
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

53

Manuscript received August 5, 2008.
Manuscript revised August 20, 2008.

Software Quality from Behavioural and Human Perspectives

Jamaiah Haji Yahaya†, Aziz Deraman†† and Abdul Razak Hamdan†††

†,††, †††Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi,

43650 Selangor, MALAYSIA

††Academic and Internationalisation Division,
University Malaysia Terengganu, Kuala Terengganu, 21030, Terengganu, MALAYSIA

†Graduate Department of Information Technology

College of Arts and Sciences, Universiti Utara Malaysia, Sintok, 06010 Kedah, MALAYSIA

Summary
Software quality is evolving beyond static assessment

to include behavioural attributes and human aspects.
These two groups of attributes are vital and necessary to
balance between technical and non-technical (human)
aspects in software assessment. PQM or Pragmatic
Quality Model is a proposed model of quality, which
composes of behavioural and human perspectives in
assessment. This model provides opportunity to give
priority or contribution of quality attributes to reflect the
business requirement. Therefore, it is more practical that
can suit different users and purposes. As for our research,
PQM is used for assessment of software for certification
process. This paper explains in detail this model of PQM.

Key words:
Software quality model, behavioural perspective,
human perspective and software assessment.

1. Introduction

In the new global economy and borderless world,
computer has become a central issue for surviving in
business. Companies are competing to produce software
which are claimed to be good and fulfil user’s
expectation and requirements. There are questions arise
regarding the status of software being developed either
in-house or off-the-shelf product. Some of the questions
are: How do we determine the quality of the software
being developed? What are the mechanisms to assess
software product? How do we ensure and guarantee the
quality of a particular software product? From our
observation we believe users are concerned regarding
quality of software delivered to them and they expect
software are in good quality that meet certain standard.
Furthermore, stakeholders need to put their trust and
confidence over the software being developed or
purchased and used in the organizations.

In the earlier part of software development, software
quality is measured through static assessment of code’s
structure. Fortunately, a new generation realizes that
software quality is more than just static features. People
who involves in software as users, stakeholders,
developers or practitioners are becoming more concern
on the other aspects or views of quality. It should also
comprise non-functional such as behavioral and human
aspects.

2. Software Quality And It’s Problem

Software has become very important in everyday life
thus quality of the software is a great concern, vital and
critical. It requires continuous improvement to retain
survival of a software company either in private or
public sector. Software quality assurance affects both
immediate profitability and long-term retention of
customer goodwill. In January 2002, Bill Gates
demanded Microsoft to think of quality of their product
and to produce less defects in its products [3]. He seems
to have recognized the importance and emergence of this
new definition of quality. He sent the following e-mail to
all employees reminding them the necessities and higher
priorities of Trustworthy Computing [4].

The past decade has seen rapid development and
diffusion of software and ICT related technologies not
only in Malaysia but also worldwide. In Malaysia,
statistic produced by MSC (2007) states that 51% from
1372 operational MSC status companies are functioning
on software development, and 13% are working on
support services, 9% are running on creative multimedia,
9% are dealing with hardware designs, while 11% are
functioning on Internet Based Business (IBB) and 7% on
Shared Services/Outsourcing (SSO) (refer to Figure 1). It
shows that software development industry has a
significant contribution and impact to the development
and success of the MSC. Thus, an appropriate attention

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

54

is necessary to monitor the quality of software product
delivered by these companies as well as other non-MSC
companies, organizations and public sectors.

Figure 1. MSC Status Companies By Technologies Cluster:
Operational At January 31, 2007, Source: [5]

Companies could not provide any justification on

the quality of their products to the users and users are left
with uncertainties on the standard and quality of the
software [1],[6]. This raises legal and moral questions:
To what extent is an organization that develops and/or
uses software responsible for its result? How to monitor
software quality and correctness? And to what lengths
should such organizations go to assess software quality
and correctness?

ISO defines software as “all or part of the programs,
procedures, rules, and associated documentation of
information processing system”. Software product is
defined as “the set of computer programs, procedures,
and possibly associated documentation and data
designated for delivery to a user” [7]. The term product
from the view of software engineer covers the programs,
documents, and data. While from the view of user’s
product is the resulted information that somehow makes
the user’s world better.

