing &
Software Engineering. Currently he is proposing software
designs by the use of Unified Modeling Language for the various
research problems related to the Software Domains & Advanced
Computer Architecture. He has published more than 55
International and National publications.

Deepak Arora: He is a Research Scholar,
Dept. of Computer Science, Babasaheb
Bhimrao Ambedkar University, Lucknow,
India. He got his Master Degree of
Computer Applications in 2003 and M.Phil.
Degree in Computer Science in 2006.
Currently he is actively engaged in the
research work on Distributed Computing
Systems through the Unified Modeling

Language. Ha has produced several outstanding publications on
Distributed Computing Systems.

