
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

119

Manuscript received July 5, 2008.
Manuscript revised July 20, 2008.

 A Cellular Automata Based Algorithm for Path Planning in
Multi-Agent Systems with A Common Goal

Yashar Tavakoli H.Haj Seyyed Javadi Sepideh Adabi

Computer Engineering Department, University of Islamic Azad –Science and Research, Tehran, Iran

Department of Mathematics and Computer Science, Shahed University, Tehran, Iran
Computer Engineering Department, University of Islamic Azad -East Tehran (Ghiam dasht), Tehran, Iran

Summary
The interest in MAS (Multi-Agent Systems) is increasing and
an important task is providing these systems with sophisticated
planning algorithms. One of the major and complex planning
problems in MAS is indeed path planning problem; in this way,
the case in which every agent has its own goal has been more
discussed than the one in which there is a common goal among
the agents, while we know in the recent problem, there are
potentially more collisions and bottlenecks making it a hard
problem to approach. Through this paper, we will address
certain boundaries of this problem and introduce an algorithm
to achieve a proper solution to this optimization problem.

Key words:
 Cellular Automata; Multi-Agent System; Path planning.

1. Introduction

A lot of approaches in MAS path planning problem have
been introduced so far: [1] deals with RTS (Real-Time
Strategy) games in which agents must find non-colliding
routes in a grid and several versions of A* have been
introduced to solve the problem. In a high level of
abstraction, [2] assumes that the “road map” is in the
form of a graph and solves the problem by partitioning
the graph into some certain sub-graphs and applying
breadth-first search or traditional A* to sub-graphs. [3],
instead of path planning alone, applies motion planning
which consists of path planning and trajectory planning;
a centralized planner benefits a collision map to achieve
a collision free solution as trajectory planning while
every agent is associated with a certain priority. [4] again
discusses RTS games and path planning problem in large
environments and introduces a certain strategy using a
graph model and Dijkstra's algorithm. All of these papers
consider separate destinations for different agents while
[5] benefits a co-evolutionary genetic algorithm to solve
the problem of only two agents (while we focus on the
case in which there are several agents) , a common goal
and several obstacles in Cartesian coordination. Since we
benefit cellular automata, we address [6] , a paper on
single-agent path planning which tries to find minimum
distances using a cellular automaton and applying certain

heuristics.

Now suppose that there are several geographically
distributed agents with the same priorities. Agents must
move for example to a station in a real environment or a
fort in an RTS game; we are interested in minimizing the
total time in which all the agents have reached the goal
by applying a collision free (agent-agent and agent-
obstacle) strategy.

2. Modeling the problem
The traditional approach to multi-agent control, may be
classified into two approaches, centralized and
distributed (or centralized and decoupled, [7] and [8]).
[3] compares these approaches. Here we benefit a central
planner which is in charge of movements; hence we have
applied centralized approach.

2.1 Building a framework

Consider an m×m grid of cells; each cell is associated
with Cartesian coordination. A cell may be a home to
three kinds of objects:

 1.Agents (represented by numbers).
 2.Obstacles (represented by black colors).
 3.Goal (represented by letter “G”).

We will denote the number of agents by n (n < m2). If a
certain cell is occupied by an agent, we call it an
occupied cell. If a certain cell is not occupied and it’s not
filled by an obstacle then it’s a free cell.

A grid with a number of objects forms an environment.
The term configuration stands for the arrangement of the
objects in a certain environment.

This framework is very appropriate for RTS games [1],
but it may be also applied to real environments by
discretizing an environment using a procedure like the
one described in [6].

 Fig. 1 illustrates an environment which exhibits a certain
configuration.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

120

Fig. 1 An environment with a certain configuration

We distinguish vertical/horizontal movements and
diagonal movements (to approach the Euclidean norm);
for the sake of easy computation, each vertical or
horizontal movement costs 10, while each diagonal
movement costs 14 units of distance. As one can observe
in Fig.2, an agent is able to move in 8 geographical
directions in case they are free.

Fig. 2 Direction symbols

Let’s consider the time factor in our framework. Instead
of time we introduce time steps; if in each single time
unit, a single distance unit can be taken by an agent, with
regard to costs of distances (10 and 14) time steps are,
10,14,20,24,28,44,48,50,… . Time steps carry an
additional concept for us, only in these time steps an
agent may be finished with its currently decided
movement.