General expressions of how quality is realized in
software dealing with “fitness for use” and
“conformance to requirements”. The term “fitness of
use” usually means characteristics such as usability,
maintainability, and reusability. On the other hand,
“conformance to requirements” means that software has
value to the users [8]. International Organization for
Standardization (ISO) defines quality as “the totality of
features and characteristics of a product or services that
bear on its ability to satisfy stated or implied needs”

[7],[9]. IEEE defines software quality as – a software
feature or characteristic used to assess the quality of a
system or component [10]. Software quality is also
defined as the fitness for use of the software product and
to conform to software requirements and to provide
useful services [38]. Later, software quality is defined as
“conformance to explicitly stated functional and
performance requirements, explicitly documented
development standards, and implicit characteristics that
are expected of all professionally developed software”
[11].

In many organizations, software is considered as one
of the main assets with which the organization can
enhance its competitive global positioning in current
global economic era. To remain competitive, software
firms must deliver high quality products on time and
within budget. Software Engineering Institute’s
Capability Maturity Model (CMM) (cited in Slunghter,
Harter and Krishnan [12]) reports the following quote
from a software manager: “I’d rather have it wrong than
have it late. We can always fix it later”. Thus, many
complaints have been reported regarding quality of the
software. These complaints claimed that software quality
is not improving but rather deteriorates steadily and
worsening. Therefore, users report and claim that
software is being delivered with bugs that need to be
fixed and dissatisfied with the product [2],[1].

Peter J. Denning [2] presented his argument that
“software quality is more likely to be attained by giving
much greater emphasis to customer satisfaction. Program
correctness is essential but is not sufficient to earn the
assessment that the software is of quality and is
dependable”. Software quality and evaluation not only
deal with technical aspects but also in dimensions of
economic (managers’ viewpoint), social (users’
viewpoint) and as well as technical (developers’
viewpoint) [13].

Dromey [26] stated that an ultimate theory of
software quality is like “the chimera of the ancient
Greeks, is a mythical beast of hybrid character and
fanciful conception. We obliged, however, to strive to
make progress, even though we realize that progress
often brings a new set of problems”. He also suggested
that software quality usually referred to high-level
attributes like functionality, reliability and
maintainability and the important thing to focus was on
the priority needs for the software. Dromey stated that
priorities vary from product to product and project to
project.

Software product quality can be evaluated via three
categories of evaluations: internal measures, external
measures and quality in use measures [14]. Internal
measuring is the evaluation based on internal attributes

Software
Development

51%

Hardware
Design

9%

Creative
Multimedia

9%

Support
Services

13%

Internet Based
Business

11%

Shared
Services/OutS

7%

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

55

typically static measures of intermediate products and
external measuring is based on external attributes
typically measuring the behaviour of the code when
executed. While the quality in use measures include the
basic set of quality in use characteristic that effect the
software. This characteristic includes effectiveness,
productivity, safety and satisfaction. This measurement
is an on-going research of SQuaRE which is the next
generation of ISO 9126 but not fully published and
accepted currently. SQuare quality model consists of
internal and external measures that include quality in use
aspects. It presents similar concept of characteristics and
subcharacteristics as in ISO 9126 approach [15].

3. Software Quality Models

Software and quality are among the most common topic
of discussions on computers. Fenton and Pfleeger [16]
suggest, “Without an accompanying assessment of
product quality, speed of production is meaningless”.
This observation has led to the development of software
quality model that are measured and combined with
productivity models.

Thus, several quality models are available from
literature and the most well known models are McCall,
Boehm, FURPS, ISO 9126, Dromey and Systemic. The
following sections will discuss briefly on each of these
models.

3.1 The McCall model (1977)

The McCall quality model is one of the earliest models
and commonly called the FCM (Factor Criteria Metric)
model. The model is usually constructed in a tree-like
fashion. The upper branches hold important high-level
quality attributes, such as reliability and usability, which
will be quantified. Each quality attribute is composed of
lower-level criteria ([17],[18]).

This model puts emphasis on grouping quality
factors into several working areas viz product operation,
product revision and product transition. The factors
associated with the working areas are: Correctness,
reliability, efficiency, integrity, usability, maintainability,
testability, flexibility, portability, reusability and
interoperability.

In this model factors are not directly measured and
therefore a set of metrics are defined to develop the
relationship. McCall defines metrics in a form of
checklist that is used to grade attributes of the software.
It is interesting to notice that some of the factors are still
relevant and as fresh today as they were in the 1970’s.
However McCall model does not include functionality.

