
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

292

Manuscript received July 5, 2008.
Manuscript revised July 20, 2008.

Adaptive Algorithm To Reduce Computational Complexity
In Video Coders

A.Shenbagavalli†, Dr. L.Ganesan††

National Engineering College Kovilpatti, TamilNadu, India. †
Prof. and Head/CSE dept Alagappa chettiar college of Engg. and Tech., Karaikudi, India. ††

Summary
Variable-complexity algorithms provide a means of managing
the computational complexity of a software video CODEC. The
reduction in computational complexity provided by existing
variable-complexity algorithms depends on the video scene
characteristics and is difficult to predict. A novel approach to
variable complexity encoding is proposed in this paper. A
variable complexity DCT algorithm will be updated adaptively
in order to maintain a near-constant computational complexity.
This adaptive update algorithm will be capable of providing a
significant, predictable reduction in computational complexity
with only a small loss of video quality. The proposed approach
may be particularly useful for software-only video encoding.
Key words:
Motion estimation, motion compensation, motion vector, DCT
coefficients, computational complexity.

1. Introduction

DIGITAL video applications are becoming more popular
in our everyday lives. Currently, there are several video
standards established for different purposes, such as
MPEG-1 and MPEG-2 [1] for multimedia applications and
H.261 and H.263 [2] for videophone and video-
conferencing applications. All these standards use the
discrete cosine transform (DCT), motion compensation
(which involves motion estimation and motion-
compensated prediction), quantization, and variable-length
coding (VLC) as building blocks. Using these video-
coding standards, video encoders require huge amounts of
computation since motion estimation, DCT, and IDCT are
all very computationally intensive. Thus, most high-
quality video encoders are implemented in hardware that
is relatively costly and inflexible. There is significant
interest and research in reducing the computations so that
a high quality video encoder can be implemented using
only software. Previously, the efforts to reduce the
computations of video encoders were mainly focused on
the fast motion-estimation algorithm. However, as the
motion-estimation algorithm becomes optimized, to speed
up the video encoders further we also need to optimize
other functions, such as DCT and inverse DCT (IDCT).

2. Theoretical Background

This section provides a very brief overview of video
compression and video compression standards. The
limited space precludes a detailed discussion; however we
highlight some of the important principles and practices of
current and emerging video compression algorithms and
standards that are especially relevant for video
communication and video streaming. An important
motivation for this discussion is that both the standards
MPEG-1/2/4 [1] and H.261/3/4 [2] are based on the same
basic principles and practices, and therefore by
understanding them one can gain a basic understanding for
both standards. Another goal of this section is to describe
what are the different video compression standards, what
do these standards actually specify, and which standards
are most relevant for video compression/streaming.

2.1 Introduction

Video has been an important media for communications and
entertainment for many decades. Initially video was captured and
transmitted in analog form. The advent of digital integrated
circuits and computers led to the digitization of video, and digital
video enabled a revolution in the compression and
communication of video. Video compression became an
important area of research in the late 1980’s and 1990’s and
enabled a variety of applications including video storage on
DVD’s and Video-CD’s, video broadcast over digital cable,
satellite and terrestrial (over-the-air) digital television (DTV),
and video conferencing and videophone over circuit switched
networks.

2.2 Brief Overview of Video Compression

Video compression is achieved by exploiting the
similarities or redundancies that exists in a typical video
signal. For example, consecutive frames in a video
sequence exhibit temporal redundancy since they typically
contain the same objects, perhaps undergoing some
movement between frames. Within a single frame there is
spatial redundancy as the amplitudes of nearby pixels are
often correlated. Similarly, the Red, Green, and Blue color
components of a given pixel are often correlated. Another

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

293

goal of video compression is to reduce the irrelevancy in
the video signal that is to only code video features that are
perceptually important and not to waste valuable bits on
information that is not perceptually important or irrelevant.
Identifying and reducing the redundancy in a video signal
is relatively straightforward, however identifying what is
perceptually relevant and what is not is very difficult and
therefore irrelevancy is difficult to exploit.

