
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

282

Manuscript received July 5, 2008.
Manuscript revised July 20, 2008.

Simulator & Simulation Models for Cost-Benefit Analysis of

Software Reuse Policies

 P.K. Suri1 and Neeraj Garg2

1 Professor, Department of Computer Science & Applications, Kurukshetra University, Kurukshetra
(Haryana) India,

2 Asst. Professor & Head, Department of Masters in Computer Science & Applications , Maharaja Agresen
Institute of Management & Technology , Jagadhri(Haryana), India

Summary
In this paper we a simulator is developed for the cost benefit
analysis of the software before it is launched. Two cases are
discussed . In one case the analysis is done on the basis of
Bayes’ Posterior Probability theorem during the development
stage of the software. The decision are made whether to go with
the implementation of the reuse policy or not based on the
conditions of the economic environment and the word by the
consultant.
In another case we have used the Decision under uncertainty
principle of Laplace, Maximin(Minimax), Savage, Hurwicz
criterions to reach to a certain decision that how many reusable
functionalities can be added to a software so that the
development costs are minimum and the profits are maximum.
The different cases are simulated on the simulator which takes
into consideration the various factors which effect the decision
and the environmental conditions. The inputs are either
generated randomly by a random number generator or can be
input by user. For calculating the costs the simulator makes use
of an economic model.

Key Words

Software reusability, cost benefit analysis, software
economic model, Bayes, posterior probability, decision
under uncertainty , Laplace, Maximin(Minimax), Savage,
Hurwicz criterions.

Introduction

Reuse is the application of existing solutions to new
problems. Reuse can reduce the time spent in creating
solutions by avoiding duplicated efforts. Frakes, notes that
“using reusable software generally results in higher
overall productivity” [1].
According to Poulin et al. “the financial benefit
attributable to reuse during the development phase is 80
percent of the cost of developing new code” [2]. The
benefits are not only realized in productivity but also in
quality; software developed using existing components
can be more reliable than those developed from scratch.
However, the reusable components must exist before they

can be reused. The problem of reuse, therefore, lies in
the answer to the following question: What features
make modules reusable, and how can one achieve such
features in database design models? Software reuse is
the use of existing software components to construct
new systems [3].
Reusing existing parts or components is a standard part
of software engineering and human problem solving in
general. However, reuse in software development is
more effective if practice formally [1]. Formal reuse
implies that reuse must be viewed as a goal to strive for,
not just a result that happens by chance. Before reuse
can take place, the reusable components must exist in
some form, and designers must be aware of their
existence and the functionality they provide.
If formal reuse is part of an organization’s overall
development goals, then the software construction
process is different; not only are developers tasked to
find and use existing artifacts, they also have to assure
that the final product can also be reused in future
development.
Software engineering literature lists many different
kinds of reuse, but one of the most comprehensive lists
is the one provided by Prieto-Diaz [3].
Reuse can also be characterized by how the new system
is actually built. A new system may be constructed by
putting together existing components (compositional
reuse), or by using high- level specifications and
application and code generators to produce a new
system (generative reuse).
In reuse, whatever artifact is reused, it may be used as-
is, or it may be modified or extended to provide
additional functionality. The reuse of components
without any modification is termed black-box reuse.
White-box reuse is when the component is modified
before use. According to Prieto-Diaz, white-box reuse is
prevalent in the current state of practice [3].
To achieve reusability , economic constraint is the
major factor to decide whether an organization should
go for a product with reusable components or
reusability.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

283

Measuring the reuse cost
The software industry is painfully realizing that a
software reuse effort if not carefully planned and properly
carried out, often times becomes an inhibitor rather than a
catalyst to software productivity and quality. In order to
be successful, not only must a reuse program be
technically sound, It must also be economically
worthwhile. After all, reducing costs and increasing
quality were the two main factors that drove software
reuse into the software mainstream.
There are many informal arguments that make software
reuse an appealing and economically viable idea. But
reuse is not for free. Reuse of software incurs costs that
would not have to be made if software was developed
from scratch and not to be used again.
From an economic perspective ‘black box reuse’ is
considered as the only viable way of software reuse. In
black box reuse, software assets are not modified
internally; the only tailoring takes place via
(configuration) parameters.
A reuse metric defines a way of measuring some attribute
of developing software with reusable assets. Several
software reuse metrics have been developed. The
simulator uses the following metrics and models for
calculating the costs.