3.2 The Boehm model (1978)

The Boehm model ([19], [18], [17]) is similar to McCall
model in that it represents a hierarchical structure of
characteristics, each of which contributes to total quality.
Boehm model views software with general utility. It
looks at utility from various dimensions, considering the
type of users expected to work with the software once it
is delivered. General utility is broken down into
portability, utility and maintainability. Utility is further
broken down into reliability, efficiency and human
engineering. Maintainability is in turn broken down into
testability, understandability and modifiability. This
model is presented in levels called primary uses,
intermediate constructs and primitive constructs.

3.3 The FURPS model (1987)

Hewlett-Packard developed a set of software quality
factors that make up its name FURPS. The FURPS
model takes five characteristics of quality attributes -
Functionality, Usability, Reliability, Performance and
Supportability. When the FURPS model is used, two
steps are considered: setting priorities and defining
quality attributes that can be measured [18]. One
disadvantage of this model is that it does not take into
account the software product’s portability [20].

3.4 ISO 9126 (1991)

ISO 9126 defines product quality as a set of product
characteristics. The characteristics that govern how the
product works in its environment are called external
quality characteristics. The characteristics relating to
how the product is developed are called internal quality
characteristics. ISO 9126 indicates six main quality
characteristics which are associated with several
subcharacteristics [7]. Many researches done
investigated software assessment and quality using the
ISO/IEC 9126 model as their guidelines in the
assessment. Examples are PROFES[28], Torchiano,
Sorensen and Wang [29], Cote et al. [25] and Adnan and
Bassem [24]. These studies showed that ISO 9126 model
is an appealing model, irrespective of some limitations.
The characteristics defined in this model are
functionality, reliability, efficiency, usability,
maintainability and portability.

One advantage of ISO 9126 model is that it is
intended to be exhaustive and identifies the internal
characteristics and external quality characteristics of a
software product. ISO 9126 model can be used as a
practical approach for defining quality and the
questionnaire based method [23]. It has been invented

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

56

since 1991 and today, it is still being accepted and used
in researches that deal with software quality [24],[25].

However, at the same time it has the disadvantage of
not showing clearly how these aspects can be measured.
Pfleeger reports some important problems associated
with ISO 9126. The problems are: there are no guidelines
on how to provide an overall assessment of quality and
rather than focusing on the user view of software, the
model’s characteristics reflect a developer view of
software [39].

There are another issues that relate to quality
attributes, among them are priorities and different views
of quality among users, stakeholders and managers. It is
recognized that views of users, the developers and
managers are different. A manager is more interested in
the overall quality rather than a specific quality
characteristic thus requires assigning weight to reflect
the business requirements [21],[22]. In ISO 9126 all
attributes are equally important.

3.5 The Dromey model (1996)

Dromey [26] proposes a working framework for building
and using a practical quality model to evaluate
requirement determination, design and implementation
phases. Dromey points out that high level quality
attributes, such as maintainability, functionality and
reliability, cannot be built into the system. The
alternative way to input quality into software is by
identifying a set of properties and build them up
consistently, harmoniously and fully to provide high
level quality. Links must be established between tangible
product properties and intangible quality attributes.

Five steps of quality model were constructed and
refined. Dromey includes high-level quality attributes:
functionality, reliability, efficiency, usability,
maintainability, portability, reusability and process-
mature. In comparing to ISO 9126, additional
characteristics like process maturity and reusability are
noticeable. Subattributes associated with reusability are
machine-independent, separable and configurable. While
process maturity include client-oriented, well-defined,
assured and effective attributes. Process maturity is an
attribute which has not been considered in the previous
models.

3.6 The Systemic Quality Model (2003)

The systemic model is differed from the previous model
mentioned above. This model is developed by
identifying the relationship between product-process,
efficiency-effectiveness and user-customer to obtain
global systemic quality [20], [27. The model proposed

focuses on product quality, which includes efficiency and
effectiveness and the concept of systemic global quality.
This model enables the systemic quality model to obtain
specifically the product’s efficiency and effectiveness
dimension. The elements of the systemic quality model
for software products include functionality, reliability,
usability, efficiency, maintainability and portability. This
part of the model is for measuring effectiveness of a
product. While to measure the efficiency of a product,
this model takes into account the systemic quality model
by Callaos & Callaos and Dromey model. Lastly this
model considers process effectiveness and efficiency.
The disadvantages of this model are that it does not
cover the user requirements and conformant aspects.

