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Summary 
Variable-complexity algorithms provide a means of managing 
the computational complexity of a software video CODEC. The 
reduction in computational complexity provided by existing 
variable-complexity algorithms depends on the video scene 
characteristics and is difficult to predict. A novel approach to 
variable complexity encoding is proposed in this paper. A 
variable complexity DCT algorithm will be updated adaptively 
in order to maintain a near-constant computational complexity. 
This adaptive update algorithm will be capable of providing a 
significant, predictable reduction in computational complexity 
with only a small loss of video quality. The proposed approach 
may be particularly useful for software-only video encoding. 
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1. Introduction 

DIGITAL video applications are becoming more popular 
in our everyday lives. Currently, there are several video 
standards established for different purposes, such as 
MPEG-1 and MPEG-2 [1] for multimedia applications and 
H.261 and H.263 [2] for videophone and video-
conferencing applications. All these standards use the 
discrete cosine transform (DCT), motion compensation 
(which involves motion estimation and motion-
compensated prediction), quantization, and variable-length 
coding (VLC) as building blocks. Using these video-
coding standards, video encoders require huge amounts of 
computation since motion estimation, DCT, and IDCT are 
all very computationally intensive. Thus, most high-
quality video encoders are implemented in hardware that 
is relatively costly and inflexible. There is significant 
interest and research in reducing the computations so that 
a high quality video encoder can be implemented using 
only software. Previously, the efforts to reduce the 
computations of video encoders were mainly focused on 
the fast motion-estimation algorithm. However, as the 
motion-estimation algorithm becomes optimized, to speed 
up the video encoders further we also need to optimize 
other functions, such as DCT and inverse DCT (IDCT). 

2. Theoretical Background 

This section provides a very brief overview of video 
compression and video compression standards. The 
limited space precludes a detailed discussion; however we 
highlight some of the important principles and practices of 
current and emerging video compression algorithms and 
standards that are especially relevant for video 
communication and video streaming. An important 
motivation for this discussion is that both the standards 
MPEG-1/2/4 [1] and H.261/3/4 [2] are based on the same 
basic principles and practices, and therefore by 
understanding them one can gain a basic understanding for 
both standards. Another goal of this section is to describe 
what are the different video compression standards, what 
do these standards actually specify, and which standards 
are most relevant for video compression/streaming. 

2.1 Introduction 

Video has been an important media for communications and 
entertainment for many decades. Initially video was captured and 
transmitted in analog form. The advent of digital integrated 
circuits and computers led to the digitization of video, and digital 
video enabled a revolution in the compression and 
communication of video. Video compression became an 
important area of research in the late 1980’s and 1990’s and 
enabled a variety of applications including video storage on 
DVD’s and Video-CD’s, video broadcast over digital cable, 
satellite and terrestrial (over-the-air) digital television (DTV), 
and video conferencing and videophone over circuit switched 
networks. 

2.2 Brief Overview of Video Compression 

Video compression is achieved by exploiting the 
similarities or redundancies that exists in a typical video 
signal. For example, consecutive frames in a video 
sequence exhibit temporal redundancy since they typically 
contain the same objects, perhaps undergoing some 
movement between frames. Within a single frame there is 
spatial redundancy as the amplitudes of nearby pixels are 
often correlated. Similarly, the Red, Green, and Blue color 
components of a given pixel are often correlated. Another 
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goal of video compression is to reduce the irrelevancy in 
the video signal that is to only code video features that are 
perceptually important and not to waste valuable bits on 
information that is not perceptually important or irrelevant. 
Identifying and reducing the redundancy in a video signal 
is relatively straightforward, however identifying what is 
perceptually relevant and what is not is very difficult and 
therefore irrelevancy is difficult to exploit. 
 

