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Summary 
This paper mainly deals with the almost surely exponential 
stability and exponential p-th moment stability for a class of 
stochastic Cohen–Grossberg neural networks with 
distributed delays and reaction–diffusion term. By 
constructing suitable Lyapunov functional, employing the 
nonnegative semi-martingale convergence theorem and 
applying matrix theory and stochastic analysis technique, 
two delay-independent and easily verifiable sufficient 
conditions are obtained to ensure the existence, uniqueness, 
almost surely exponential stability and exponential p-th 
moment stability of the equilibrium point for the addressed 
stochastic Cohen-Grossberg neural network with distributed 
delays and reaction-diffusion terms.  
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1. Introduction 

The Cohen–Grossberg neural network, first proposed and 
studied by Cohen and Grossberg in 1983 [1], has attracted 
considerable attention due to its potential applications in 
classification, parallel computing, associative memory, 
signal and image processing, especially in solving some 
difficult optimization problems. In such applications, it is of 
prime importance to ensure that the designed neural 
networks are stable [2]. In implementation of neural 
networks, however, time delays are unavoidably 
encountered due to the finite switching speed of neurons 
and amplifiers. It has been found that, the existence of time 
delays may lead to instability and oscillation in a neural 
network. Therefore, stability analysis of Cohen–Grossberg 
neural network with time delays has received much 
attention [3-10].  

Excepting delay effects, strictly speaking, diffusion 
effects cannot be avoided in the neural networks when 
electrons are moving in asymmetric electromagnetic fields. 
So we must consider that the activations vary in space as 
well as in time. In [11-14], the authors have considered the 
stability of neural networks with diffusion terms, which are 
expressed by partial differential equations. 

In addition to the delay effects, stochastic effects 
constitute another source of disturbances or uncertainties in 
real systems [10]. A lot of dynamical systems have variable 
structures subject to stochastic abrupt changes, which may 
result from abrupt phenomena such as stochastic failures 
and repairs of the components, changes in the 
interconnections of subsystems or sudden environment 
switching [15]. Therefore, stochastic perturbations should 
be taken into account when modeling neural networks. In 
recent years, the dynamic analysis of stochastic systems 
(including neural networks) with delays has been an 
attractive topic for many researchers, and a large number of 
stability criteria of these systems have been reported [10, 
15-20]. Particularly, in [15-16], the authors have considered 
the exponential p-stability of stochastic differential 
equations with constant delays and obtained several stability 
conditions for checking the exponential p-stability. In [17-
20], the problem on stability of stochastic neural networks 
with constant delays or time-varying delay or bounded 
distributed delays has been considered and many interesting 
results have been established by employing a Lyapunov 
functional approach. To the best of our knowledge, so far, 
few authors have considered the problem of stability 
analysis for Cohen–Grossberg neural networks with both 
distributed delays and reaction-diffusion terms in the 
simultaneous presence of stochastic effects. 

  In this paper, we investigate the almost surely 
exponential stability and exponential p-th moment stability 
for stochastic Cohen–Grossberg neural network with 
continuously distributed delays and reaction-diffusion terms．  

2. Model description and preliminaries 

In this paper, we consider the following stochastic Cohen–
Grossberg neural network with continuously distributed 
delays and reaction-diffusion terms 
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We will prove in Section 3 that model (2) has a unique 
equilibrium point T**

1 ),...,( n
* uuu =  by the property of 

homeomorphism and the inequality technique. Then model 
(1) admits an equilibrium point * * * T

1( ,..., )nu u u= . At this 
time, model (1) is equivalent to 
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from (A6) and Eq. (10), we can get 
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It is obvious that the right hand-side of (13) is a 
nonnegative semimartingale. From Lemma 1, it can be 
easily seen that its limit is a.s. finite as ,∞→t which 
shows that  
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The proof is completed. 
Theorem 2 Under the assumptions of Theorem 1, model (3) 
is p -th moment exponentially stable. 
Proof. Taking expectations for both hand-sides of (13), it 
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Clearly, there exists some positive constant K  such that 
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The proof is completed. 

4 Conclusions 

In this paper, the almost surely exponential stability 
and exponential p-th moment stability have been studied for 
a class of stochastic Cohen–Grossberg neural networks with 
distributed delays and reaction–diffusion term. Two delay-
independent and easily verifiable sufficient conditions have 
been obtained to ensure the existence, uniqueness, almost 
surely exponential stability and exponential p-th moment 
stability of the equilibrium point for the addressed stochastic 
Cohen-Grossberg neural network with distributed delays 
and reaction-diffusion terms.  
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