We define a set named unfinished-agents, in the
beginning all the agents are in unfinished-agents, if an
agent reaches the goal we remove it from unfinished-
agents set and then we will add it to finished-agents set.
If an agent occupies the goal cell in current time step, the
goal will be free of that agent in the next time step. A
decision indicates a certain direction that must be taken
by an agent; a decision can be made for an agent only if
it’s finished with its currently decided movement.
Suppose a case in which an agent is still moving (i.e. it
hasn’t finish with its currently decided movement), then
we rationally assume that both start and destination cells
are occupied (since our model is discrete). We also
define two other sets; set of moving-agents (in which
every agent exactly fills two neighbor cells) and set of
arrived-agents (in which every agent fills only a single
cell).

 These recent sets partition unfinished-agents set in each
time step. Those agents who could not make their
movements to decided cells in previous time step,

exactly because the cells were occupied (agents have to
wait at least one time step if the decided cells are
occupied), in current time step, are again in arrived-
agents set.

2.2 Formulating the problem

Now we can exactly define the problem and determine
its particular boundaries. Since central planner's first
objective is leading the agents toward the goal, there
should be time step T, in which, |finished-agents|=n (T is
exactly the certain time step in which the last agent
reaches the goal).
The second and more challenging objective of central
planner, is minimizing T. Consider agent i in an
environment, and time step ti in which, agent i reaches
the goal. Every path which an agent takes toward the
goal is associated with a certain length (which is also
measurable by time), let's name it di for agent i.
Furthermore, an agent on its way toward the goal, may
be forced to wait for several time steps, for agent i we
denote it by wi. Clearly, ti = di + wi , and central planner
tries to minimize ∑

=

n

i i
t

1

 (a variant of minimizing T) .

To decrease ti we can not simply decrease both di and wi ,
as if we try to decrease wi , di will relatively increases
and vice versa. The reason is quite obvious; in most of
our favorite environments with a lot of agents and
obstacles if all the agents take their shortest paths toward
the goal, there will be a lot of collisions, therefore if we
are interested in decreasing the number of collisions (i.e.
decreasing wis), central planner should force the agents
to take longer paths (i.e. increasing di) to avoid agent-
agent collision, and vice versa.

This inverse relation between d and w may become
stronger or weaker as configuration changes. Even tis are
in relatively inverse relation with each other, for example
if we try to decrease ti for agent i, there may be other
agents who reach the goal at least a single time step later,
as agent i will occupy goal cell at least a single time step
sooner, thus a sophisticated algorithm tries to balance
dis , wis and tis in order to minimize ∑

=

n

i i
t

1

.

3. Cellular automata

As described in [11], Cellular Automata (CA) is
decentralized, discrete space-time systems that can be
used to model physical systems. Cellular Automata are
formally defined as quadruples (d, q, N, ƒ).The integer d
is the dimension of the working space, obviously it is
possible to create one, two or more dimensions automata.
Q= {0, 1,…, q-1} is called the set of states. The
neighborhood N= (n1,…, nν) is a ν-tuple of distinct
vectors of Zd. The ni’s are the relative positions of the
neighbor cells with respect to the cell, the new state of

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

121

which is being computed. The states of these neighbors
are used to compute the new state of the center cell. The
local function of the cellular automata ƒ: Qν↔Q gives
the local transition rule. A configuration is a function
from Zd to Q. The set of all configurations is C=QZd

. The
global function A of the cellular automaton is defined via
ƒ as follows:

()() () ()()v
d nicnicicZiCc ++=∈∀∈∀ ,...,ƒA ,, 1

Fig.3 illustrate a one-dimensional, binary-sate,
nearest-neighbor (r =1) cellular automata with N=11.

Fig. 3 Illustration of a one-dimensional, binary-sate, nearest-

neighbor (r =1) cellular automaton with N=11.

4.Solving the problem

Suppose in Fig.4 we are interested to find the minimum
distance between the agent and the goal.

The straight forward algorithm for this problem is
traditional A*, but let’s investigate a new strategy; we
define a cellular automaton which dynamically calculates
the minimum distances between each cell and the goal,
the transition rules are:

Introduced cellular automaton terminates when no
further updates occur. In Fig.5, the entire procedure for
an instance has been illustrated.

Now we are provided with two global schemes which are
both associated with Cartesian coordination, denote them
by V-scheme which contains the minimum distances
between each cell and the goal and D-scheme which is a
map of the optimal direction(s) for each cell (following
the optimal directions an agent can take its shortest
diagonal path(s) toward the goal from an arbitrary
location).

