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Summary

This paper mainly deals with the almost surely exponential
stability and exponential p-th moment stability for a class of
stochastic  Cohen—-Grossberg neural networks with
distributed delays and reaction—diffusion term. By
constructing suitable Lyapunov functional, employing the
nonnegative semi-martingale convergence theorem and
applying matrix theory and stochastic analysis technique,
two delay-independent and easily verifiable sufficient
conditions are obtained to ensure the existence, uniqueness,
almost surely exponential stability and exponential p-th
moment stability of the equilibrium point for the addressed
stochastic Cohen-Grossberg neural network with distributed
delays and reaction-diffusion terms.
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1. Introduction

The Cohen-Grossberg neural network, first proposed and
studied by Cohen and Grossberg in 1983 [1], has attracted
considerable attention due to its potential applications in
classification, parallel computing, associative memory,
signal and image processing, especially in solving some
difficult optimization problems. In such applications, it is of
prime importance to ensure that the designed neural
networks are stable [2]. In implementation of neural
networks, however, time delays are unavoidably
encountered due to the finite switching speed of neurons
and amplifiers. It has been found that, the existence of time
delays may lead to instability and oscillation in a neural
network. Therefore, stability analysis of Cohen—Grossberg
neural network with time delays has received much
attention [3-10].

Excepting delay effects, strictly speaking, diffusion
effects cannot be avoided in the neural networks when
electrons are moving in asymmetric electromagnetic fields.
So we must consider that the activations vary in space as
well as in time. In [11-14], the authors have considered the
stability of neural networks with diffusion terms, which are
expressed by partial differential equations.

In addition to the delay effects, stochastic effects
constitute another source of disturbances or uncertainties in
real systems [10]. A lot of dynamical systems have variable
structures subject to stochastic abrupt changes, which may
result from abrupt phenomena such as stochastic failures
and repairs of the components, changes in the
interconnections of subsystems or sudden environment
switching [15]. Therefore, stochastic perturbations should
be taken into account when modeling neural networks. In
recent years, the dynamic analysis of stochastic systems
(including neural networks) with delays has been an
attractive topic for many researchers, and a large number of
stability criteria of these systems have been reported [10,
15-20]. Particularly, in [15-16], the authors have considered
the exponential p-stability of stochastic differential
equations with constant delays and obtained several stability
conditions for checking the exponential p-stability. In [17-
20], the problem on stability of stochastic neural networks
with constant delays or time-varying delay or bounded
distributed delays has been considered and many interesting
results have been established by employing a Lyapunov
functional approach. To the best of our knowledge, so far,
few authors have considered the problem of stability
analysis for Cohen-Grossberg neural networks with both
distributed delays and reaction-diffusion terms in the
simultaneous presence of stochastic effects.

In this paper, we investigate the almost surely
exponential stability and exponential p-th moment stability
for stochastic Cohen—Grossberg neural network with
continuously distributed delays and reaction-diffusion terms.

2. Model description and preliminaries

In this paper, we consider the following stochastic Cohen—
Grossberg neural network with continuously distributed
delays and reaction-diffusion terms
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for i=1,2,....,n and ¢ >0. In the above system, n>2 is
the number of neurons in the network, x; is space variable,
u,(t,x) is the state variable of the i -th neuron at time ¢ and
in space x , f;(u;(z,x)) and g;(u;(,x)) denotes the
output of the j -th unit at time ¢ on the 7 -th unit and in space
x , smooth function D, = D, (¢,x) >0 is diffusion operator,
X is a compact set with smooth boundary 0X and measure
mes X >0in R" . &, (u,(t,x)) represents an amplification
function; /3, (u, (¢, x)) is an appropriately behaved function at
b,;and J, are
the

time?; &, (¢, x) is the initial boundary value. a,,

constants:  a; indicates the strength of neuron

interconnections within the network at time?; sz weights the
strength of the j -th unit on the i -th unit at time ¢/ —s; K, is
the delay kernel function; J; denotes the constant input from
outside of the network. Moreover, (t) = (@, (¢),...,®, (£))"
is n dimensional Brownian motion defined on a complete
probability space (€2, F', P) with a natural filtration {F,}tzo
generated by {@(s):0<s <t}, where we associate Q with
the canonical space generated by all {wi (t)} and denote by
F the associated o -algebra. Generated by {w(f)} with the
probability measure P .
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Let L?(X) be the space of real Lebesgue measurable

functions on X . It is a Banach space for the L, -norm

1
= ] Juo)
where |u| denotes the Euclid norm of a vector u € R" for

any integer n. The norm ||u|| is defined by

=[Sk ) o2
E={E (s0)....&,(s.0)) 15<0}

is C([-,0]xR™;R") -valued function and F, -

Note that,

measurable R" -valued random variable, where for

example, F, =F, on [—oo,O], and C([—o,0]x R";R")is
the space of all continuous R" -valued functions defined
on[—0,0]x R".