Analysis done on the different models demonstrates
that different quality characteristics associated with these
different models. It shows that the main quality
characteristics found in majority of the models are:
efficiency, reliability, maintainability, portability,
usability and functionality, which are presented in more
recent models. These characteristics appear in all models
and therefore, are considered as essential and vital. Table
1 summarises the quality characteristics identified in
different models from McCall, Boehm, FURPS,
ISO9126, Dromey and Systemic. This table also
illustrates our proposed Pragmatic Quality Model (PQM),
which is used in certification process conducted in our
research (see also [36] for detail).

Fenton presents a framework for software
measurement which classifies software attributes
(characteristics) [39]. Fenton makes a distinction
between attributes which are internal and external.
Internal attributes refer to the measurement of merely
terms of product. Examples are size, structure and
modularity. While external attributes are measurements
of how the product relates to its environment. This
framework suggests the use of internal attributes to infer
and predict the levels of external attributes. Fenton
framework is beneficial for the developer to estimate and
predict the future quality of the software product but it is
considered as unimportant for the users. Users dismiss
the importance of internal attributes because they are
unable to access the internal attributes of the software
themselves.

Even though there are several models of quality
available from literature, it still believed that quality is a
complex concept. Quality is in the eye of the beholder
and it means different things to different people and
highly context dependent [30] [31]. Therefore, “software
quality is nothing more than a recipe. Some like it hot,
sweet, salty or greasy” [32]. Thus , there can be no
single simple measure of software quality acceptable to
everyone.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

57

Literature on software quality shows that there are a
number of characteristics that contribute to the
behavioral aspects of quality. A classification of
characteristics might be necessary to group
characteristics according to their importance.

Our research proposes an attribute weight and
classification to be included in the quality model. This
will discuss in the following section.

4. PQM: Pragmatic Quality Model From
Behavioural and Human Perspectives

In this paper we invite the software community to view
quality in more practical terms and propose several
modification and enhancement to measure software
quality. The PQM consists of four main components:
behavioural attributes, impact attributes, responsibility,
and weight. The features of the components are
presented next.

4.1 The Behavioural Attributes

The behavioural attribute is defined as the external
quality characteristic of specific software and how it
behaves in the environment. These attributes include
efficiency (E), functionality (F), maintainability (M),
portability (P), reliability (R), integrity (I) and usability
(U). Each attribute is made up of several subattributes
and then broken down into several metrics that shows the
measurement aspects of the attributes. The behavioural
attributes are derived from ISO 9126 attributes with the
integrity aspect included. ISO 9126 model is a generic
quality model for any software product but requires some
customization and enhancement for particular case
[19],[40]. In the age of hackers and firewalls, the
importance of integrity aspect has increased. This
attribute measure the ability to with-stand attack on its
security that comprises of program, data and document.
It covers threat and security aspects. Findings from
previous survey indicated the importance of integrity in
software quality attributes.

In PQM, attributes are decomposed into several
subattributes and then a further level of decompositions
to associate with directs measurable metrics. Each of the
subattributes and metrics comprises of information on
interviewees.

The quality of product based on behavioural aspects
is formulated as:

QB = ƒ(R, E, F, M, P, I, U) + ε (1)

Software quality (Q) is thus a function of these

combined attributes plus an error term (ε) that represents

a quality aspect that these seven attributes can’t define.

4.2 The Impact Attributes

The impact attribute defined in PQM refers to the human
aspect of quality toward the product. It illustrates the
impact of the software in term of quality to the users and
also measures the conformity of software to the user
requirement. This attribute is important to balance the
quality model between technical measurement of
software and human factor [34]. Similar to behavioural
attributes, the impact attribute is made up of several
subattributes and metrics that show the measurement of
the attributes. The impact attribute is decomposed into
two distinct subattributes, which by means of user
perceptions and user requirements. The metrics include
measures of popularity, performance, trustworthiness,
law and regulation, recommendation, environmental
adaptability, satisfaction and user acceptance. Two
categories of attributes are defined :-

User perception (Up)= {popularity, performance,
law & Regulation, Recommendation,
Trsutworthiness, Requirement & Expectation,
Environmental adaptability}

User Requirement (Ur) = {User acceptance,
satisfaction}

Therefore,

 QH = ƒ(Up, Ur) + ε (2)

4.3 Responsibility and Measurement of Metrics

The third component in PQM is the responsibility. It is
defined as the responsibility person to answer the
questions related to metrics. It is also named as the
interviewee in this model. The PQM has identified
specific interviewee to responsible in giving the
assessment score of each metrics.