Relative cost of reuse (RCR).
Assume that the cost to develop a new module equals one
unit of effort. The portion of this effort that it takes to
reuse an equivalent module without modifications is
called relative cost of reuse.
Relative cost of writing for reuse (RCWR).Assume that
the cost to develop a new module for one-time use equals
one unit of effort. The portion of this effort that it takes to
produce an equivalent reusable module is called relative
cost of writing for reuse. In developing for reuse, extra
effort is spent on several tasks. The relative extra effort
for different tasks Margono and Rhoads
 .
Gaffney and Durek propose a model for making a cost-
benefit analysis of reuse . Their model assumes that the
cost of the reuse program, including the additional cost to
build reusable components is amortized across all future
projects that will use the component. Their model further
assumes a centrally maintained repository that must
recover its cost by charging equal sums of money to the
first n projects that use a component from the repository.

Reuse Econimoc Models

Any significant effort to implement software reuse must
include a measurement program which allows the project
management to assess how well the project is doing with
respect to developing and using reusable software. Basili
[4] lists the following key questions which a reuse

measurement program should address What
percentage of a system is made up of reusable
components? How many and what changes were made
to a reusable component in order to reuse it?3How
much effort was required to: locate, understand, adapt,
and integrate a reusable component? How often is a
given reusable component reused?

The cost of developing reusable components is often a
reason given by management for not encouraging the
development of reusable components. While it is true
that the economics of reuse are such that the initial
development of reusable components often requires
more effort than without such consideration, accounting
for the cost associated with developing the reusable
components is often not done fairly. When doing
cost/benefit analysis for software reuse, one needs to
consider the long-term benefits of reusable components
and their associated cost. It has been argued that the cost
of a reusable component should be amortized over all
projects using the component [5].

The benefits of a reusable component apply to every
project using the component. Thus, taking a strictly
near-term view of reusable components overemphasizes
their cost relative to their benefit. The true economics of
reusable components lies in the number of times the
component is reused across multiple projects.[9]

The simulator uses the SPC economic Model for
calculating the costs . The SPC reuse economics model
grew out of the Software Productivity Consortium
(SPC), a consortium owned by a number of U.S.
aerospace companies which builds and supports
software tools to improve productivity [5][9].

In this model, the total cost of delivering a software
product is considered equal to the cost of developing
new software plus the cost of reusing existing software.

The cost of developing a software product relative to all
new code (for which C = 1), C, is given by

C = (1-R)(1) + (R) (b+E/n)

Where ,Ris the proportion of reusable code in a software
product (0 <R <1); b is the cost of integrating reusable
code relative to the creation and integration of all new
code (for which b = 1) (b ≥0);E is the cost of developing
reusable code relative to the creation of all new code
(for which E = 1) (E ≥0); and n is the number of uses
over which the cost of the reusable code is to be
amortized (n ≥1).

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

284

The term (1 -R) (1) indicates the relative cost of
developing reusable portion of the software product. If a
software product contains no reusable code (R = 0), then
C = 1. On the other hand, even if a software product is
built entirely on reusable components (R = 1),there is still
cost associated with creating the product, i.e.,

C = (b + E/n).
Thus, according to this model, in order for a reuse effort
to succeed, one must not only try to maximize R, but one
must also try to minimize b and E and at the same time try
to maximize n.

The SPC model further defines P, the relative productivity
of creating a software product with some amount of reuse,
as the inverse of C
 P = 1/C

A study by Favaro [6] on experiences gained from a
project that made use of a popular repository of reusable
components indicated that depending on the
implementation complexity of a reusable component, no
can vary between 1.33 and 12.97. Based on this
observation, it may take at least 13 reuses to recoup the
investment made in developing the most complex
component in the repository!