Furthermore, model (1) comprises the following
Cohen-Grossberg neural network model without stochastic

effects
du(t,x) = Z aik ( D auégk, X)sz
RACICES) EACAGE)
N /Z”;%f,» (u,(t,x)) (2)

-3 [ K, -s)g, (s, )ds

+Ji]dt

We will prove in Section 3 that model (2) has a unique
equilibrium point u" = (u; ,...,u,)" by the property of
homeomorphism and the inequality technique. Then model
(1) admits an equilibrium point &~ = (i ,...,,)" . At this
time, model (1) is equivalent to

xe X.
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a’(ui(t,x) —u;)

i 0 (ka a(ui(t,x)—u;)]dt

o Ox, ox,

o, (6,0) 8., 1,3)) - B,

+Zay[fj(uj(f,X))—fj(uf)] 3)

n

+ Z_:bfj,'.;Ky‘ (t- S)[gj (u;(s,x))—g; (u;)]dS }dt,

+ iai;(”j(f'x))d@,(t), xeX.

Throughout this paper, for system (1), we have the
following assumptions:

(AL) f],,gj and o, are Lipschitz continuous with Lipschitz
constant £, > 0, @, > 0and L,> 0, respectively,
for i,j=12,...,n.

(A2) The delay kernel K : [0,+oo)—> [O,+oo) is a real-

valued non-negative continuous function and satisfies
+00 Is
jo e K, (s)ds =r,(A),

where continuous  function on

r(4) s

[0,5), §>0and 7;(0) =1, ij=12,....n.

T is the

(A3) 0, (uj) =0, where u” =(u,Uy,...u,
equilibrium point of model (2).
(A4) Each function ¢;(u) is bounded, positive and
continuous, i.e. there exist a constant ¢; such that
0<a,(u) < ai <+,
for ueR, i=12,...,n
(A5) There exists a positive diagonal

p=diag(f, f,,.... B,) such that
Bu)- 1)

u-—v

matrix

>p

forallu,ve R(u#v),i=12,..,n.

Definition 1 Model (3) is said to be almost surely
exponentially stable if there exists a positive constant A

such that for each pair of £, and ¢ there is a positive finite

random variable K such that
x| P _ —
Hu(t i1, &) —u H < Ke ),

forall £ = ¢,. In this case

P—a.s.

limsuplogu(rito, )| )<-2 @

The left hand-side of (4) is called the almost sure
Lyapunov exponent of the solution.

Definition 2 Model (3) is said to be p-th moment
exponentially stable if there exist a pair of positive constants

Aand K such that
EHu(t; &) —u*Hp < KEHcf —u*Hpew, t>0
forany &. In this case

im sup%log(EHu(t, H-ul)<-1, ®

The left hand-side of (5) is called the p-th moment
Lyapunov exponent of the solution. When p =2, it is

usually called the exponential stability in mean square.

Definition 3 [9] A map H:R"—>R" is a
homeomorphism of R" onto itself, if H € C°, H is one-
to-one, H is onto and the inverse map H * e C°.

To prove our results, the following lemmas are
necessary.

Lemma 1[17] Let A(f) and U(¢) be two continuous

adapted  increasing  processes on (>0 with

A(0)=U(0) =0, Let M (¢) be a real-valued continuous
local martingale with A (0)=0,a.s. Let ¢ be a
nonnegative  F; -measurable random variable with
E¢ < oo, Define

X@)=c+A(t)-U@)+M(t) for t>0.