The measurements used are Likert scale of 1 to 5
based on collaborative perspective among assessment
team members. Likert scale is defined as something that
is the satisfaction measured based on perception. The
Likert technique presents a set of attitude statements.
Subjects are asked to express agreement or disagreement
of a five-point scale. Each degree of agreement is given a
numerical value from one to five. Thus a total numerical
value can be calculated from all the responses. The scale
used in this approach is recommended as 1 =
unacceptable, 2 = below average, 3 = average and 4 =
good, 5= excellent.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

58

4.4 Classification of Attributes and Weight
Factors

Several researchers have applied weights in their
calculation of different domains. Kontio [37] applied
weights in calculations of measuring COTS selection
technique while Hampton and Quinn [41] applied
weights concept in project management measurement. In
this method, score are computed by multiplying weight
and score of each criterion.

The weighting factors defined in PQM is based on
findings from previous survey [35]. In the survey we
asked respondents to indicate levels of consideration
which are by means of 1=not considered, 2=low
consideration, 3=average, 4=high consideration and
5=very high consideration of all the quality attributes.
These criteria are taken into account during assessment
exercise of software product in their organizations.

For the purpose of this classification, we are
interested to analyse the two modes of considerations
that are Very High Consideration and High
Consideration only. Data management and analysis
was performed using SPSS and the weight of each
attributes is calculated using the following formula:-
 n

TotalVH = ∑ VHa (3)
 a=1

where n = number of attributes defined in the analysis
and VH is the score for Very High Consideration. Then,

Weighta = (VHa / TotalVH), (4)
 (4.2)
and

% Weighta = (VHa / TotalVH) * 100 (5)

where subscript a represents an attribute.

From the analysis, function point approach is used to
group and classify attributes into three distinct
classifications namely low, moderate and high. Then, the
attributes are sorted into these classifications according
to the calculated weight score (4) and (5). The analysis
shows that functionality is 14.29% more important
compares to other quality attributes defined in this model.
It obtains the highest weight in this analysis. Reliability
is considered 12.34% more important and integrity is
considered 11.69% important. These three attributes
(functionality, reliability and integrity) are classified in
the classification group of high. Second group of
classification defined as moderate includes safety (8.44),
efficiency (9.09%), maintainability (7.79%) and usability
(7.79%). On the other hand, the third group of

classification defined as low includes flexibility (5.84%),
Interoperability (6.49%), Intraoperability (5.84%),
portability (5.19%) and survivability (5.19%). The
classification analysis and method are discussed in detail
in [35].

For the purpose of assessment and certification
applied in this research we therefore assign weight factor
for each group accordingly. This is consistent with the
requirements of having different weights for attributes [4,
21]. Table 2 demonstrates the classification of attributes
and its weight factor.

5. Formulating Quality of Product

Underlying our equation is that particular software
can achieve a specific quality level by combining each
attribute’s priorities or contributions. In this particular
case, equation will describe the degree to which the
software contains a particular attributes. We measure
contributions or priorities in weight units i.e.
1,2,3,4,5,...9,10. Each of these attributes is classified into
three main classifications, which by means are high,
moderate and low (see Table 2). Therefore, each attribute
is not necessarily equal contributions in quality function.
Refer to [35] for detail on this classification.

The formulation of quality of software product
based on behavioural attributes is defined as follows:-

QB = wRR + wPP +wFF + wUU + wII + wMM + wEE (6)

where the sum of weights in the equation is 1.0, w is the
weight factor of attribute.

Table 2 Classifications Of Attributes And Its Weight Factor
Levels Attributes Weight

Factor
Low Flexibility

Intraoperability
Interoperability
Portability
Survivability

1-4

Moderate Safety
Efficiency
Maintainability
Usability

5-7

High Functionality
Reliability
Integrity

8-10

The second aspect of quality which deals which

human aspect is shown in the following equation:-

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

59

QH = wjUp + wkUr . (7)

This attributes of quality is vital and important to

balance between technical and human aspects [34]. We
assume that in this function weight of these attributes are
equal to 1. This assumption is made because these
attributes have no influence on the behaviour of the
software in the environment. The total formulation of
quality of a software product is characterized as follows:-

QP = QB + QH (8)

Voas & Agresti suggest in chemical analogy, quality

of software is more a compound than a mixture [4].
Thus this linear equation of quality is an acceptable
model to represent quality of software based on
behavioural and human perspective.

6. Model Testing and Evaluation

PQM has been applied in software certification model
developed by our research group. The whole process
has been implemented and tested in real case study. We
have tested the model collaboratively with three large
organizations in Malaysia. The certification process
developed by this research group requires a software
quality model as a benchmark and standard of the
assessment. The quality model must suit with the
certification specifications and requirements. Thus, PQM
is designed to fulfill certification requirements.