Fig. 1 Block Diagram of Video Encoder

To begin, we consider image compression, such as the
JPEG standard, which is designed to exploit the spatial
and color redundancy that exists in a single still image.
Neighboring pixels in an image are often highly similar,
and natural images often have most of their energies
concentrated in the low frequencies. JPEG exploits these
features by partitioning an image into 8x8 pixel blocks and
computing the 2-D Discrete Cosine Transform (DCT) for
each block. The motivation for splitting an image into
small blocks is that the pixels within a small block are
generally more similar to each other than the pixels within
a larger block. The DCT compacts most of the signal
energy in the block into only a small fraction of the DCT
coefficients, where this small fraction of the coefficients
are sufficient to reconstruct an accurate version of the
image. Each 8x8 block of DCT coefficients is then
quantized and processed using a number of techniques
known as zigzag scanning, run length coding, and
Huffman coding to produce a compressed bit stream. In
the case of a color image, a color space conversion is first
applied to convert the RGB image into a
luminance/chrominance color space where the different
human visual perception for the luminance (intensity) and
chrominance characteristics of the image can be better
exploited. A video sequence consists of a sequence of
video frames or images. Each frame may be coded as a
separate image, for example by independently applying
JPEG-like coding to each frame. However, since
neighboring video frames are typically very similar much
higher compression can be achieved by exploiting the

similarity between frames. Currently, the most effective
approach to exploit the similarity between frames is by
coding a given frame by (1) first predicting it based on a
previously coded frame, and then (2) coding the error in
this prediction. Consecutive video frames typically contain
the same imagery, however possibly at different spatial
locations because of motion. Therefore, to improve the
predictability it is important to estimate the motion
between the frames and then to form an appropriate
prediction that compensates for the motion. The process of
estimating the motion between frames is known as motion
estimation (ME), and the process of forming a prediction
while compensating for the relative motion between two
frames is referred to as motion-compensated prediction
(MC-P) as shown in Fig 1. Block-based ME and MC-
prediction is currently the most popular form of ME and
MC-prediction: the current frame to be coded is
partitioned into 16x16-pixel blocks, and for each block a
prediction is formed by finding the best-matching block in
the previously coded reference frame. The relative motion
for the best-matching block is referred to as the motion
vector.
There are three basic common types of coded frames as
shown in figure 2.They are (1) Intra-coded frames, or I-
frames, where the frames are coded independently of all
other frames, (2) Predictively coded, or P-frames, where
the frame is coded based on a previously coded frame, and
(3) Bi-directionally predicted frames, or B frames, where
the frame is coded using both previous and future coded
frames.

Fig. 2 Example of Prediction Dependencies between frames

Figure 2 illustrates the different coded frames and
prediction dependencies for an example MPEG Group of
Pictures (GOP). The selection of prediction dependencies
between frames can have a significant effect on video
compression performance, e.g. in terms of compression
efficiency and error resilience. Current video compression
standards achieve compression by applying the same basic
principles. The temporal redundancy is exploited by
applying MC-prediction, the spatial redundancy is
exploited by applying the DCT, and the color space
redundancy is exploited by a color space conversion. The
resulting DCT coefficients are quantized and the nonzero

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

294

quantized DCT coefficients are run length and Huffman
coded to produce the compressed bit stream.

3. Previous work Result and Discussions

About 10 frames extracted from a video clipping is given
as input for the four search algorithms for motion
estimation: Three step search, Four step search, Two
Dimensional Logarithmic search and binary search [3].
These four algorithms are compared based on their CPU
time used for computational complexity. Matlab 6.5 is
used for simulation.

Table 1: Computation Time for Search Algorithm

Image
Format

No. of
Frames Algorithm

CPU
Time

(Seconds)
TSS 1.73
FSS 1.20

TDLS 0.60 BMP 10

BS 0.80

4. Computational Complexity

The simplest method of reducing computational
complexity is to reduce the frame rate of the video
sequence, i.e. to "skip" frames of video. This method tends
to produce "jerky" video with a variable frame rate at the
decoder. Recently there has been much interest in Variable
Complexity Algorithms (VCAs) for video coding. A VCA
enables the CODEC to trade-off computational complexity
and video quality in a more flexible way than simply by
skipping frames. VCAs have been proposed for
computationally intensive functions including DCT [4, 5],
IDCT and motion estimation [6]. Applying a combination
of reduced-complexity algorithms can reduce the
computation requirements of MPEG-2 video encoding by
over 70% [2]. In general, VCAs enable a reduction in
computational complexity at the expense of a loss of
image quality. In this paper, we take the following
approach to support complexity management for real-time
video encoding. The discrete cosine transform (DCT) [7]
is identified as a computationally intensive function.
Methods of predicting or modeling the output of the DCT
(and therefore bypassing some computational steps) are
compared. An adaptive algorithm is described and is
shown to be suitable for dynamically controlling the
complexity of the DCT (and related functions) to maintain
a ‘‘target’’ level of computational complexity.