If X(¢) is nonnegative, then
{ lim A(f) < o }

t—0

c{ lim X(t)<oo}m{ lim U(t)<oo} as.,

t—0
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When Bc D as. P(BND)=0. In
particular, if lim A(¢f) <o a.s., then for almost all
t

—>00

denotes

weQ, limX(t,w)<wo and limU(t,w) <o, ie.,
t—00 —0

both X '(¢) and U (¢) converge to finite random variables.
Lemma 2 For @ >0,b, >0, (k =1,...,m), the following
inequality holds

m 1 1,
aHb,f’k S;qubk +;a ,
k=1 k=1

where ¢, >0, (k=1...,m) , qu =r-1land r>1.

k=1
Lemma 3 [9] If H(x)eCP satisfies the following
conditions
(i) H(x)isinjectiveon R",
(ii) ||H(x)|| — +o0as ||x

|—>+oo , then H(x) s

homeomorphism of R" onto itself.

3. Main results

In this section, we will give several sufficient conditions
on the existence, uniqueness, almost surely exponential
stability and exponential p-th moment stability of the
equilibrium point for the stochastic Cohen-Grossberg neural
network (1).

Theorem 1 If model (3) satisfies the assumptions (Al1)-(A5),
and

(A6) There exist constants P € R,q, >0,
k=1,...,m+1 such that

n
_ rpm+1,f
2 :‘aji ‘:Ui
J=1

i,j=1..n,

TP, j
n m
-~ _ 9k
a,|rpB, z‘a[j ‘z%ﬂj
j=1 k=1

TPk,

_i‘bz’i‘iqkw]qk _i‘bji
R =

r(r—l) L
-———=> L. >0,
2 &

y pm+1,j
@

i

where

m+1

Zp,w. =1, qu =r-1 r21 ij=12,..,n
k=1 k=1

then model (2) has a unique equilibrium point, and model
(3) is almost surely exponentially stable.

Proof. We shall prove this theorem in two steps.
Step 1. We will prove the existence and uniqueness of the
equilibrium point of model (1) under the given assumptions.

Let H(x) = (H,(x), H,(x),... H,(x))",
where

Hi (X) = _IBI‘ (xi) + Za;‘;fj (x_/) +Zbyg1 (xj) _Ji
j=1 J=1
for i=1,2,...,n. In the following we shall prove that
H (x) is ahomeomorphism of R" onto itself.
First, we prove that 7 (x) is an injective map on R". In
x= (xl,xz,...,xn)T and

y:(yl,yz,---,y,,)T ER” and
H(x)=H(y), then

Bix)=B0) = X a,(f, () 1,0)

fact, if  there exist

x#y such that

+ib[j(gj(xj)_gj(yj)) (6)

for i=12,..,n. Multiply both sides of (6) by

r|xl. —yl.|r_l, it follows from assumptions (Al), (A5) and
Lemma 2 that

.
rﬁi |xi _yi|
< = r-1
= rZ‘aij“xi —y,-| H; ‘xj —yj‘
J=

n
+ rZ‘binxi —yi|r_l ?; ‘xj —yj‘
=1

TPk, j
»

n m —_—
qx r TP, _
SZ‘%“ 2ty P =yl e =y,
= =L
n m "Pr.j.
9k r "Pm1,j r
+ Z‘bij‘ 240" =y +ol =y |
= =L
That is,
n m TPrj. n
qy TPm1,j
rp; < Z\%\Z Gkt Z‘aﬁ\yi
FER) 1

"Pr.j

n m — n
+ Z\%\Z ap;" + Z‘bji
] =

¢irpm+1‘/ . (7)
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r(r —1) d

2

From (A6) and L;‘.;. >0,a: >0, we can gat

Jj=1
that

rﬂ Z‘ U‘qu’uj Z‘ ﬂ‘ lp "
Pry

S, |zqk(p,qk z| Jot >0, ©
Jj=l

which is a contradiction. So H (x) is an injective on R".
Second, we prove that||H (x)|| —> +o0 as ||x|| — 40

From Eq.(8), we can choose a small number & > 0, such
that

TPk, j

rp, - Z\ U\quu, “

n
P, j
Z ‘a./'i ‘:”i
=
s J

—Z\ \qu(ﬂ,‘“ Z\ w2850 (9
Jj=1

fori=12,...n.
Let H(x) = (H,(x), H,(x),...

where

7,00 =~(8,)-AO)+ X, (1,(x) - ,0)

H, (%),

+ ibzi(gj (x;)-g; (0))

fori=12,...,
2, we can get

S ol san(e) 7 (x)

i=1

n n m "Pr.j n
. YPm+1,j
<D |-rB +Z\%\quﬂ.f"‘ +2, aﬂ"“j "
i=1 Jj=1 k=1 j=1

n. From assumptions (Al), (A5) and Lemma

TPk,j
+ Z‘bU‘qu(o/qk +Z‘bﬂ fa |xi "< —§||x "
Thus i
S <3| L ().
i-1

By using the Holder inequality, we get

"~ ‘F]z (xz)H ,

that is
5||x|| < r”ﬁi (xl)“ .