Unfortunately, there is no commonly accepted metric for
assessing success of reuse. Even if the organization has
decided to launch a product with reusability the question
arises how much reusability should be added to the
software. One way to measure the benefits of reuse is to
develop the same project once with and once without
reuse. If the same crew is used, then there is a learning
effect that influences the project’s performance. If not the
same crew is used, then the expertise of the different
individuals on the team affects the projects performance.
A way out of this dilemma is by collecting statistics over
a large number of projects as this is believed to even out
effects of peculiarities of specific projects.
For this a detailed study of the cost-benefit analysis is
required to be done with the help of a simulator and in
this paper we have used the various decision criterions to
reach to some decision.
As the computations involved are large and the data is
probabilistic based in future possibilities; we have used
different random number generators and a simulator
developed in a high level language to help an organization
to take an appropriate decision .
The various decision criterions [16] used in the simulator
for taking decisions are discussed below:
Posterior (Bayes’) Probabilities :
The probabilities used in the expected value criterion are
usually determined from historical data. In some cases the
probabilities are adjusted using information based on
sampling or experimentation . These resulting

probabilities are referred to as posterior (or Bayes’)
probabilities
Decision can be reached based on posterior probabilities
in the following steps
Step 1:
The conditional probabilities of the case may be read or
generated on a random number generator
 P {aj| bi}
Step 2.
Compute the joint probabilities as

P{bi,aj} = P { aj|bi}P{bi}, for all i and j

Given the prior probabilities P{b1} and P{b2} , the join
probabilities are determined by multiplying the first and
the second rows of the table in step 1 by P{b1} and
P{b2} respectively

Step 3.
Compute absolute probabilities as

Step 4.
Determine the desired posterior probabilities as

Step 5.
Compute the cost benefit analysis and choose the policy
with least loss or maximum profit.

Decision under uncertainty
Decision making under uncertainty involves
alternative actions whose payoffs depend on the random
states of nature . Specifically the payoff matrix of a
decision problem with m alternative actions and n states
can be represented as

Y1 Y2. … Yn

x1 a(x1,y1) a(x1,y2) … a(x1,yn)

x2 a(x2,y1) a(x2,y2) … a(x2,yn)

x3 a(x3,y1) a(x3,y2) … a(x3,yn)
. . . .
. . . .
. . . .
xm a(xm,y1) a(xm,y2) … a(xm,yn)

The element xi represents action i and the element Yj
represent the state of nature j . The payoff or the
outcome is associated with the action xi and state Yj is a
(xi,Yj)

{ } { }
}{

|
|

j

ji
ji aP

abP
abP =

{ } { } jallforabPaP ji
iall

j ,,∑=

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

285

The difference between making a decision under risk and
the under uncertainty is that in the case of uncertainty ,
the probability distribution associated with the states Yj , j
= 1,2,…n, is either unknown or cannot be determined .
This lack of information has led to the development of the
following criteria for analyzing the decision problem.

1. Laplace : Laplace criterion is based on the principle of
insufficient reason . Because the probability distribution
are not known , there is no reason to believe that the
probabilities associated with the states of the nature are
different . The alternatives are thus evaluated using the
optimistic assumption that all states are equally likely to
occur ie.

P{y1} = P {y2} = … = P{Yn} = 1/n

Given that payoff a(xi,Yj) represents gain , the best
alternative is the one that yields

xi
max {),(/1

1

yixivn
n

j
∑
=

}

If a(xi,Yj) represents loss, then minimization replaces
maximization .
2. Maximin (Minimax) : criterion is based in the
conservative attitude of making the best of the worst
possible conditions . If a(xi, Yj) is loss, then we select the
action that corresponds to the minimum criterion.

xj
min {

yj
max),(yixia }

IF a(xi,Yj) is gain , we use the Maximin criterion given by

xj
max {

yj
min),(yixia }

3. Savage Regret : criterion aims at moderating
conservation in the Minimax (Maximin) criterion by
replacing the (gain or loss) payoff matrix a(xi,Yj) with a
loss (or regret) r(xi, Yj) matrix , using the following
transformation:

()
() (){ }

(){ } ()
⎪
⎪
⎩

⎪⎪
⎨

⎧

−

−

=

k

k

k

a

jijkx

jkxji

ji gainisaifyxayxa

lossisaifyxayxa

yxr
,,,max

,,min,

,

4. Hurwicz : criterion is designed to reflect decision-
making attitudes ranging from the most optimistic to the
most pessimistic (or conservative).
Define 0 ≤ α ≤ 1 , and assume that a(xi, Yj) represents
gain . Then the selected action must be associated with

() () ()
⎭
⎬
⎫

⎩
⎨
⎧ −+ jiyjiyx

yxayxa
jji

,min1,maxmax αα

The parameter α is called the index of optimism .
If α = 0 , the criterion is conservative because it applies
the regular Minimax criterion . If α = 1 , the criterion
produces optimistic results because it seeks the best of
the best conditions . We can adjust the degree of
optimism (or pessimism) through the proper selection
of the value of the α in the specified (0,1) range . In the
absence of strong feeling of optimism or pessimism , α=
0.5, may be an appropriate choice.

