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Summary 
The interest in MAS (Multi-Agent Systems) is increasing and 
an important task is providing these systems with sophisticated 
planning algorithms. One of the major and complex planning 
problems in MAS is indeed path planning problem; in this way, 
the case in which every agent has its own goal has been more 
discussed than the one in which there is a common goal among 
the agents, while we know in the recent problem, there are 
potentially more collisions and bottlenecks making it a hard 
problem to approach. Through this paper, we will address 
certain boundaries of this problem and introduce an algorithm 
to achieve a proper solution to this optimization problem. 
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1. Introduction 

A lot of approaches in MAS path planning problem have 
been introduced so far: [1] deals with RTS (Real-Time 
Strategy) games in which agents must find non-colliding 
routes in a grid and several versions of A*  have been 
introduced to solve the problem. In a high level of 
abstraction, [2] assumes that the “road map” is in the 
form of a graph and solves the problem by partitioning 
the graph into some certain sub-graphs and applying 
breadth-first search or traditional A* to sub-graphs. [3], 
instead of path planning alone, applies motion planning 
which consists of path planning and trajectory planning; 
a centralized planner benefits a collision map to achieve 
a collision free solution as trajectory planning while 
every agent is associated with a certain priority. [4] again 
discusses RTS games and path planning problem in large 
environments and introduces a certain strategy using a 
graph model and Dijkstra's algorithm. All of these papers 
consider separate destinations for different agents while 
[5] benefits a co-evolutionary genetic algorithm to solve 
the problem of only two agents (while we focus on the 
case in which there are several agents) , a common goal 
and several obstacles in Cartesian coordination. Since we 
benefit cellular automata, we address [6] , a paper on 
single-agent path planning which tries to find minimum 
distances using a cellular automaton and applying certain 

heuristics. 

Now suppose that there are several geographically 
distributed agents with the same priorities. Agents must 
move for example to a station in a real environment or a 
fort in an RTS game; we are interested in minimizing the 
total time in which all the agents have reached the goal 
by applying a collision free ( agent-agent and agent-
obstacle) strategy.  

 

2. Modeling the problem  
The traditional approach to multi-agent control, may be 
classified into two approaches, centralized and 
distributed (or centralized and decoupled, [7] and [8]).  
[3] compares these approaches. Here we benefit a central 
planner which is in charge of movements; hence we have 
applied centralized approach. 

2.1 Building a framework 

Consider an m×m grid of cells; each cell is associated 
with Cartesian coordination. A cell may be a home to 
three kinds of objects: 

 1.Agents (represented by numbers). 
 2.Obstacles (represented by black colors). 
 3.Goal (represented by letter “G”).  

We will denote the number of agents by n (n < m2). If a 
certain cell is occupied by an agent, we call it an 
occupied cell. If a certain cell is not occupied and it’s not 
filled by an obstacle then it’s a free cell.  

A grid with a number of objects forms an environment. 
The term configuration stands for the arrangement of the 
objects in a certain environment. 

This framework is very appropriate for RTS games [1], 
but it may be also applied to real environments by 
discretizing an environment using a procedure like the 
one described in [6]. 

 Fig. 1 illustrates an environment which exhibits a certain 
configuration.  
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Fig. 1 An environment with a certain configuration 

We distinguish vertical/horizontal movements and 
diagonal movements (to approach the Euclidean norm); 
for the sake of easy computation, each vertical or 
horizontal movement costs 10, while each diagonal 
movement costs 14 units of distance. As one can observe 
in Fig.2, an agent is able to move in 8 geographical 
directions in case they are free. 

 
Fig. 2 Direction symbols 

Let’s consider the time factor in our framework. Instead 
of time we introduce time steps; if in each single time 
unit, a single distance unit can be taken by an agent, with 
regard to costs of distances (10 and 14) time steps are, 
10,14,20,24,28,44,48,50,… . Time steps carry an 
additional concept for us, only in these time steps an 
agent may be finished with its currently decided 
movement.  