Three software operated in their environment have
been identified and tested applying the PQM for
assessment. Table 4 shows an example of the result
showing the scores obtained by the behavioural attributes
and the impact attributes (human aspects) defined in this
model.

Column 1 refers to the maximum value of each
score by respondents. Column 2 refers to the weight
values given by the owner of the software or any
appointed individual, Column 3 is the average score
obtained by this assessment. Based on the weight
assigned, scores are calculated (see [36] for detail) as
shown in column 4. Final values (column 5) are the
computed values of quality score obtained according to
attributes. In this case, the score for behavioural
attributes is 69.4% while the score of the impact
attributes is 73.3%. The total quality score of this product
is computed by averaging the behavioural and impact
attributes scores. The total score of this product is 71.3%.
In our case, this score is mapped into a certification level
to obtain the relevant certification status of this product.

Table 3 illustrates the different quality attributes and
characteristics defined in previous models. It also shows

our model, which consists of the current and vital
characteristics of behavioural attributes and human
aspects of quality. If assessment of software product is
done without using any weights or priorities as in
previous model, it shows slightly different result (refer to
Table 5). In this case the result obtained is 68.9% while
if using PQM in assessment, the product obtained 71.3%
in term of quality.

7. Conclusion

PQM is a quality model that provides flexibility in
identifying quality of software product based on
individual and organization requirements. It composes of
two main components: the behavioural and the impact
attributes. Literature suggests that lack of mechanism
and techniques of software assessment that cover both
aspects of software quality. The behavioural attributes
exhibit how the software behaves in the environment.
While the impact attributes cover how human views and
perceive ness toward the software. These two
components of quality produce a balance between
technical requirements and human factor. Table 3 shows
the summarization of quality characteristics in different
models. PQM is being used as the quality model for
certification of software based on product quality
approach. PQM has been implemented and tested in real
case studies involving three large organizations in
Malaysia. These illustrate the practicality and feasibility
of the PQM in real world.

References

[1] J.A. Whittaker, & J.M. Voas,, “50 years of software:

Key principles for quality,” IEEE IT Pro (Nov/Dec),
pp.28-35, 2002.

[2] P.J. Denning, “What is software quality?” A
Commentary from Communications of ACM
(January), 1992.

[3] C.C. Mann, “Why software is so bad?” MIT
Technology Review 105(July/August), pp. 33-38,
2002.

[4] J. Voas & W.W. Agresti, “Software quality from a
behavioral perspective,” IT Proffesional
(July/August), pp. 46-50, 2004.

[5] MSC. MSC Malaysia Progress Updates.
http://www.msc.com.my/xtras/fact_figures/msc.asp ,
2007. [May 22, 2007].

[6] Compuware,. “Application quality and its business
impact- a view from the top,”
http://www.compuware.com/whitepapers/ok.asp.
[13 January 2004].

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

60

[7] ISO/IEC 9126, “Software quality characteristics
and metrics-Part2: External metrics”, Technical
Report, ISO/IEC JTC1/SC7/WG6, 1996.

[8] I. Tervonen, “Support for quality-based design and
inspection,” IEEE Software (January), pp. 44-54,
1996.

[9] M.G. Jenner, Software Quality Management and
ISO 9001. New York: A Wiley/QED publication,
1995.

[10] IEEE. “IEEE standard for a software quality
Metrics Methodology”,
http://ieeexplore.ieee.org/xpl/standards.jsp, 1993.
[August 20, 2005].

[11] Galin, Daniel, Software Quality Assurance: From
Theory to Implementation. Harlow: Pearson
Addison Wesley, 2004.

[12] Slaughter, S.A., Harter, D.E. & Krishnan, M. S.,
“Evaluating the cost of software quality,”
Communications of The ACM 41(8): 67-73, 1998.

[13] L. Buglione & A. Abran, 1999. A quality factor for
software. Proceeding of QUALITA99, 3rd
International Conference on Quality and Reliability,
pp. 335-344.

[14] W. Suryn, A. Abran, P. Bourque & C. Laporte,
“Software product quality practices: Quality
measurement and evaluation using TL9000 and
ISO/IEC9126,” Proceeding of the 10th
International Workshop, Software Technology and
Engineering Practice (STEP) 2002.

[15] W. Suryn, A. Abran & A. April, “ISO/IEC
SQuaRE: The second generation of standards for
software product quality”,
http://www.lrgl.uqam.ca/publications/pdf/799.pdf,
2003. [20 Sept 2004].