Obviously, ||I?[(x)||—>+oo ||x||—>+oo . Thus.

H(x)|= lim

[0

H(x)| = +o0

HxHa+oc

By Lemma 3, we know that H (x)is a homeomorphism

onR". Thus equation
=B,(x)+ 2 a5 (x,) + 2 by, (x;) =, =0,
= =

. . * * *NT . . .
has a unique solution (u1 y Uy, un) ,which is a unique

equilibrium point of model (2) due to assumptions (A1) and
(A2).

Step 2. We prove that Eq.
exponentially stable.
Let u(t,x) = (u, (£, x),u, (¢, X),...,u, (£, X)) be any
solution of the model (1). It follows from (A6) that

Pk, m
TPm+1, )
a,| B - Z‘ U‘qk’uj Z‘aﬁ\”i
k=1

(3) is almost surely

~Slafae -S|
_”(’”T_lzL; >0,

j=1
and there exists a sufficiently small constant ¢ >0, and

c . .
= > 0 is also a sufficiently small constant, such that
ai

TPr,j

a@| (B, ——) 2\ g

rpm+1,/

m
Z‘aﬁ H
k=1

TPk, j

- g‘bij‘qk(/?j o (10)

— * ; . 2
Let z, =u; —u, ,and applying It6's formula to z;

and integrating both side with respect to x , we have
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|z,
L0 oz, .
=], ZZI{Zaxwk =)= A, 6 0) .
+ar,(u x»{i ATACHCE RV
+ Zn:bz‘i L Ky (- S)[g./ (u;(t,x))-g; (u‘;)}ls}}dtdx
+[ 22,30, (u, (1) dw, ()

+[ 302, (e x))ddx.

Taking V(z(t),t)ze"’i”z,.(t)"; , applying it0's
i=1

formula to V' (z(¢),1)
respect to x , we have

V(=0).)
=2l O+ [jee Xz ds

, and integrating both side with

U N 2 ; i ai
+.[o e ’”;”Zi ()l IX Zl{z ox, (D axk)

—a, (u, (6,0, (0, (1,2)) ~ B,i]) |

+a, (ui(z,x)>{iay [/, ) = 1, )

+ Zn:bl.j J._IOO K, (- s)[gj (u;(t,x))— g, (u;)}ls}}dtdx
e ryla ;[ 26X 0, G (5,0 doo, (s)dx
+ J:e” %g”zl (s)||;2 J.X Z O'f (u,(s,x)) dsdx

t L r(r—=2) < 4
e =5 2RO,
n 2
le (J.X z,(s) o, (u, (s, x))dx) ds
=
Notice that, it follows from the boundary condition that [9]

AL P

(11)
Hence, using (Al), (A4), (A5) and (11), Holder inequality
and Lemma 2, we obtain

V(z(2),0)

<3l O+ [ X
efetrapl o,
+r07i§‘ay,‘ |2
+r@i\by
[ ree Zn:”Zi @I = (S)Z": o, (s.x))deo, (s)dx
+02“ZM@Y22Lk@mw

)3 10

=1l j=1

<YL= + [[ce” Yz, ()]s
i=1 i=1

Zj (S)Hz

[ K,ts-0) 0 O | ] g

- 2L2 ||z (s)” ds

n .
+f;07fe“z —rﬁf||2f(5)||;

i=1
) m Pk, j
qk
2 :Llj Zl
k=

N

n
Pm+l,i
+ Z‘aij ‘{”(ﬂf z
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o] =13 o e o)

H{co 2 ), ” }

o, re 2 0,
xIX z, (s)i o, (u,(s,x))do (s)dx

o] e 3 A LT L)