We define a set named unfinished-agents, in the 
beginning all the agents are in unfinished-agents, if an 
agent reaches the goal we remove it from unfinished-
agents set and then we will add it to finished-agents set. 
If an agent occupies the goal cell in current time step, the 
goal will be free of that agent in the next time step. A 
decision indicates a certain direction that must be taken 
by an agent; a decision can be made for an agent only if 
it’s finished with its currently decided movement. 
Suppose a case in which an agent is still moving (i.e. it 
hasn’t finish with its currently decided movement), then 
we rationally assume that both start and destination cells 
are occupied (since our model is discrete). We also 
define two other sets; set of moving-agents (in which 
every agent exactly fills two neighbor cells) and set of 
arrived-agents (in which every agent fills only a single 
cell). 

 These recent sets partition unfinished-agents set in each 
time step. Those agents who could not make their 
movements to decided cells in previous time step, 

exactly because the cells were occupied (agents have to 
wait at least one time step if the decided cells are 
occupied), in current time step, are again in arrived-
agents set. 

2.2 Formulating the problem 

Now we can exactly define the problem and determine 
its particular boundaries. Since central planner's first 
objective is leading the agents toward the goal, there 
should be time step T, in which, |finished-agents|=n (T is 
exactly the certain time step in which the last agent 
reaches the goal). 
The second and more challenging objective of central 
planner, is minimizing T. Consider agent i in an 
environment, and time step ti  in which, agent i reaches 
the goal. Every path which an agent takes toward the 
goal is associated with a certain length (which is also 
measurable by time), let's name it di for agent i. 
Furthermore, an agent on its way toward the goal, may 
be forced to wait for several time steps, for agent i we 
denote it by wi. Clearly, ti  = di + wi , and central planner 
tries to minimize ∑

=

n

i i
t

1

 (a variant of minimizing T) . 

To decrease ti we can not simply decrease both di and wi , 
as if we try to decrease wi , di will relatively increases 
and vice versa. The reason is quite obvious; in most of 
our favorite environments with a lot of agents and 
obstacles if all the agents take their shortest paths toward 
the goal, there will be a lot of collisions, therefore if we 
are interested in decreasing the number of collisions (i.e. 
decreasing wis), central planner should force the agents 
to take longer paths (i.e. increasing di) to avoid agent-
agent collision, and vice versa.  

This inverse relation between d and w may become 
stronger or weaker as configuration changes. Even tis  are 
in relatively inverse relation with each other, for example 
if we try to decrease ti for agent i, there may be other 
agents who reach the goal at least a single time step later, 
as agent i will occupy goal cell at least a single time step 
sooner, thus a sophisticated algorithm tries to balance 
dis , wis and tis in order to minimize ∑

=

n

i i
t

1

. 

3. Cellular automata 

As described in [11], Cellular Automata (CA) is 
decentralized, discrete space-time systems that can be 
used to model physical systems. Cellular Automata are 
formally defined as quadruples (d, q, N, ƒ).The integer d 
is the dimension of the working space, obviously it is 
possible to create one, two or more dimensions automata. 
Q= {0, 1,…, q-1} is called the set of states. The 
neighborhood N= (n1,…, nν) is a  ν-tuple of distinct 
vectors of  Zd.  The ni’s are the relative positions of the 
neighbor cells with respect to the cell, the new state of 
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which is being computed. The states of these neighbors 
are used to compute the new state of the center cell.  The 
local function of the cellular automata ƒ: Qν↔Q gives 
the local transition rule. A configuration is a function 
from Zd  to Q. The set of all configurations is C=QZd

. The 
global function A of the cellular automaton is defined via 
ƒ as follows: 

( )( ) ( ) ( )( )v
d nicnicicZiCc ++=∈∀∈∀ ,...,ƒA ,, 1  

Fig.3 illustrate a one-dimensional, binary-sate, 
nearest-neighbor (r =1) cellular automata with N=11. 