If a(xi, Yj) represents loss, then the criterion is changed
to

() () ()
⎭
⎬
⎫

⎩
⎨
⎧ −+ jiyjiyx

yxayxa
jji

,max1,minmin αα

Simulator for calculating cost and Taking Decisions
Simulation is a powerful tool for solving many
problems. In this paper we have devised a simulator
which will help in taking a decision on a particular
software to be developed to make it cost effective. It
will help the developer to access

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

286

the costs vis-à-vis amount of reusability to be achieved in
a software. The decision theory based on Bayse’ posterior
probability and equations of decision under uncertainty
are used in the simulation. For calculating costs the
simulator relies on the various metrics and models of cost
calculations.
This typical Simulator includes the following
components : a user interface, simulation models, a
simulation engine, and output files. A user builds and
changes a simulation model though the user interface. The
user interface allows the user to save these models for
later use. The user interface allows the user to specify
parameters for the simulation runs and to start the
simulation engine. Finally, the user interface provides

methods for viewing and summarizing the output from
one or more simulation runs.
By running the simulation multiple times, the trends in
the project's evolution over time will be examined. By
running the simulation with and without incorporating
the selected modules, the differences will be analyzed
and conclusions drawn about the impact of the process
changes on the desired factors and also on Reusability.
Numeric results of the simulation are the direct outputs
of deterministic computer programs, so reproducibility
is absolute for the specific runs made. The conclusions
drawn are thus supported by data that are completely
reproducible.

 Cost Cost Cost Cost

E

R

Cost
Calculator

Hurwicz
Criterion

Random
Number

Generator

Bayes’ Posterior
Probability
Calculator

Savage
Regret

Criterion

Laplace
Criterion

Minimax
Criterion

Comparision
Process

Decision

Decision

Fig.1 DFD for Cost Benefit Analysis of Reusable Software

Cost Calculator
SPM Model

Other Metrics

Call for Cost Calculator

Display &
Plot Graph

Display

Calculate
Uncertainty

Calculate
Bayesian

Random
Number

Generator

Decision
Criterion

Uncertainty Bayesian

Simulator

No. of Reuses

Cost/Reuses

Uncertaity
Criterion –

Laplace
Minimax
Savage

Hurwicz

Fig 2. Simulator for Cost-Benefit Analysis

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

287

The different cases can be simulated on the simulator
which takes into consideration the various factors which
effect the decision and the environmental conditions. The
inputs are either generated randomly by a random number
generator based on Normal Distribution or Poisson
Distribution by applying inverse transformation functions
in Poisson and that of Box Muller transformation in
Normal distribution. The simulator has option of user
inputs also.
Algorithms of the Simulator
 1. start
 2. input the choice –

a)Bayes’ Probability or
b) decision under uncertainty

3. IF Choice is a) Bayes’ Probability perform
steps 4 to 12.

 ELSE Go to Step 13.
4. Input the cost involved
 Or
 Get the cost calculated by calling cost
 Calculator module based on the various cost
 Metrics
5. Input the total number of values and the
 numeric values of a and m.
6. Read the values of probability for ai
 Or
 Generate random number between 0 and 1
 based on Box Muller transformation for
 the probability of ai
7. Display the table for conditional probabilities
 as P{ai|bi}
8. Calculate and display the joint probabilities as
 P{bi,aj} = P { aj|bi}P{bi}, for all i and j
9. Calculate the Absolute probabilities and
 display the table for
 P {aj} = ∑ P { bi,aj} , for all j

10. Display and calculate the Posterior
 Probabilities based on the Bayes’ formula as
 P { bi, aj} = P{bi,aj}/ P {aj}
11. Calculate the cost analysis of the different
 options in step 9 and display at the decision
12. Stop , END.
13. Input the choice of criterions
14. IF one of the choice is Hurwicz
 Input the value of alpha.
15. Generate the cost matrix from the random
 number generator based on Box Muller
 transformations and by calling the Cost
 calculator Module of the Simulator
16. Calculate the Laplace , Minimax, Savage
 and Hurwicz parameters
17. Display the results and Decision
18 Stop, END.