=1l j=1

< Z”zi (0)”2 + J.O ce” Z”Zi (S)||2dS

+.[ ae Z{rﬂ ||z (s)||

zu[zq [uﬂ ||z,<s>||2J Hur fz,)
+J‘_; K (s— U)Zn_l‘bv‘{znj: dx ((/’/qk/ 2 (S)”z}

+ (q)}ﬂml,/ sz (O-)HZ ) ' :l d O'} ds

+ J.Ot re”i”zi (s)||;_2_|. z, (s)i: o, (u,(s,x))dw; (s)dx

¢ 1 )
st (zqknz O+ O i

i=l j=1

(12)
Notice that

p n Pri ’
J:o K (s - O-)Z‘bi/‘ {Z dx [(quk |2 (S)”z]
=1 =)

+(¢)’.3m*“ HZ(O')H )r}da
- Zl\b \Zm Tz,

+ ,[o K (G);‘by ) e, (s - o) do,

and

>3,

i=l j=1

[ Ky @[ el |z, (s - o) dsdor

” (S)H dsdo

:ii‘bgjo+ng(a)e Ie (oj
=l j=

Lm K, (o) Ii e “zj (S)H; dsdo

n n
t ZZ‘bij
i1 j1

Hence, we have

V((0).0) < ﬁuzi O, + [/ ce* Yl (5)] s

+[ @e Z rﬂ”z &),
S S e 6 7
S Sao ol
ror [ ek, @), <s>u;da]}ds
+a ZZ\b U je K, (0) 9] e |z, (s)), dsdo
+ jo re‘Z”zi(s)” j zi(s)Zai.(uj(S,x))dwj(s)dx

tr—1 9
+J. —e ZZL r"z (s)" ds

i=l j=1
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TPk, j

=2 |- ;- [ 2| @rf=c)- ozzl\ag\;qw
1= i= Jj= =

TPk, j

n n m -
v "Pma1,j -V i
@y Jalu; @Y [b;| > a0,
1 j=1 k=1

J=

+#Zn:§j ||zi (s) ;a’s
j=1

[ [ e K (@) @ e |z, (5)], dsdo
i=1 j=1
+.[Ot re® z ||z,. (s)
i=1
X IX z, (s)z o, (u,(s,x))do,(s)dx,
=1

r=2
2

from (A6) and Eq. (10), we can get
V(z(),1)
< Z"Zi )
5

i=l j=!

n
+ Jz re Zlnzi (s)
P

r
2

+o0 00 cs — _Pma,j cO r
IO I_Ge K,(o)ap/ e ||z,(s)||2dsda

J

(13)

It is obvious that the right hand-side of (13) is a
nonnegative semimartingale. From Lemma 1, it can be
easily seen that its limit is a.s. finite as ¢ — oo, which

shows that
limsupV (u(t),t) <+w, P—a.s..
{—0

Since
gLrqup{ew;”Zi (t)||;} <40, P-as.
Which implies
. 1 < r
lim sup* Iog{;”zi (t)||2} <-c, P—a.s.,
that is

Iimsup1 Iogh|z||r]< —, P-as..
t—0 t

;-z J’X z, (S)Z}i: o, (u,(sx))dw, (s)dx.

The proof is completed.
Theorem 2 Under the assumptions of Theorem 1, model (3)
is p -th moment exponentially stable.

Proof. Taking expectations for both hand-sides of (13), it

follows from

Ej; re® i i

i=1 j=1

z;(s)

)2'72 JX z;(s)o,; (u; (s, x))dxdw;(s) =0

that

n

. < 2 E[z )

i=1

e ln E”Z,. (1)

=1
+ i i ‘by'U_ofcs J:w K, (o)p " e E HZ ; (s)”; dods

i=1 j=1
Clearly, there exists some positive constant K such that

g E(i”zi ©) ;j < KE[Zn:”zi (0) ;je-"’.

The proof is completed.

E”Z(t)

4 Conclusions

In this paper, the almost surely exponential stability
and exponential p-th moment stability have been studied for
a class of stochastic Cohen—Grossberg neural networks with
distributed delays and reaction—diffusion term. Two delay-
independent and easily verifiable sufficient conditions have
been obtained to ensure the existence, uniqueness, almost
surely exponential stability and exponential p-th moment
stability of the equilibrium point for the addressed stochastic
Cohen-Grossberg neural network with distributed delays
and reaction-diffusion terms.
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