
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

167

Manuscript received July 5, 2008

Manuscript revised July 20, 2008

A New approach to Detect Safety Violations in UML Statechart Models

 Prashanth C.M.† Dr. K. Chandrashekar Shet††,

 Dept. of Computer Engineering,
National Institute of Technology Karnataka , Surathkal, INDIA

Summary
The model based development is a widely accepted
phenomenon to build reliable software. This has prompted
development of tools capable of generating code from the
model. Such rapid software development tools are handy
in development of embedded systems. The code generated
using tools can be deployed directly on to target hard ware,
provided the model correctness is ensured. In this paper,
we present an efficient procedure to verify UML (Unified
Modeling Language) statechart models of reactive and
concurrent systems. The algorithm checks for safety
property violation during the construction (on-the-fly) of
the state space graph and generates counter example if any
violation is found. The exploration of the state space is
terminated, as soon as safety violation is found and hence
search space is reduced. We prove the correctness of the
approach by taking a benchmark case study of Generalized
Railroad Crossing (GRC) system. The dynamic behavior
of the gate & track, two concurrent objects of the GRC
system are modeled using UML statecharts and the safety
property “when train is at the crossing, the gate always
remain closed" is verified. We could detect property
violation in the initial UML statechart model of GRC and
later it is corrected with the help of the counter example
generated by the algorithm. The case study results show
that the verification algorithm yields 13% reduction in the
state space for the GRC example.

Key words:
UML Statecharts, Software verification, Reactive Systems

1. Introduction

1.1 Preamble

The development of reliable software has been the major
goal for the advent of software engineering discipline. The
traditional way of verifying software systems is through
human inspection, simulation, and testing. Though these
methods are cost effective, unfortunately these approaches
provide no guarantee about the quality of the software.
The human inspection or code review is limited by the
abilities of the reviewers. Simulation and testing can only

explore a minuscule fraction of the state space of any
software system. Model driven software development has
been a prominent means to enhance the understandability
of the system's structure and behavior. It has prompted
industries to develop tools which can generate the code in
high level languages like C, C++ or JAVA from the model
(IBM's Rational Rose RT [1] is one such tool used for the
development of embedded real time systems).

As deployable binaries are generated from the model,
ensuring model's correctness becomes highly essential.
The commonly used model verification technique is model
checking. Model checking [2] is a pragmatic technique
that, given a finite-state model of a system and a logical
property (expected system property), systematically
checks whether model holds the property or not. If the
model does not hold the expected property, an error trace
(also called as counter example) is generated. The original
model can be refined by leveraging information generated
by the counter example. This approach is known as
counter example guided model refinement [3]. Several
model checking tools like SPIN (Simple Promela
INterpreter) [4], SMV (Symbolic Model Verifier) [5],
SLAM [6], BLAST (Berkeley Lazy Abstraction software
verification Tool) [7] and Rule Base [8] are in existence.

The major drawback of using afore mentioned model
checking tools for verification is that, they expect system
to be modeled using their proprietary input language. The
input languages of most of these tools are text based and
lacks advantages of visual representation. Numerous
researchers have tried to address this issue. We have
surveyed the earlier works (see our published papers
([9],[10]) and found that, though they suggest modeling
the dynamic behavior of the system using UML (Unified
Modeling Language) statechart diagrams (provides visual
representation to the models), subsequently these
statechart diagrams are translated to the input language of
the model checker before verification. The translation
process removes the abstraction of the models and
exponentially increases the state space of the complex
systems. This could lead to state explosion [11].

We in this paper, present verification algorithm which
avoids the usage of off-the-shelf model checker and

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

168

translation of UML statechart models to input language of
the model checker. The algorithm presented is memory
efficient and successfully handles the complex reactive
systems.

In the section 2, we present algorithm devised to verify
safety properties of reactive systems. In section 3, we
describe generalized rail road crossing problem, UML
statechart model for the GRC and also discus about the
verification of safety property of the GRC model using the
proposed technique. The results and performance of the
proposed verification technique is discussed in the section
4. We draw conclusions in the section 5.

1.2 Methodology

A widely known approach for verifying the complex
systems is, by modeling them in the input language of the
off-the-shelf model checker and passing them on to model
checker. The property expected is specified in temporal
logic. Subsequently, the need of visual formalism to the
models is realized and UML statecharts are used for
modeling dynamic behavior of the system. The
verification of such models is done by first representing
the UML statecharts in Extended Hierarchical Automata
(EHA) and then mapping to input language of the model
checker.