Algorithm for the cost calculator Simulator

1. Start
2. Generate Random Number for the number of

probable software reuses
3. Calculate the cost of reuse as

C = (1-R)(1) + (R) (b+E/n).
4. Calculate the value of no the optimum

number of reuses for maximum productivity
5. Display results or pass the results to the

calling module of the Simulator

Case I:A company wants to launch a software with
some initial investment . The company has two options :
Option A – Launch the product with optimum
reusability . Option B – Launch the product without
reusability.If the market conditions are favorable ie the
target customers will like the product and the various
companies will be opting for the software of the
company . The software with option A will Give more
profit eg . say 50% (here investment is taken as
100,000) on investment and software with option B
gives 15% of the profit .If the product is not liked by the
customers ie . if the demand is low , in that case the
company will be losing 20% of the investment made in
the software due to additional effort of making it more
reusable of it chooses option A. If the company chooses
option B it will make a small profit of only 5% on
investment. The management also hires a consultant to
help in this decision and his recommendations are in the
form -If demand is high go for option A with 0.9
probability and for 0.5 probability if demand is low. The
company has to decide what should be done to
maximize profit .

The problem is simulated on the simulator. A random
number generator will generate various probabilistic
possibilities of posterior probabilities. The decision
whether the company should go for option of reusability
or not will be based on the Bayes’ posterior probability
criterion.

Results form the Simulator:

Inputs :A1=for reusability,A2=
against reusability P{a1|b1}=
0.9,P{a2|b1)= 0.1,P{a1|b2}= 0.5,
P{a2|b2}= 0.5

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

288

Tab1e: “For’ recommendation

Pb1 Pb2 A B
0.1 0.9 -833 667
0.2 0.8 173 810
0.3 0.7 1048 935
0.4 0.6 1818 1045
0.5 0.5 -932 652
0.6 0.4 3108 1230
0.7 0.3 3653 1307
0.8 0.2 4146 1378
0.9 0.1 4593 1441

For recomendation

-2000

-1000

0

1000

2000

3000

4000

5000

0 0.2 0.4 0.6 0.8 1

P r i or P r oba bi l i t y

Pm2

A

B

Fig:2 Variations in Optimum policies with different posterior

probabilities(‘Against’ Recommendation)

Tab2: “Against’ recommendation

Pb1 Pb2 A B
0.1 0.9 -1847 521
0.2 0.8 -1667 547
0.3 0.7 -1447 578
0.4 0.6 -1176 617
0.5 0.5 -833 667
0.6 0.4 -384 730
0.7 0.3 227 818
0.8 0.2 1111 944
0.9 0.1 2500 1142

Against Recomendation

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

0 0.2 0.4 0.6 0.8 1

P r i or P r oba bi l i t y

Pm2

A

B

Fig: 3. Variations in Optimum policies with different posterior

probabilities(‘Against’ Recommendation)

Decision –
‘go for the reuse policy and launch
the product with reusability ie.
option A’

‘Against ’ recommendation of the
consultant

Option A = 31100
Option B= 731

Decision as simulated –
‘go for the software without reuse
policy ie. option B’

Case II
A company is preparing to launch a software with
different levels of reusability (percentage of the number
of lines of reusable code to the total no of lines) . The
reuse policy will fall under four categories : 40%, 50%,
70 % and 80% . The cost of achieving higher level of
reuse is more . There is demand for the software by
different organizations and the on analysis of the
requirements of the customers the company will earn
profit by modifying the code according to the needs of
the customer. The cost of the software will be lowest if
it meets the requirements of the customer exactly.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

289

Deviations above or below the ideal demand levels incur
additional costs resulting from building surplus reusable
code or losing income opportunities when the
requirements are not met with reusable code . Let a1 to a4
represent the reuse levels (x1-40%. x2- 50%, x3-70%, x4
– 80%) , and Y1 to Y4(the requirements by users are
randomly generated by the Simulator) , the requirements
of the customers. The matrix below summarizes the cost
matrix in terms of lac Rupees for this situation. We have
taken one example case for explanation . The Simulator
will take a decision based on several simulation runs with
different input data.