Using V-scheme, optimal direction(s) for a cell can be
calculated by 8 comparisons, therefore having V-scheme,

we can calculate D-scheme in)(2mO (although D-
scheme can be

Fig. 4 A sample environment with a single agent and the goal.

dynamically computed along with V-scheme.

 Since obstacles are fixed, it's proper to consider the
cellular automaton as preprocessing [3], our
implementation on a Pentium 4 machine, takes about 1
sec to compute V-scheme for a 1024×1024 grid.

 Obviously in case there's only one agent, A* is a faster
algorithm to find the shortest path but as the number of
the agents grows, A* will loose it's efficiency gradually
[9] , while in our strategy, having D-scheme, every agent
located in every arbitrary location can find its shortest

path in, in ()lθ which)(2mO=l , therefore, one can

find the shortest paths for all the agents in)(2nmO .

Yet the main benefit of such approach in path finding for
multi-agent systems with a common goal hasn't been
discussed; provided schemes will give us an idea about
the future movements of the agents as they tend to take
their shortest paths.
Let’s compare two different algorithms; in both of the
algorithms, in each time step, central planner with
respect to a kind of order for agents in arrived-agents set
decides a proper direction to take.

The first algorithm only tries to reduce dis greedily,
hence, central planner always chooses the optimal
directions for each agent, therefore A* can be applied for
each agent, but because of growing number of agents we
prefer to use D-scheme, thus our first algorithm

computationally takes)(2nmO .

The other algorithm tries to behave more intelligently; in
order to estimate how much it takes toward the goal (ti)
if central planner force agent i to step into a cell as the
decided direction (not necessarily the optimum direction)
we can add the time which is needed to get to decided
cell from the current cell to the time which is needed to
reach the goal from decided cell and then to an

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

122

Fig. 5 Cellular automaton which dynamically calculates the
minimum diagonal distances between each cell and the goal.

estimated time in which agent i should wait if it takes the
decided direction. Using D-scheme, we can easily
calculate the number of collisions between an agent if it
takes the shortest path beginning by a certain direction,
let's call it the probable path, and the other agents if they
all take their shortest paths, one by one. This fact serves
as our heuristic to solve the problem more intelligently.

Assume that the central planner is going to decide for an
agent which direction to take, according to our heuristic,
we define function cost:

 Cost(i,j,direction)=v(direction)+ V (i,j,direction) +
 h×collisions(i,j,direction)

cost takes the current agent location, and a possible
direction (i.e. a direction which is not obstacle), as
arguments and returns a positive real number. Central
planner always chooses the possible directions with
lower costs for the agents in arrived-agents set in each
time step. Suppose we have direction NW and location
(r,s); v determines the required time units for the agent to
get to NW cell, thus v(NW) = 14, V returns the neighbor
cell's value in V-scheme, with respect to the agent current
location and a specified direction so V (r , s , NW) = V-
scheme [r - 1 , s - 1] which is the minimum distance
from the decided cell toward the goal and finally
collision returns a relatively good estimate of the number
of collisions if the direction NW is taken by the agent
located in (r,s) using the discussed procedure.

Let's discuss the parameter h. cost gives central planner
an estimate of the total time in which an agent reaches
the goal if it takes a specified direction; in order to build

this function what is required is not actually the
estimated number of collisions, it is the estimated
waiting time, in this way, estimated number of collisions
will only help us to calculate the waiting time if we have
an idea about the duration of a single stop to avoid
collision (i.e. how much an agent must wait for an
occupied cell to become free). h is a free parameter
which represents this value.

There is a tight relation between a certain configuration
and the value of h. As the number of the agents and
specially their density grows, h will also grow. In an
environment with limited number of paths toward the
goal, there will be usually longer queues and it's wise to
pick greater values of h too. For h = 0 the algorithm's
behavior will be equivalent to A*'s behavior which gives
us a proper flexibility. The reader may also easily verify
that v + V forms dis while h×collisions stands for wis. In
fact in each time step, for all the agents in arrived-agents
set, central planner tries to minimize tis , by balancing dis
and wis through making certain decisions.

 Now, we are ready to calculate an upper bound for time
complexity of the current algorithm; in the worst case, in
every time step for each agent, eight probable path and
n - 1 shortest paths must be calculated, which totally

takes)(2nmO Let's bound the possible number of time
steps by M, hence the algorithm will take,

))(((2nmMnO or simply)(22mMnO . It should be
stated that the value of M depends on the value of h,
since by changing the value of h in a particular problem
T may change, but to have an idea about how big M is,
our simulations show that for all values of h (even very

great ones),
2nmM << (i.e. it never reaches the T in

which there are no simultaneously movements and every
agent with respect to a kind of order sequentially waits
until the other agents reach the goal, and then moves).