 
Fig. 3 Illustration of a one-dimensional, binary-sate, nearest-

neighbor   (r =1) cellular automaton with N=11.  

4.Solving the problem 

Suppose in Fig.4 we are interested to find the minimum 
distance between the agent and the goal.  

The straight forward algorithm for this problem is 
traditional A*, but let’s investigate a new strategy; we 
define a cellular automaton which dynamically calculates 
the minimum distances between each cell and the goal, 
the transition rules are: 
 

 
Introduced cellular automaton terminates when no 
further updates occur. In Fig.5, the entire procedure for 
an instance has been illustrated.  

Now we are provided with two global schemes which are 
both associated with Cartesian coordination, denote them 
by V-scheme which contains the minimum distances 
between each cell and the goal and D-scheme which is a 
map of the optimal direction(s) for each cell (following 
the optimal directions an agent can take its shortest 
diagonal path(s) toward the goal from an arbitrary 
location). 

Using V-scheme, optimal direction(s) for a cell can be 
calculated by 8 comparisons, therefore having V-scheme, 

we can calculate D-scheme in )( 2mO  (although D-
scheme can   be 

 
Fig. 4 A sample environment with a single agent and the goal. 

dynamically computed along with V-scheme. 

 Since obstacles are fixed, it's proper to consider the 
cellular automaton as preprocessing [3], our 
implementation on a Pentium 4 machine, takes about 1 
sec to compute V-scheme for a 1024×1024 grid. 

 Obviously in case there's only one agent, A* is a faster 
algorithm to find the shortest path but as the number of 
the agents grows, A* will loose it's efficiency gradually  
[9] , while in our strategy, having D-scheme, every agent 
located in every arbitrary location can find its shortest 

path in, in ( )lθ  which )( 2mO=l   , therefore, one can 

find the shortest paths for all the agents in )( 2nmO .  

Yet the main benefit of such approach in path finding for 
multi-agent systems with a common goal hasn't been 
discussed; provided schemes will give us an idea about 
the future movements of the agents as they tend to take 
their shortest paths. 
Let’s compare two different algorithms; in both of the 
algorithms, in each time step, central planner with 
respect to a kind of order for agents in arrived-agents set 
decides a proper direction to take. 

The first algorithm only tries to reduce dis greedily, 
hence, central planner always chooses the optimal 
directions for each agent, therefore A* can be applied for 
each agent, but because of growing number of agents we 
prefer to use D-scheme, thus our first algorithm 

computationally takes )( 2nmO  .  

The other algorithm tries to behave more intelligently;  in 
order to estimate how much it takes toward the goal (ti ) 
if central planner force agent i to step into a cell as the 
decided direction (not necessarily the optimum direction) 
we can add the time which is needed to get to decided 
cell from the current cell to the time which is needed to 
reach the goal from  decided cell and then to an 
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Fig. 5 Cellular automaton which dynamically calculates the 
minimum diagonal distances between each cell and the goal. 

estimated time in which agent i should wait if it takes the 
decided direction. Using D-scheme, we can easily 
calculate the number of  collisions between an agent if it 
takes the shortest path beginning by a certain direction, 
let's call it the probable path, and the other agents if they 
all take their shortest paths, one by one. This fact serves 
as our heuristic to solve the problem more intelligently. 

Assume that the central planner is going to decide for an 
agent which direction to take, according to our heuristic, 
we define function cost: 

 Cost(i,j,direction)=v(direction)+ V (i,j,direction) +         
                                h×collisions(i,j,direction) 

cost takes the current agent location, and a possible 
direction (i.e. a direction which is not obstacle), as 
arguments and returns a positive real number. Central 
planner always chooses the possible directions with 
lower costs for the agents in arrived-agents set in each 
time step. Suppose we have direction NW and location 
(r,s); v determines the required time units for the agent to 
get to NW cell, thus v( NW ) = 14, V returns the neighbor 
cell's value in V-scheme, with respect to the agent current 
location and a specified direction so  V ( r , s , NW ) = V-
scheme [ r - 1 , s - 1 ] which is the minimum  distance 
from the decided cell toward the goal and finally  
collision returns a relatively good estimate of the number 
of collisions if the direction NW is taken by the agent 
located in (r,s) using the discussed  procedure.  