Tab4: Cost Matrix for different Requirements
 Y1 Y2 Y3 Y4

x1 7 12 20 27
x2 10 9 14 25
x3 23 20 14 23
x4 32 24 21 17

Laplace .

P {Yj] = ¼, j=1 to 4 , the expected values for the different
actions computed by the simulator are as

E{x1}= 16.5,E{x2= 15 Optimum,E{x3} = 20
E{x4}= 23.5

Minimax

 The Minimax criterion produces the following matrix

 Y1 Y2 Y3 Y4
x1 7 12 20 27
x2 10 9 14 25
x3 23 20 14 23
x4 32 24 21 17

The Minimax is 23 with row x3.

Savage:
The regret matrix is determined by
Subtracting 7,9,14 and 17 from columns
1 to 4 respectively . Thus the matrix as computed
by simulator is

 Y1 Y2 Y3 Y4 Row
Max

x1 0 3 6 10 10
x2 3 0 0 8 8

x3 16 11 0 6 16
x4 25 15 7 0 25

The x3 will give the minimum loss
Hurwicz:
The following table summarizes the computations

Alternative Row

Minimum
Row

Maximum
H*

x1 7 27 27 -20α
x2 9 25 25 -16α
x3 14 23 23 – 9α
x4 17 32 32 -15α

* H= α (Row Min) + (1- α) (Row Max)

For α = 0.25
Alternative Row

Minimum
Row

Maximum
H*

x1 7 27 22
x2 9 25 21
x3 14 23 20.75
x4 17 32 28.25

* H= α (Row Min) + (1- α) (Row Max)

For α = 0.5
Alternative Row

Minimum
Row

Maximum
H*

X1 7 27 17
X2 9 25 17
X3 14 23 18.5
X4 17 32 24.5

• H= α (Row Min) + (1- α) (Row Max)

Results from Simulator
Choice entered All
No of runs =1000

Optimism factor alpha=0.5

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

290

Optimum Policy

a1 a1 a1 a1

a1

a2
a2

a2 a2

a2

a3
a3

a3 a3

a3

a4 a4 a4 a4

a4

0

500

1000

1500

2000

laplace Minimax Savage Hurwicz total

Uncertainity criteriion

N
um

be
r

of
 o

pt
im

um

P
ol

ic
y

a1 a2 a3 a4

The choice of x2 is best suited as it
is satisfied by Laplace, Savage and
Hurwicz when alpha(level of Optimism)
is 0.50

optimum policy alpha = 0.25

0
200
400
600
800

1000
1200
1400

lapla
ce

Mini
max

Sav
ag

e

Hurw
icz Tota

l

criterion

op
tim

um
 p

ol
ic

y

a1

a2

a3

a4

The choice of x2 and x3 is best suited.
As x2 is satisfied by Laplace & Savage
and x3 by Mimimax and Hurwicz when
alpha(level of Optimism) is 0.25

Discussions and conclusion :
In the first case there are two policies – one in favor of
reusability and the other against it. The results from the
simulator give the exhaustive possibilities. The decision
varies with the posterior probabilities . If the company
goes with reusability it is profitable only if the
probabilities i.e pb1>0.6 and pb2>0.4.

The company will not suffer any loss if it does not
recommends reusability ie. The product is launched
without reusability if pb1> 0.7 and pb2<0.3

In the second case the Simulator after 1000 runs
recommends that the policy x2 which is better as per
Laplace, Savage and Hurwicz criterion when level of
optimism , alpha is 0.5.

In the second the simulator after 1000 recommends that
the policies x3 and x2 both are suitable. The policy x2 is
supported by Laplace and savage and x3 by minimax
and Hurwicz when level of optimism , alpha is 0.25.

Thus the company can decide the optimum policy
and Reusable components should be designed with the
intent for reuse.

Reference:
[1] Frakes, W. Terry, C. Software Reuse: Metrics and Models.

ACM Computing Surveys. vol. 28. No. 2, June 1996.
[2] Poulin et al. The business case for software reuse. IBM

Systems Journal. Vol. 32, no. 4. 1993.
[3] Prieto-Diaz, Ruben. Status Report: Software Reusability.