[16] N.E. Fenton & S.L. Pfleeger, Software Metric: A
rigorous & practical approach. London: Thompson
Computer Press, 1996.

[17] F.E. Norman & S.L. Pfleeger, Software Metrics: A
Rigorous and Practical Approach, Second Edition.
Boston: PWS Publishing, 1997.

[18] K. Khosravi, & Y.G. Gueheneuc, “A quality model
for design patterns”,
http://www.yann_gael.gueheneuc.net/work/Tutorin
g/Documents/041021+Khosravi+Technical+Report.
doc.pdf, 2004. [26 October 2005].

[19] M.F. Bertoa, J.M. Troya & A. Vallecillo, “A survey
on the quality information provided by software
component vendors,” Proceedings of 7th ECOOP
Workshop on Quantitative Approaches in Object-
Oriented Software Engineering (QAOOSE 2003),
pp. 25-30, 2003.

[20] M. Ortega, M. Perez, & T. Rojas, “Construction of a
systemic quality model for evaluating a software

product”, Software Quality Journal 11: 219-242,
2003.

[21] Eagles, “Evaluation of natural language processing
systems”, Final Report (Sept).
http://www.issco.unige.ch/ewg95/, 1995 [18 May
2007].

[22] M. Svahnberg, C. Wohlin, L. Lundberg & M.
Mattsson, “A method for understanding quality
attributes in software architecture structures,” ACM
http://portal.acm.org/citation.cfm?id=568900, 2002.
[22 May 2007].

[23] R. Hendriks, R.v. Vonderen & E.v. Veenendaal,
“Measuring software product quality during
testing,” Proceedings of Conference European
Software Quality Week, 2000.

[24] R. Adnan & M. Bassem, “A new software quality
model for evaluating COTS components,” Journal
of Computer Science 2(4): 373-381, 2006.

[25] M.A. Cote, W. Suryn & C.Y. Laporte, ”Evolving a
corporate software quality assessment exercise: A
migration path to ISO/IEC 9126,” SQP 6(3): 4-17.
http://www.mitre-
corporation.com/work/best_papers/best_papers_04/
martin_software/martin_software.pdf , 2004. [10
July 2007].

[26] G.R. Dromey, “Software product quality: Theory,
model and practice. Software Quality Institute,”
Griffith University, Brisbane, Technical Report.
http://www.sqi.gu.edu.au, 1998 [23 August 2006].

[27] G. Rincon, M. Alvarez, M. Perez & S. Hernandez,
“A discrete-event simulation and continuous
software evaluation on a systemic quality model: An
air industry case,” Information & Management
Journal 42: 1051-1066.
http://www.sciencedirect.com, 2004. [14 April
2007].

[28] PROFES, “PROFES www-site”,
http://www.ele.vtt.fi/profes/, 1997. [18 May 2007]

[29] M. Torchiano, L. Jaccheri, C.F. Sorensen & A.L.
Wang, “COTS product characterization,” 14th
International Conference on Software Engineering
and Knowledge Engineering, SEKE '02, pp. 335-
338, 2002

[30] J. Voas & P. Laplante, “Standards confusion and
harmonization,” Computer 40(7): 94-96, 2007.

[31] B. Kitchenham & S.L. Pfleeger, “Software
quality: The elusive target,” IEEE Software
(January): 12-21, 1996.

[32] J. Voas, “Software's secret sauce: The "-ilities",”
IEEE Computer (November/December): 14-15,
2004.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

61

[33] D. Longstreet, “Fundamentals of function point
analysis,” http://www.SoftwareMetrics.com , 2005.
[23 August 2006].

[34] C.A. Dekkers & P.A. McQuaid, “The dangers of
using software metrics to (Mis)Manage.,” IT Pro
(March/April): 24-30, 2002.

[35] J.H.Yahaya, A. Deraman & A.R. Hamdan,
“Software product certification model:
Classification of quality attributes,” The First
Regional Conference of Computational Science and
Technology (RCCST 07), Kota Kinabalu, pp. 436-
440, 2007.

[36] J.H. Yahaya, A. Deraman & A.R. Hamdan, “A
model and methodology for software product
certification,” Proceedings of the National
Conference Software Engineering and Computer
System (Nacses07), Cherating, Kuantan, 2007.