This approach is well received and successful for less
complex systems. As the complexity of the system grows,
this technique of flattening (removal of abstraction) the
original model during verification would lead to “state-
explosion" and hence aborts the verification process. The
proposed algorithm for verification of reactive systems
does not use off-the-shelf model checker. The Fig.1
depicts the architecture of the proposed method. The
logics of the UML statechart diagram are captured using
suitable data structure and then the state space graph is
built. Unlike most of the model checkers, here the data
structure preserves the abstraction and limits the state
space to be explored. Thus, memory required is reduced.
This methodology is explained in detail in our earlier
papers [9, 10 and 12].

Figure 1: Proposed verification method

2. Proposed verification technique

2.1 Assumptions

It is assumed that, the system under consideration has
multiple cooperative objects. These objects communicate
via events. The dynamic behavior of the each object is
modeled using UML statecharts. The objects change their
state upon receiving an appropriate externally or internally
generated events & the corresponding guard condition
becoming true. The verification process involves the
translation of each UML statechart to the form of a tuple
 },,,{ iiii ITES , Where

- i represents an object, i varies from 1 to n, where
n is number of objects

- iS is a non empty finite set of states of an object

- iE represent set of events associated with an
object

- iii SST ×⊆ is a set of total transitions

- ii SI ⊆ is a set of initial states

- Let tE be set of total events,

i.e tE = { nEEE ∪∪21 }

The property to be verified is expressed in a temporal
logic.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

169

2.2 Verification approach

In our approach, the state space of the system is built
by combining (Cartesian product) the state transitions of
all objects upon occurrence of each event ii Ee ∈ . Then

the error state (negative behavior) represented as φ¬ is
searched in the state space graph. The error state is
checked during the construction of the state space (on-the-
fly); if found further exploration of the state space is
terminated and the error trace (counter example) is
displayed. This approach limits the search space and
memory usage thereby. The flowchart and algorithm are
shown in Fig. 2 and Fig. 3 respectively. The algorithm
does explicit checking, when model is flaw less and no
memory is saved. This algorithm can be further improved
by finding the set relevant events and observing the
behavior of the system only upon occurrences of these
relevant events. In the next section, we illustrate
verification procedure by applying the described algorithm
to a benchmark case study, the "Generalized Railroad
Crossing” (GRC) problem introduced by Heitmeyser et al
[13].

Figure 2: Approach

Figure 3: Verification algorithm

3. A case study

3.1 The Generalized Railroad Crossing (GRC)

In this section we describe the process of verifying UML
statechart model for the “Generalized Railroad Crossing
“(GRC) system. The GRC system is expected to operate a
gate at a railroad crossing (RC). The gate for two railroad
tracks lies in an area of interest (A). The trains move in
both the directions (left to right, right to left) through A on
two tracks (T1, T2). The trains travel at different speeds
and can pass each other. It is assumed that no two trains
are allowed to move in opposite direction in A on same
track, at any point of time. There are sensors (S1, S2, S3,
S4 & S5) positioned as shown in the Fig.4. The sensors
indicate when the train arrives to region A, leaves the

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

170

region A, enter RC & exit RC. The sensor S5 indicate,
whether gate is closed or open. The occupancy interval is
defined as, maximal time interval during which one or
more trains are in railroad crossing (RC).

The system is expected to satisfy the following properties

1. The gate is closed during all occupancy intervals
(Safety)

2. The gate is open if there is no train in the
occupancy interval (Utility)

3. The gate is open as much as possible (Live ness)

The dynamics of the GRC system is described by UML
statecharts for the objects Gate and Track. The safety
property looked for in the GRC model “when the train is
at RC on Track1 or Track2 the Gate should remain closed"
is expressed in temporal logic as follows:

(T1.Crossing V T2.Crossing) G.Closed

(V represents logical OR)

In our approach, this positive assertion is changed into
negative and treated as an invalid behavior (safety
violation). This invalid behavior is then proved wrong or
correct by pruning the state space. If the claim is found
correct then the model has a flaw and counter example is
generated (path from the initial state to error state). The
above stated assertion can be written as follows in the
negative form.

(T1.Crossing V T2.Crossing) ¬ (G.Closed)

This means that the train is crossing, when the gate is in
open or opening or closing state.