Let's discuss the parameter h. cost gives central planner 
an estimate of the total time in which an agent reaches 
the goal if it takes a specified direction; in order to build 

this function what is required is not actually the 
estimated number of collisions, it is the estimated 
waiting time, in this way, estimated number of collisions 
will only help us to calculate the waiting time if we have 
an idea about the duration of a single stop to avoid 
collision (i.e. how much an agent must wait for an 
occupied cell to become free). h is a free parameter 
which represents this value.  

There is a tight relation between a certain configuration 
and the value of h. As the number of the agents and 
specially their density grows, h will also grow. In an 
environment with limited number of paths toward the 
goal, there will be usually longer queues and it's wise to 
pick greater values of h too. For h = 0 the algorithm's 
behavior will be equivalent to A*'s behavior which gives 
us a proper flexibility. The reader may also easily verify 
that v + V forms dis while h×collisions stands for wis. In 
fact in each time step, for all the agents in arrived-agents 
set, central planner tries to minimize tis , by balancing dis 
and wis through making certain decisions. 

 Now, we are ready to calculate an upper bound for time 
complexity of the current algorithm; in the worst case, in 
every time step for each agent, eight probable path and   
n - 1 shortest paths must be calculated, which totally 

takes )( 2nmO  Let's bound the possible number of time 
steps by M, hence the algorithm will take, 

))((( 2nmMnO or simply )( 22mMnO . It should be 
stated that the value of M depends on the value of h, 
since by changing the value of h in a particular problem 
T may change, but to have an idea about how big M is, 
our simulations show that for all values of h (even very 

great ones), 
2nmM <<  (i.e. it never reaches the T in 

which there are no simultaneously movements and every 
agent with respect to a kind of order sequentially waits 
until the other agents reach the goal, and then moves). 

Thus,     )( 2nmOM =     and a bound for the 

algorithm would be )( 43mnO . 

5. Experimental results 

 We have applied introduced algorithms to a wisely 
populated environment. The agents and obstacles have 
been arranged in such a way that increase the density and 
restrict the number of possible paths toward the goal. 
This configuration will increase waiting times implying 
for some h > 0 we expect to see a better result than  h = 0  
(A*). To avoid complexity we have considered h as an 
integer. 

Fig.6, shows the original problem and results for the first 
algorithm and the second algorithm while applying 
different values of h. Fig.7-(a), illustrates the 
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configuration of the environment for the selected time 
step 132 if we pick h = 2 (the most optimal value), while 
Fig.7-(b) illustrates the configuration in the same time 
step if we apply A*(in both figures as stated before, an 
agent who has occupied two neighbor cells, hasn’t 
arrived to its destination cell yet). The D-scheme for the 
problem which is provided in Fig.7-(c), help the reader to 
easily verify the potential of bottleneck and long queues 
in case we greedily only look at dis.  

A deeper look reveals that the second algorithm gain a 
lower ∑ t  because it wisely distributes the agents and 
gives them the chance to get closer to the goal gradually 
instead of wasting time in long queues. 

 

 

 
Fig. 6 The results of the first and second algorithm while 

applying different values of h. 

6. Conclusion 
 
In this paper an algorithm was introduced to deal with 
the path planning problem in MAS while several agents 
try to reach a common goal. We also computationally 
bounded the algorithm. The proposed approach wisely 
distributes the agents to avoid long queues; this fact 
reveals the suitability of applying the algorithm in those 
MAS environments with a common goal which give rise 
to long queues like those with just a few possible paths 
toward the goal.  The simulations also indicate that the 
proposed algorithm could achieve a far better total time 
than the traditional A*.   
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