Thus,)(2nmOM = and a bound for the

algorithm would be)(43mnO .

5. Experimental results

 We have applied introduced algorithms to a wisely
populated environment. The agents and obstacles have
been arranged in such a way that increase the density and
restrict the number of possible paths toward the goal.
This configuration will increase waiting times implying
for some h > 0 we expect to see a better result than h = 0
(A*). To avoid complexity we have considered h as an
integer.

Fig.6, shows the original problem and results for the first
algorithm and the second algorithm while applying
different values of h. Fig.7-(a), illustrates the

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

123

configuration of the environment for the selected time
step 132 if we pick h = 2 (the most optimal value), while
Fig.7-(b) illustrates the configuration in the same time
step if we apply A*(in both figures as stated before, an
agent who has occupied two neighbor cells, hasn’t
arrived to its destination cell yet). The D-scheme for the
problem which is provided in Fig.7-(c), help the reader to
easily verify the potential of bottleneck and long queues
in case we greedily only look at dis.

A deeper look reveals that the second algorithm gain a
lower ∑ t because it wisely distributes the agents and
gives them the chance to get closer to the goal gradually
instead of wasting time in long queues.

Fig. 6 The results of the first and second algorithm while

applying different values of h.

6. Conclusion

In this paper an algorithm was introduced to deal with
the path planning problem in MAS while several agents
try to reach a common goal. We also computationally
bounded the algorithm. The proposed approach wisely
distributes the agents to avoid long queues; this fact
reveals the suitability of applying the algorithm in those
MAS environments with a common goal which give rise
to long queues like those with just a few possible paths
toward the goal. The simulations also indicate that the
proposed algorithm could achieve a far better total time
than the traditional A*.

References

[1] D.Silver, "Cooperative path-planning", AI Programming

Wisdom, 2006.
[2] M.Ryan," Graph Decomposition for Efficient Multi- robot Path

Planning", In Proceedings of 7th International Joint Conference
on Artificial Intelligence, 2003.

8 agents have already reached the goal 4 agents have already reached the goal

 (a) (b)

(c)

Fig. 7 the original problem and results for the first algorithm
and the second algorith

[3] S.H.Ji, J.S.Choi, B.H.Lee, "A Computational Interactive
Approach to Multi-agent Motion Planning", International Journal
of Control, Automation, and Systems vol.5, no. 3, pp. 295-306,
June 2007.

[4] O.Arikan, S.Chenney, D.A.Forsyth," Efficient multi-agent path
planning", In Proceedings of the Eurographic Workshop on
Computer Animation and Simulation (Manchester, UK,
September 02 - 03, 2001). W. Hansmann, W. Purgathofer, and F.
Sillion, Eds.Springer-Verlag New York, New York, NY, 151-162.

[5] Z.Cai, Z.Peng, "Cooperative Coevolutionary Adaptive Genetic
Algorithm in Path Planning of Cooperative Multi-Mobile Robot
Systems", Journal of Intelligent and Robotic Systems 33: 61-
71,2002.

[6] C.Behring, M.Bracho, M.Castro, J.A.Moreno," An Algorithm for
Robot Path Planning with Cellular Automata",In Proceedings of
the Fourth international Conference on Cellular Automata For
Research and industry:theoretical and Practical Issues on Cellular
Automata (October 04 - 06, 2000). S. Bandini and T. Worsch,
Eds. Springer-Verlag, London, 11-19.

[7] J.C.Latombr, "Robot Motion Planning", Kluwer Academic
Publishers, 1991.

[8] K. Fujimura, "Motion Planning in Dynamic Enviornmen"t,
Springer-Verlag, New York, 1991.

[9] R.Leigh, S.J.Louis, C.Miles, "Using a Genetic Algorithm to
Explore A*-like Pathfinding Algorithms", In Proceedings of the
2007 IEEE Symposium on ComputationalIntelligence and Games
(CIG 2007).

[10] S.Russel, P.Norvig, "Artificial Intelligence A Modern Approach",
SPrentice Hall Series in Artificial Intelligence, 2003.

[11] B. Durand, E. Formenti, A. Grange and Z. Róka. “Number
conserving cellular automata: new results on decidability and
dynamics“. Discrete Mathematics and Theoretical Computer
Science, AB: 129-140, 2003.

