
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008

314

Manuscript received July 5, 2008

Manuscript revised July 20, 2008

Innovative Patterns for Finding Enchanced Solutions to your
Architecture

N. SANKAR RAM 1, PAUL RODRIGUES 2

1 Velammal Engineering College, Chennai – 600 066.

2 Anna University, Chennai – 600 025

ABSTRACT
 The paper discuss the innovative patterns such as
subtraction, multiplication, division, task unification and
attribute dependency change for evaluating the software
architecture to identify the risk factor, check all the quality
attributes have been addressed in the software. Architecture
evaluation for a system can be done by using an approach called
Architecture Tradeoff Analysis Method (ATAM). The
achievement of quality attributes such as maintainability,
reusability, extensibility, scalability and Stake Holders Expects
(SHE) are not fulfilled in ATAM approach. We have proposed a
method called Enhanced Architecture Tradeoff Analysis Method
(EATAM) by combining the innovative patterns and the ATAM
for the evaluation of the software architecture would result in
better solutions. The innovative patterns are therefore useful not
for categorizing new software ideas but also for generating them.
KEYWORDS:
Software Architecture, Innovative Patterns, Quality Attributes,
Risk Factor, ATAM, EATAM, SHE.

1. INTRODUCTION

Most ideas for new patterns are either uninspired

or impractical. A systematic process based on five simple
patterns, can generate ideas that are both ingenious and
viable. The major issue in software development today is
quality. The idea predicting the quality of software from a
higher level design description is not a new one. Quality
of software is bound by basis of its architecture. It is
recognized that it is not possible to measure the quality
attributes of the final system based on software
architecture design. This would imply that detailed design
and implementation represents a strict projection of
architecture.

Analyzing the software looking for

• Their progress towards refinement over
time

• Their main contribution
• Advantages obtained by them

Software architecture of a system is defined as
“the structure of structures of the system, which comprise
software components, the externally visible properties of
those components, and the relationship among them”.

ATAM is a method for evaluating architecture-
level designs and identifies trade-off points between
attributes, facilities communication between stakeholders
(such as user, developer, customer, maintainer) from the
perspective of each attribute, clarifies and refines
requirements, and provides a framework for ongoing,
concurrent process of system and analysis.
We could find that ATAM is a risk identification
mechanism of quality achievement. Normally ATAM
does not discuss with all possible quality attributes.
Efficiency of ATAM depends on the expertise and
potential of Stakeholders (SH) and quality attributes. The
modules or templates are therefore useful not just for
categorizing new pattern ideas but also for generating
them.

2. RESEARCH BACKGROUND

2.1 The Architecture Trade-off Analysis Method
(ATAM)

 Architecture based analysis techniques fall into
one of two categories, questioning and measuring
according to whether they offer qualitative or quantitative
results. In complex design situations the effort required to
develop models suitable for quantitative analysis and the
concentration on one quality at the expense of others tend
to dissuade the use of measuring techniques

The adoption of an iterative incremental development
process required a method, which could be used
throughout the systems lifecycle, as well as provide
insight into the design issues and how they relate to the
customer objectives. Consequently the methods suited to
such an approach are those oriented towards application
from an early point in the design life-cycle as well as
providing the ability to analyze the relationship between
multiple quality concerns and design decisions. The only
methods found to satisfy these conditions included
Software Architecture Assessment using Bayesian
Networks (SAABNet) and the Architecture Tradeoff
Analysis Method (ATAM)

2.2 Quality Attributes
 A quality attribute is a nonfunctional
characteristic of a component or a system. A software

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008 315

quality represents the degree to which software possesses
a desired combination of attributes. According to this,
there are six categories of characteristic (functionality,
reliability, usability, efficiency, maintainability, and
portability), which are divided into sub characteristic [10,
5].
The quality attributes are defined as:

Expendability: The degree to which architectural, data or
procedural design can be extended.
Simplicity: The degree to which a program can be
understood without difficulty.
Generality: The degree to which a software product can
perform a wide range of functions.
Modularity: The degree to which the implementation of
functions in a program are independent from one another.
Modularity at runtime: The degree to which functions of
a program are independent from one another at runtime.
Learn ability: The degree to which the code source of a
program is easy to learn by new developers
Understandability: The degree to which the code source
of a program is easy to understand.
Reusability: Reusability here is the degree to which a
piece of design (or a subset of apiece of design) can be
reused in another design.
Scalability: Scalability is the ease with which an
application or component can be modified to expand its
existing capacities at runtime.
Robustness: The degree to which an executable program
continues to function properly under abnormal conditions
or circumstances.