 Figure 4: Railroad crossing

3.2 UML statechart model of GRC

The UML statechart model for the GRC system is
presented in the Fig. 5. The gate and track are the major
objects of the GRC system. The UML statechart for Gate
in Fig. 5(a) shows an initial state and four simple states
viz., Open, Closing, Closed and Opening. The gate reacts
to external signals by opening & closing of gate. The
UML statechart for Track in Fig. 5 (b) shows concurrent
composite state consisting of two orthogonal regions for
each track (Track1 & Track2), which are in turn having
sequential states (OR state). Each orthogonal region has an
initial sate and five simple states viz., No train,
Approaching, Crossing, Stopped and Leaving. The
transition from source states to target states can be
possible, when an appropriate signal/event given as label
on the arrows (see Fig. 5) is triggered. All the events
responsible for state transitions of objects are listed in the
table 1.

Table 1: Events associated with GRC
Event Code Description
tkevarrive 1 Event generated by the track object, when train

arrives at A.
tkeventer 2 Event generated by the track object, when train

enters the crossing
tkevexit 3 Event generated by the track object, when train

exits the crossing
tkevleave 4 Event generated by the track object, when train

leaves the A
gtevclose 5 Event generated by the gate object, when gate is

closed
gtevopen 6 Event generated by the gate object, when gate is

opened

 (a) UML statechart for the object GATE

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

171

(b) UML statechart for the object TRACK

Figure 5: UML statechart model of GRC

3.3 State space construction

The state space is constructed from the description of
the system in UML statechart model. As explained in
section 2, the dynamic behaviors of all objects are
combined to generate state space graph. The notion of
"Universe" (U) is useful in describing the construction of
state space. It is the set of all possible combinations of
local states of the objects of a system. The UML statechart
model of the GRC system (see Fig.5) has two objects Gate
and Track, The Track object has two orthogonal states
Track1 and Track2. The Gate object has 4 local states,
Track1 has 5 local states and Track2 has 5 local states.
The U for GRC system will contain (4 X 5 X 5) 100 states.
It is common that the model restricts the number of
reachable states. Thus set of possible states of state space
is always a subset of U. As per our UML model the state
space of the GRC system contains 46 states. The table 2
shows all possible states.

Table 2: All possible states

3.4 The algorithm applied to GRC

The algorithm checks the invalid behavior of the system
during the construction of the state space. The
construction process is terminated immediately when the
negative behavior is observed. We have applied the
verification algorithm to the generalized railroad crossing
model and observed that the original UML statechart
model had bad state or error state. The Fig.7 shows the
state space constructed. The state space is searched for the
violation of the safety property “The gate is closed during
all occupancy intervals", occurrence of any state in the set

},,,,,,,,,,{ 45424140342320141097 SsSSSSSSSSS is
treated as safety violation.

The initial state 1S is a state representing the initial states
of Gate, Track1 and Track2 (i.e, Open, No train, No train).
The successive states),,(652 SSS on event “tkevarrive”
(see table 1) are computed. These states are checked for
safety violation. If violation is found further exploration is
terminated. Otherwise, a state is randomly selected for
further exploration (for example state 2S). This process is

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

172

continued till we see safety violation or all possible states
are explored. In the case of GRC exploration is terminated
on reaching the state 45S , which is an error state. The state
space graph constructed in afore mentioned way is used to
generate counter example or error trace shown in the Fig.
8.

 Figure 7: State space exploration

Figure 8: Error trace/counter example

4. Results and discussion

4.1 Correcting the UML statechart model of GRC

The error trace shown in Fig. 8 depicts that, the Gate is
allowed to open, as and when one of the trains crosses the
RC and this leads to the bad state. This flaw in the model
can be avoided by making sure that no train is in the
occupancy interval, before allowing the Gate to open. The
corrected UML statechart of the Gate object is shown in
Fig. 9. We have added a global variable “train Count" to
the model, which is incremented every time a train enters
the crossing and decremented every time a train leaves the
crossing. The value of this train count is checked by the
Gate object before changing its state from closed to
opening. If the train count is 0 then the Gate starts opening,
other wise it remains closed. There by we ensure that no
trains are at crossing, when the Gate begins to open. Thus
the model correctness is ensured.

4.2 Performance of the algorithm

The verification algorithm is evaluated based on the ability
to reduce the state space during the state exploration. The
results obtained by applying the algorithm to GRC system
is shown in table 3.

Table 3: Performance
Complete
state space

States
Explored

Error path
length

State space
reduction

46 40 24 13%

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

173

Figure 9: Corrected UML statechart for the object GATE

5. Conclusions

A majority of the existing approaches translate UML
statechart model into text based modeling language which
can then be verified using off-the-shelf model checker.
The proposed verification technique does not translate
UML statechart models to the text based language of the
model checker, as it takes visual model as the input.