Fig. 3 Search points per macro block while computing the PSNR
performance of Fast Block Matching Algorithms

5. DCT Computational Complexity

5.1 Modeling DCT coefficients

The DCT and other related functions like IDCT,
quantization and rescaling can consume nearly 1/3 of the
processing resources and so it is useful to examine
methods of reducing the computational complexity of
these functions. The residual energy in many blocks of a
typical difference macro block is low, such that most or all
of the DCT coefficients for the block are zero after
quantization. The computational complexity of the DCT
and quantization operations may be significantly reduced
by skipping the DCT and quantize operations for blocks
that are likely to contain all zero coefficients after
quantization. It is possible to predict quantized blocks
containing all zero coefficients (i.e. blocks with zero End-
Of-Block or EOB). There is a correlation between the
Mean Absolute Error (MAE) or Sum of Absolute
Differences (SAD) for the residual block and the
probability of zero EOB [4]. A low MAE or SAD
indicates a high probability of zero EOB. Pao and Sun [4]
proposed predicting EOB for each block based on SAD
for the current macro block. However, there is a higher
correlation between EOB and block SAD than between
EOB and macro block SAD.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

295

5.2 Proposed Algorithm

1. Calculate SAD for each block:

 b b

SAD = (1/b2) Σ Σ |Bij - Cij|
i=1 j=1

where Bij is the pixel in B block in current frame and Cij its
counterpart Cij in C of Reference frame motion compensated
prediction from the reference frame. (SAD is usually calculated
during motion estimation and so this step does not involve any
extra computation.)
2. Compare SAD/Quant with T (where Quant is the quantizer
step size for the current macro block).
3. If SAD/Quant < T: model predicts that EOB = 0 (do not carry
out DCT and quantization, set all block coefficients to zero).
4. If SAD/Qu ant ≥ T: model predicts that EOB>0 (carry out DCT
and quantization for the current block).

5.3 Adaptive control algorithm for DCT function

Fig. 4 Complexity Control of DCT

After motion compensation, the residual energy in many
blocks is very low. There is a high possibility that most or
all of the DCT coefficients of a block become zero after
quantization. The computation of the DCT and
quantization functions may be significantly saved by
skipping the DCT and quantization operations for blocks
that are likely to contain all zero coefficients after
quantization. We develop a feed back control algorithm
shown in Figure 3 to decrease operation time of DCT
function. Ct is target computational complexity and Cn is
measured complexity of frame n. The aim of this
algorithm is to reduce the complexity to the target level
(Ct) and keep it at the level through the entire video
sequence. After coding frame n, the computational
complexity of frame n (Cn) is feed back to control
algorithm. Since the level of detail and motion in a video
sequence tends to vary gradually, it is possible for
controller to adapt for next frame to achieve target
complexity based on the actual complexity of current
frame. A detailed mathematical description and of this
algorithm can be found in [4] [6].

5.4 Adaptive control algorithm for motion estimation

This adaptive algorithm is based on the Nearest Neighbor
Search (NNS) motion estimation algorithm [8]. NNS
always searches four neighboring locations in a diamond-
shaped layer and the neighbor location that has the
minimum SAD is chosen to be the centre point of the next
search “layer”.

Fig. 5 Complexity Control of Motion Estimation

We propose an algorithm in Figure 3 [9] to update the
search layer for the next frame according to the estimated
motion estimation complexity (Sn) and search layer of
current frame in order to obtain target complexity (St).
Experimental results in [9] indicate that the algorithm
achieve target complexity throughout the video sequence
while rate distortion performance is reduced by around
0.5-0.7dB for a high-movement video sequence and is
virtually unchanged for a moderate-movement sequence.

References
[1] J McVeigh et al, "A Software-Based Real-Time MPEG-2

Video Encoder", IEEE Trans. Circuits and Systems for
Video Technology 10(7), October 2000

[2] ITU-T Recommendation H.263, "Video coding for low bit
rate communication", 1998

[3] Deepak Turaga, Mohamed Alkanhal “Search Algorithms for
Block-Matching in Motion Estimation” Mid-Term project
18-899 spring, 1998

[4] I-M Pao and M-T Sun, "Modeling DCT Coefficients for
Fast Video Encoding", IEEE Trans. Circuits and Systems
for Video Technology, June 1999

[5] K Lengwehasatit and A Ortega, "DCT Computation based
on Variable Complexity Fast Approximations", Proc.
ICIP98, October 1998

[6] M Gallant, G Côté and F Kossentini, "An Efficient
Computation-Constrained Block-Based Motion Estimation
Algorithm for Low Bit Rate Video Coding", IEEE Trans.
Image Processing 8(12), December 1999

[7] Zhongde Wang “Pruning the Fast Discrete Cosine
Transform” IEEE transactions on communications, vol. 39,
NO. 5, MAY 1991

[8] Iain E G Richardson and Yafan Zhao, “Adaptive
management of Video Encoder complexity”, Journal of
Real-time Imaging (accepted in 2001)

[9] Y Zhao and I E G Richardson, "Computational Complexity
Management of motion Estimation in Video Encoders",
Proc. DCC02, April 2002.