3. INNOVATIVE PATTERNS

At the core of our process are the five innovation
patterns. These “templates of innovation” have emerged
from our historical analysis of product development
trends. Our research indicates that more successful
product innovation fit into at least one of these five
patterns. Indeed, we have found that the patterns can help
predict the emergence of new products before the
appearance of signals indicating market demand.

3.1 Subtraction Pattern

While introducing new patterns, the marketers
tend to eliminate the complexities in the old version
thereby adding some interactive and innovative Add-on
features that would enhance its performance and at the
same time satisfying the customer needs better . The
subtraction pattern outweighs the former by removing
some of the unwanted components and replacing it by a
better component in the “closed world” of the pattern and
its immediate environment.

Everyone would have browsed the Job Portal.
Users found it difficult because each and every detail of
the resume had to be typed. Due to this there was wastage
of time and unwanted errors occurred. Now these
demerits were analyzed and a better replacement was
made by new website which is used currently. Here
applicants can upload their resumes directly in a jiffy
instead of wasting their time in typing the resume. The
subtraction patterns got a tremendous response and
satisfied the needs of the customers. While this is a
perfectly logical approach, it can result in those
incremental improvements that have an impact on
customers.

3.2 Multiplication Pattern

The second pattern represents a very different
approach to innovation. This is the prime logic behind
multiplication pattern: here the existing components or
features are untouched, but another copy of these features
are made. The objective is to go beyond a mere
quantitative change and achieve a qualitative change.

 Google search engine serves to be a classic
example for this. Initially it had just a simple search
engine, where the users used to while away their time in
searching for information. Now the search engine contains
a new feature called “Advanced Search” where one can
filter his/her query and reduce the time by specifying
appropriate fields such as date, file type, range etc. The
user can find what he is looking for by this method.

3.3 Division Pattern

One can use the division pattern to split an
existing product into many component modules. There is
a change in the perspective which may lead to the
reconfiguration of those modules in an unanticipated way
– or even keep the modules separate in a manner that
offers unexpected yield. The specialty of division is that
each module preserves the characteristics of the whole.

Yahoo known for its wide range of usage all over
the globe had all the utilities integrated into a single
domain. Those utilities were yahoo messenger, search
engine, mail, sports, and movies. Now they have been
separated into individual modules. The main advantage of
this method is that even if the “yahoo.com” is down, the
user can still browse the various areas using their
individual modules.

3.4 Task Unification Pattern

According to this method one can understand
pattern innovation by assigning a new task to an existing
product or its constituent environment, thereby fusing two
tasks in a single component. The basic rationale for this
bundling of tasks: if a single component is sufficient for

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008 316

performing the task of the pattern and its environment,
why not just see whether it can be made to do double duty.

A classic example for task unification would be
Borland C which used to compile only ‘C ‘Programs. The
newer version Turbo C contains the files required for both
C and C++, so that both C and C++ codes can be
compiled in the same environment. An even more specific
example would be Microsoft VC++, which can execute all
codes that run on a common platform. By creating
patterns which provide double benefits, a huge customer
base is created and an incredible level of innovation is
achieved.

3.5 Attribute dependency change Pattern

 This pattern mainly involves dependent
relationship between attributes of a product and attributes
of its immediate environment. Pattern can be made more
adaptable to the given environment. One can also create
dependencies that exist between two unrelated attributes
of a single pattern. The attribute dependency pattern often
generates what later seem like inevitable patterns.

Windows Media Player is mainly used for
playing audio and video files. This media player identifies
the file format and plays the file accordingly. That is if the
extension is .mp3 then it identifies that it is a audio file
and plays the file in the audio format. If the extension
is .avi then it identifies that it is a video file and plays it in
the video format. In this way it adapts to the given
environment and satisfies the needs of the customer.

Architecture Tradeoff Analysis Method (ATAM)

Reduction Aggregation

Slicing

Property Interdependence
ChangeMerging Task

Enhanced
Architecture Tradeoff Analysis Method (EATAM)

Figure 1 Functional diagram of EATAM

4. IMPLEMENTATION

 The following steps describes the a simple
search in a program without applying innovative pattern

1. The Program for search a number between 1
and 30. The numbers are actually coded in
random

2. The user needs a key a number between 1 and
30. If the number found in first few search well
and good or if the number founds in 29th search
it will be worst case.

After applying Division Pattern

1. User needs to enter the value
2. Then program mood the number and finds

whether the number is odd / even.
3. If the number is odd then program transfers the

control to odd number series to check the
number whether it presents in the given in list.