IEEE Software. May 1993.
[4] Basili, V. R., Rombach, H. D., Bailey, J., Joo, B.G.,

Software Reuse: A Framework, Department ofComputer
Science, University of Maryland, 1987.

[5] Barnes, B., Durek, T., Gaffney, J., Pyster, A.,
A.Framework and Economic Foundation for Software
Reuse, Software Productivity Consortium SPC-TN-87-011,
Hemdon, Virginia, 1987.

[6] Favaro, J., “What Price Reusability? A Case
Studyfl in the Proceedings of the First Symposium
on Environments and Tools for Ada, Redondo
Beach, California, 1990, pp. 115-124.
[7] Measuring Software Reuse: Principles, Practices

andEconomic Models, Jeffrey Paulin, Addison
Wesley,1997

[8] Gaffney, J. E. Jr. and Durek, T. A., Soflware Reuse- Key
to Enhanced Productive@; Some QuantitativeModels,
Software Productivity Consortium SPC-TR-88-015,
Herndon, Virginia, 1988.

[9] Software Reuse Economics : Cost Benefit Analysis on a
Large-scale ADA Project, Johan Margono, Thomas E.
Rhoads Computer Sciences Corporation System Sciences
Division FAA Advanced Automation SystemU. S. A.

[10] Dai, We. Development of Reusable Components:
Preliminary Experience. Proceedings of the 17th
International Conference on Software Engineering on
Symposium on Software Reusability, 1995, pp. 238 - 246

[11] Daniani E. et al. A Hierarchy-Aware Approach to Faceted
Classification of Object-Oriented Component. ACM
Transactions on Software Engineering and Methodology.

vol. 8, no. 3, July 1999, pp. 215-262
[12] Gillibrand, David, Liu, Kecheng. Quality Metric for

Object-Oriented Design. Journal of Object-Oriented
Programming. Jan 1998.

[13] Pressman, Roger S. Software Engineering: A
Practitioner’s Approach. 4 th ed. McGraw-Hill, 1997

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

291

[14] Adaptable Simulation Models for Manufacturing. W.Jeffery
Herrmann 1 , Edward Lin 1 , Bala Ram 2 , Sanjiv Sarin .
2004

[15] Zage, M. Wayne, Zage, M. Dolores. Evaluating Design
Metrics on Large-Scale Software. IEEE Software. 1993.

[16]Taha Hamdy A., Operations research an Introduction,
Eighth Edition 2007, Pearson Education .

Prof(Dr.)P.K.Suri received his
Ph.D.degree from Faculty Of
Engineering Kurukshetra University,
Kurukshetra, India and Master’s
degree from Indian Institute of
Technology, Roorkee (formerly
known as Roorkee University), India.
He is working as Professor in the
Department of Computer Science &

Applications, Kurukshetra University, Kurukshetra - 136119
(Haryana), India since Oct. 1993. He has earlier worked as
Reader, Computer Sc. & Applications, at Bhopal University,
Bhopal from 1985-90. He has supervised five Ph.D.’s in
Computer Science and thirteen students are working under his
supervision. He has more than 100 publications in International /
National Journals and Conferences. He is receipient of ‘’THE
GEORGE OOMAN MEMORIAL PRIZE’ for the year 1991-
92 and a RESEARCH AWAWD – “The Certificate of Merit-
2000” for the paper entitles ESMD- An Expert System for
Medical Diagnosis from the Institution of Engineers, India. His
Teaching and Research include Simulation and Modeling, SQA,
Software Reliability , Software Testing & Software Engineering
Process, Temporal Databases , Ad Hoc Networks , Grid
Computing , and Biomechanics.

Neeraj Garg received his B.E. Degree
and Masters in Computer Science and
Applications (MCA) Panajb University ,
Chandigarh and Kurukshetra University,
Kurukshetra in the year 1992 and 2001
respectively. Presently he is Head of the
Department of MCA department at
Maharaja Agresen Institute of
Management and Technology , Jagadhri,

Haryana, India . He had also worked with various organizations
including C-DOT where he had carried out research work in
SS#7 Protocol of Telephone Networks. He is co- editor of
MAIMT- Journal of ITand Management. His research areas
include Simulation and Modeling, Software engineering ,
System Programming and Networks.