[37] J. Kontio, ” A Case Study in Applying a Systematic
Method for COTS Selection,” 201-209.
Proceedings of the 18th International Conference
on Software Engineering. IEEE Computer Society
Press, pp. 201-209, 1996.

[38] G.G. Schulmeyer & J.I. McManus, 1998.
Handbook of Software Quality Assurance, 3rd
Edition. New Jersey: Prentice Hall.

[39] S.L. Pfleeger, 2001. Software Engineering: Theory
and Practice, 2nd ed. Upper Saddle River, N.J:
Prentice Hall.

[40] J. Boegh, “Certifying software component
attributes,” IEEE Software (May/June): 74-81, 2006.

[41] I.M. Hampton & B.W.T. Quinn, Software project
measurement criteria.
http://www.ieeexplore.ieee.org, 2000.[20 Dec,
2006].

Table 3: Quality characteristics present in Pragmatic Quality Model and Previous Models

Quality
characteristics

McCall
(1976)

Boehm
(1978)

FURPS
(1987)

ISO
9126

(1991)

Dromey
(1996)

Systemic
(2003)

PQM
(2007)

Testability x x
Correctness x
Efficiency x x x x x x x

Understandability x x
Reliability x x x x x x x
Flexibility x

Functionality x x x x x

Human engineering x

Integrity x x
Interoperability x

Process Maturity x
Maintainability x x x x x x x
Changeability x

Portability x x x x x x
Reusability x x
Usability x x x x

Performance x x
User Conformity x

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

62

Table 4: Assessment Analysis of Product Y: An Example
Behavioural
Attributes Max Value Weight Score

Obtained Score Quality
Score (%)

 (1) (3) (4) (5)

Efficiency 5 7 4.08 0.539 10.8

Functionality 5 9 3.69 0.627 12.5

Maintainability 5 7 2.66 0.351 7.0

Portability 5 4 3.55 0.268 5.4

Reliability 5 9 3.36 0.571 11.4

Usability 5 7 2.95 0.390 7.8

Integrity 5 10 3.83 0.723 14.5

TOTAL 53 3.469 69.4

The Impact

User Conformity 73.3

Total Product (TQP) 71.3

Table 5: Comparing Assessment Analysis of Product Y
Behavioural
Attributes Max Value Weight Score

Obtained
Quality

Score (%)
 (1) (2) (3) (4)

Efficiency 5 1 4.08 81.6

Functionality 5 1 3.69 73.8

Maintainability 5 1 2.66 53.2

Portability 5 1 3.55 71.0

Reliability 5 1 3.36 67.2

Usability 5 1 2.95 59.0

Integrity 5 1 3.83 76.6

TOTAL 53 68.9

The Impact

User Conformity 0

Total Product (TQP) 68.0

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

63

Jamaiah Haji Yahaya is a post
doctoral fellow in Department of
Computer Science, Faculty of
Information Science and
Technology, Universiti Kebangsaan
Malaysia (UKM). She is also a
lecturer in Information Technology
at Northern University of Malaysia.

She received her BSc (Computer Science) from
University of Wisconsin – La Crosse, USA (1986), MSc
(Information System) from University of Leeds, UK (1998)
and PhD in Computer Science from Universiti Kebangsaan
Malaysia in 2007. Her research interests includes software
certification, software quality and software management. Her
email addresses are <jamaiah@uum.edu.my> and
<jhyahaya@yahoo.com>.

Aziz Deraman is a professor in
Software Engineering in
Department of Computer Science,
Faculty of Information Science and
Technology, Universiti Kebangsaan
Malaysia. Currently he is the deputy
vice chancellor at University
Malaysia Terengganu, Malaysia.
He received BSc degree from UKM
(1982), MSc degree from

Glasgow University (1984) and PhD from University of
Manchester Institute of Science and Technology (UMIST) in
1992. His research interests include IT strategic planning,
software management and certification, medical computing and
community computing. His email addresses are
<a.d@umt.edu.my> and <ad@ftsm.ukm.my>.

Abdul Razak Hamdan is a
professor in System Management
and Science, Faculty of Information
Science and Technology, Universiti
Kebangsaan Malaysia (UKM).
Currently he is the dean of this
faculty. He received his BSc degree
from UKM (1975),

MSc degree from University of Newcastle Upon Tyne, UK
(1977) and PhD in Artificial Intelligence from
Loughborough University of Technology, United Kingdom in
1987. His research interests include ICT & Strategic Policy,
Intelligent Decision Support, Medical Data Mining and Jawi
Pattern Recognition. His email address is <arh@ftsm.ukm.my>.