The same procedure will be followed for even
number

4. Now the worst case is the number will be found
in 15th search.

Best case / Worst case calculated using the
following formula
(Number of Search actually encountered by program
/ Total number of search case in program) * 100

Example
Number of Search actually encountered by program = 15
Total number of search case in program = 30
MOOD = (15 / 30) * 100 = 50.00 %

The value of MOOD is less than 50 % means that good
case else worst case

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008 317

5. CONCLUSION

The ATAM is the robust method for evaluating
software architectures. It works by having these
stakeholders articulate a precise list of quality attribute
requirements in the form of patterns and scenarios and by
illuminating the architecture with respect to our design
patterns. ATAM has proven itself as a useful tool hence
we use the ATAM architecture to integrate the above
mentioned innovative patterns for better evaluation. We
have heard some pattern developers initially complain that
imposing these patterns seems to take the fun out of their
work. But the process, by forcing developers to follow a
certain path, can actually make the creative challenges
more interesting. We would like to emphasize that the
process we have described isn’t meant to replace all of the
companies’ pattern development methods. The method we
have suggested focuses on the components- that are
essential, that can be reshuffled, removed or replicated in
new ways thereby enhancing the discipline of the pattern
that is vital to guide the company to a sweet spot.
EATAM really fits its customer needs.

REFERENCE
[1] N.Sankar Ram and Dr. Paul Rodrigues “Intelligent

Risk Prophecy Using More Quality Attributes Injected
ATAM and Design Patterns”, 7th WSEAS Int, Conf.
on Software Engineering, Parallel and Distributed
Systems(SEPADS ’08) University of Cambridge, UK,
Feb 20-22, 2008

[2] L. Bass., P. Clements, and R. Kazman, Software
architecture in practice. 2nd ed. SEI series in software
engineering. 2003, Boston: Addison-Wesley.

[3] Clements, P., R. Kazman, and M. Klein, Evaluating
software architectures : methods and case studies. SEI
series in software engineering. 2002, Boston:
Addison- Wesley.

[4] M. Shaw and D. Garlan, Software Architecture.
Perspectives on an Emerging Discipline, Prentice –
Hall, India.

[5] D. Colquitt and J. Leaney “Expanding the view on
Complexity within Architecture Trade-off Analysis
Method” Proceedings of the 14th Annual IEEE
International Conference and Workshops on the
Engineering of Computer-Based Systems(ECBS’07)

[6] L. Dobrica and E. Niemela , “A Survey On Software
Architecture Analysis Methods”, IEEE Trans.
Software Eng., vol. 28, no.7, July 2002.

[7] P. Kruchten, H. Obbink and J. Stafford, “The Past,
Present, and Future of Software Architecture” IEEE
Software March/April 2006.

[8] V. Cortellessa, P. Pierini and D. Rossi “Integrating
software models and platform models for Performance
Analysis” IEEE Trans. Software Eng., vol. 33, no.6,
June 2007.

[9] M.A. Jalil and S.A. Mohamed Noah, “The Difficulties
of Using Design Patterns among Novices: An
Exploratory Study”, Proceedings of the 5th IEEE
International Conference on Computational Science
and Applications

[10] Mary Shaw and Paul Clements, “The Golden Age of
Software Architecture” IEEE Software March/April
2006

[11] Kazman, R., M. Klein, and P. Clements, ATAM:
Method for Architecture Evaluation. 2000, Software
Engineering Institute: Pittsburgh.

[12] Rick Kazman, Len Bass, Gregory Abowd and Mike
Webb “SAAM: A Method for Analyzing the Properties
of Software Architectures” IEEE 1994

[13] Gabriel, Richard (1996). Patterns of Software: Tales
From The Software Community. Oxford University.

[14] Beck, K.. Implementation Patterns. Pearson
Education, Proceedings of the 18th International
Conference on Software Engineering. October 2007.

[15] Freeman, Eric; Elisabeth Freeman, Kathy Sierra, and
Bert Bates (2004). “Head First Design Patterns”.
O'Reilly Media.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008 318

PROF. N. SANKAR RAM received the Master of
Engineering in Computer Science from Madurai Kamaraj
University, India, in 1997 and currently pursing his PhD
degree in Anna University. He is an professor and head in
the department of computer science and engineering at
Velammal Engineering College, Chennai, India. His
research interest includes software analysis, design and
software architecture. He has published several journals
and conference publications.

Dr. PAUL RODRIGUES received the Master of
Engineering in Computer Science and PhD degree from
Pondicherry University. He is an professor in the
department of computer science and engineering at A.K
College of Engineering, Krishnankoil India. He has more
than 20 years of experience in both teaching, industries
and guiding many research scholars. He has published
several journals and conference publications.