 

Fig. 1 Block Diagram of Video Encoder 

To begin, we consider image compression, such as the 
JPEG standard, which is designed to exploit the spatial 
and color redundancy that exists in a single still image. 
Neighboring pixels in an image are often highly similar, 
and natural images often have most of their energies 
concentrated in the low frequencies. JPEG exploits these 
features by partitioning an image into 8x8 pixel blocks and 
computing the 2-D Discrete Cosine Transform (DCT) for 
each block. The motivation for splitting an image into 
small blocks is that the pixels within a small block are 
generally more similar to each other than the pixels within 
a larger block. The DCT compacts most of the signal 
energy in the block into only a small fraction of the DCT 
coefficients, where this small fraction of the coefficients 
are sufficient to reconstruct an accurate version of the 
image. Each 8x8 block of DCT coefficients is then 
quantized and processed using a number of techniques 
known as zigzag scanning, run length coding, and 
Huffman coding to produce a compressed bit stream. In 
the case of a color image, a color space conversion is first 
applied to convert the RGB image into a 
luminance/chrominance color space where the different 
human visual perception for the luminance (intensity) and 
chrominance characteristics of the image can be better 
exploited. A video sequence consists of a sequence of 
video frames or images. Each frame may be coded as a 
separate image, for example by independently applying 
JPEG-like coding to each frame. However, since 
neighboring video frames are typically very similar much 
higher compression can be achieved by exploiting the 

similarity between frames. Currently, the most effective 
approach to exploit the similarity between frames is by 
coding a given frame by (1) first predicting it based on a 
previously coded frame, and then (2) coding the error in 
this prediction. Consecutive video frames typically contain 
the same imagery, however possibly at different spatial 
locations because of motion. Therefore, to improve the 
predictability it is important to estimate the motion 
between the frames and then to form an appropriate 
prediction that compensates for the motion. The process of 
estimating the motion between frames is known as motion 
estimation (ME), and the process of forming a prediction 
while compensating for the relative motion between two 
frames is referred to as motion-compensated prediction 
(MC-P) as shown in Fig 1. Block-based ME and MC-
prediction is currently the most popular form of ME and 
MC-prediction: the current frame to be coded is 
partitioned into 16x16-pixel blocks, and for each block a 
prediction is formed by finding the best-matching block in 
the previously coded reference frame. The relative motion 
for the best-matching block is referred to as the motion 
vector. 
There are three basic common types of coded frames as 
shown in figure 2.They are (1) Intra-coded frames, or I-
frames, where the frames are coded independently of all 
other frames, (2) Predictively coded, or P-frames, where 
the frame is coded based on a previously coded frame, and 
(3) Bi-directionally predicted frames, or B frames, where 
the frame is coded using both previous and future coded 
frames. 

 

Fig. 2 Example of Prediction Dependencies between frames 

Figure 2 illustrates the different coded frames and 
prediction dependencies for an example MPEG Group of 
Pictures (GOP). The selection of prediction dependencies 
between frames can have a significant effect on video 
compression performance, e.g. in terms of compression 
efficiency and error resilience. Current video compression 
standards achieve compression by applying the same basic 
principles. The temporal redundancy is exploited by 
applying MC-prediction, the spatial redundancy is 
exploited by applying the DCT, and the color space 
redundancy is exploited by a color space conversion. The 
resulting DCT coefficients are quantized and the nonzero 
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quantized DCT coefficients are run length and Huffman 
coded to produce the compressed bit stream. 

3. Previous work Result and Discussions 

About 10 frames extracted from a video clipping is given 
as input for the four search algorithms for motion 
estimation: Three step search, Four step search, Two 
Dimensional Logarithmic search and binary search [3]. 
These four algorithms are compared based on their CPU 
time used for computational complexity. Matlab 6.5 is 
used for simulation. 

Table 1: Computation Time for Search Algorithm  

Image 
Format 

No. of 
Frames Algorithm 

CPU 
Time 

(Seconds)
TSS 1.73 
FSS 1.20 

TDLS 0.60 BMP 10 

BS 0.80 

4. Computational Complexity 

The simplest method of reducing computational 
complexity is to reduce the frame rate of the video 
sequence, i.e. to "skip" frames of video. This method tends 
to produce "jerky" video with a variable frame rate at the 
decoder. Recently there has been much interest in Variable 
Complexity Algorithms (VCAs) for video coding. A VCA 
enables the CODEC to trade-off computational complexity 
and video quality in a more flexible way than simply by 
skipping frames. VCAs have been proposed for 
computationally intensive functions including DCT [4, 5], 
IDCT and motion estimation [6]. Applying a combination 
of reduced-complexity algorithms can reduce the 
computation requirements of MPEG-2 video encoding by 
over 70% [2]. In general, VCAs enable a reduction in 
computational complexity at the expense of a loss of 
image quality. In this paper, we take the following 
approach to support complexity management for real-time 
video encoding. The discrete cosine transform (DCT) [7] 
is identified as a computationally intensive function. 
Methods of predicting or modeling the output of the DCT 
(and therefore bypassing some computational steps) are 
compared. An adaptive algorithm is described and is 
shown to be suitable for dynamically controlling the 
complexity of the DCT (and related functions) to maintain 
a ‘‘target’’ level of computational complexity. 