In this paper, we have described an algorithm for the
verification of safety property violations in UML
statechart models of reactive systems. The correctness of
the verification technique has been illustrated taking
“Generalized Railroad Crossing (GRC)” as a case study.
The algorithm checks the safety violation during the
construction (on-the-fly) of the state space. This leads to
the reduction in the state space (13% for GRC example).
There will be no reduction in the state space if the
verification is done on a flawless model. This algorithm
will not generate the error trace of shortest length (24 for
GRC).

We have verified the UML statechart model of the GRC
system for compliance of the safety “The gate is closed
during all occupancy intervals" using the above mentioned
technique and found a flaw in the initial model and we
later corrected it by attaching a global variable “train
count" to the model. The “train count" = 0 ensures no train
is at crossing.

Acknowledgment

We would like to thank all those employees of IBM
India private limited, Bangalore who have given fruitful
suggestions and assistance in carrying out this work.

References
[1] IBM's Rational Rose Real Time (Rational Rose RT) tool

http://www.ibm.com/developerworks/ rational/library/
797.html, visited on 01/12/2007

[2] Edmund M. Clarke,Jr., Orna Grumberg and Doron A.
Peled , Model Checking (The MIT press, 1999)

[3] Edmund M Clarke, Ansgar Fehnker, et.al.: Abstraction

and Counterexample refinement in model checking of
Hybrid Systems, Vol.14, No 4, International journal of
foundations of computer science, (2003), 583-604

[4] Gerard J. Holzmann, The Model Checker Spin, IEEE

Trans. on Software Engineering, Vol. 23, No. 5, (1997),
279-295

[5] Kenneth L. Mc. Millan, Symbolic Model Checking: An

approach to the state explosion problem, (Ph.D thesis
submitted to Carnegie Mellon University (CMU), 1992)

[6] The SLAM project of microsoft laboratory,

http://research.microsoft.com/slam/ visited on 13/10/2007

[7] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar,

Grégoire Sutre, Software Verification with BLAST.
235-239, Electronic Editions (Springer LINK)

[8] I. Beer, S. Ben-David, C. Eisner and Landvar :

RuleBase-an industry-oriented formal verification tool,
Proceedings of 33rd Design Automation Conference
(DAC), Asociation for Computing Machinery
Inc.,(1996), 655-660.

[9] C.M. Prashanth, Dr. K.C. Shet, Janees Elamkulam, " A

survey of model checking the UML statechart model of
embedded systems", National Conference on Emerging
Trends in Engineering \& Technology, Frontier (2007),India,
149-155

[10] C.M. Prashanth, Dr. K.C. Shet, Janees Elamkulam, “A

Reality chek of model checking the UML statechart
diagrams and research directions", International conference
on Computers, Communication, Control systems and
Instrumentation (3CI-2007), Bangalore, India, pp 16-22

[11] Valmari,A.: The State explosion Problem, Lectures on

Petri Nets I: Basic Models, LNCS 1491, Springer-
Verlag (1998) 429-52

[12] C.M. Prashanth, Dr. K.C. Shet, Janees Elamkulam,

“Verification Framework for Detecting Safety Violations in
UML statecharts", Second Asia International conference on
Modeling and Simulation (AMS 2008), Kuala Lumpur,

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

174

Malaysia, 13-15 May 2008,pp 849-854. publisher: IEEE
computer society

[13] Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G.

Labaw. Comparing different approaches for Specifying and
Verifying Real-Time Systems. In Proceedings of 10th IEEE
workshop on Real-Time Operating Systems and Software,
(1993), 122-129

C. M. PRASHANTH is an Assistant
Professor in the department of
Computer Science & Engineering,
Adichunchanagiri Institute of
Technology, India. He has received the
B.E. degree in Electronics &
Communication from Adichunchanagiri
Institute of Technology, India in 1996
and M.E. degree in Computer Science

& Engineering from Vellore College of Engineering, India in
2002. He is currently pursuing Ph.D at National Institute of
Technology Karnataka, India. His research interests include
Software Engineering, Computer Architecture and Operating
system. He is life member of Indian Society of Technical
Education. He has published papers in refereed international
conference proceedings and Journals.

Dr. K. C. SHET is a Professor in the
dept., of Computer Engineering, National
Institute of Technology Karnataka, India.
He has more than 36 years of experience
in teaching and research. He holds a Ph.
D. from IIT Bombay, India. He is a
member of Computer Society of India,
and Indian Society of Technical
Education. He is a Fellow of Institution

of Engineers (INDIA). His research interests include software
testing, Security Solution for Web Services, Cyber Laws, Anti
spam solutions, Wireless Networks, Mobile Computing, Ad hoc
Networks. He has published more than 200 papers in refereed
conference proceedings and journals.