 

Fig. 3 Search points per macro block while computing the PSNR 
performance of Fast Block Matching Algorithms 

5. DCT Computational Complexity 

5.1 Modeling DCT coefficients 

The DCT and other related functions like IDCT, 
quantization and rescaling can consume nearly 1/3 of the 
processing resources and so it is useful to examine 
methods of reducing the computational complexity of 
these functions. The residual energy in many blocks of a 
typical difference macro block is low, such that most or all 
of the DCT coefficients for the block are zero after 
quantization. The computational complexity of the DCT 
and quantization operations may be significantly reduced 
by skipping the DCT and quantize operations for blocks 
that are likely to contain all zero coefficients after 
quantization. It is possible to predict quantized blocks 
containing all zero coefficients (i.e. blocks with zero End-
Of-Block or EOB). There is a correlation between the 
Mean Absolute Error (MAE) or Sum of Absolute 
Differences (SAD) for the residual block and the 
probability of zero EOB [4]. A low MAE or SAD 
indicates a high probability of zero EOB. Pao and Sun [4] 
proposed predicting EOB for each block based on SAD 
for the current macro block. However, there is a higher 
correlation between EOB and block SAD than between 
EOB and macro block SAD. 
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5.2 Proposed Algorithm 

1. Calculate SAD for each block: 
 
                                          b    b  

SAD = (1/b2) Σ Σ    |Bij - Cij|                                                                   
i=1  j=1 

 
where Bij is the pixel in B block in current frame and Cij its 
counterpart Cij in C of Reference frame motion compensated 
prediction from the reference frame. (SAD is usually calculated 
during motion estimation and so this step does not involve any 
extra computation.) 
2. Compare SAD/Quant with T (where Quant is the quantizer 
step size for the current macro block). 
3. If SAD/Quant < T: model predicts that EOB = 0 (do not carry 
out DCT and quantization, set all block coefficients to zero). 
4. If SAD/Qu ant ≥ T: model predicts that EOB>0 (carry out DCT 
and quantization for the current block). 

5.3 Adaptive control algorithm for DCT function 

 

Fig. 4 Complexity Control of DCT 

After motion compensation, the residual energy in many 
blocks is very low. There is a high possibility that most or 
all of the DCT coefficients of a block become zero after 
quantization. The computation of the DCT and 
quantization functions may be significantly saved by 
skipping the DCT and quantization operations for blocks 
that are likely to contain all zero coefficients after 
quantization. We develop a feed back control algorithm 
shown in Figure 3 to decrease operation time of DCT 
function. Ct is target computational complexity and Cn is 
measured complexity of frame n. The aim of this 
algorithm is to reduce the complexity to the target level 
(Ct) and keep it at the level through the entire video 
sequence. After coding frame n, the computational 
complexity of frame n (Cn) is feed back to control 
algorithm. Since the level of detail and motion in a video 
sequence tends to vary gradually, it is possible for 
controller to adapt for next frame to achieve target 
complexity based on the actual complexity of current 
frame. A detailed mathematical description and of this 
algorithm can be found in [4] [6]. 

5.4 Adaptive control algorithm for motion estimation 

This adaptive algorithm is based on the Nearest Neighbor 
Search (NNS) motion estimation algorithm [8]. NNS 
always searches four neighboring locations in a diamond-
shaped layer and the neighbor location that has the 
minimum SAD is chosen to be the centre point of the next 
search “layer”. 

 

Fig. 5 Complexity Control of Motion Estimation 

We propose an algorithm in Figure 3 [9] to update the 
search layer for the next frame according to the estimated 
motion estimation complexity (Sn) and search layer of 
current frame in order to obtain target complexity (St). 
Experimental results in [9] indicate that the algorithm 
achieve target complexity throughout the video sequence 
while rate distortion performance is reduced by around 
0.5-0.7dB for a high-movement video sequence and is 
virtually unchanged for a moderate-movement sequence. 
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