
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

137

Manuscript received August 5, 2008.
Manuscript revised August 20, 2008.

ROBDD Optimization Using Sub Graph Complexity

Mohamed Raseen and K.Thanushkodi

Coimbatore Institute of Engineering and Information Technology,
Vellimalaipattinam, Narasipuram (Post), Coimbatore, Tamilnadu 641109, India

Summary
This paper describes a novel method of variable
reordering for Reduced Ordered Binary Decision
Diagrams (ROBDD). The proposed method results in
ROBDD with lesser number of nodes and lesser APL. The
variable order in ROBDD is important since it affects the
number of ROBDD nodes. The problem of constructing an
ROBDD with minimum number of nodes has become of
growing importance since there is no unique method that
can be used to obtain the least number of nodes for all
Boolean functions. In this work, the proposed variable
ordering methods uses the graph topology to find the
optimal variable ordering; therefore the input Boolean
function (benchmark circuits) are converted to a
unidirectional graph. The variable order is found by
substituting the values of logic 1 and logic 0 for all the
variables. The variable that produces minimal sub graph is
assigned as next variable in variable order. This process of
assignment and selection is repeated iteratively until all
variables are selected. The efficiency of the proposed
method is demonstrated by building the ROBDD for
selected benchmark circuits. The number of nodes is then
compared for proposed method with existing methods in
Colorado University Decision Diagram (CUDD) package.
The experimental results using benchmark circuits show
that the proposed method is an encouraging approach
towards minimizing the evaluation time and number of
nodes for a Boolean function.
Key words:
Binary Decision Diagrams, Variable Ordering, Graph
Representations, Boolean Functions Representations.

1. Introduction

For the last two decades Binary Decision Diagrams (BDD)
has gained great popularity as a method for representing
discrete functions. BDD in general is a direct acyclic
graph representation of a Boolean function proposed by
Akers and Bryant [1], [2]. The success of this technique
has attracted many researchers in the area of synthesis and
verification of digital VLSI circuits. Since BDD allow
efficient representation of many practical functions [3], [4],
BDDs have become very popular data structures. The

efficiency of BDDs depends mainly on the size of their
graph representations.

The size of the BDD dramatically depends on the
chosen order of variables [5], [6], [7]. Finding a better
variable order is often worth spending considerable
computational effort [8]. Some functions, such as adders,
lead to BDD sizes that are exponential to the number of
input variables. But some other variable orderings lead to
linear complexity for BDD sizes. Determining an optimal
variable ordering is an NP-hard problem [9]. Another
parameter critical during the construction of BDDs is the
maximal memory requirement, which is directly
proportional to the number of nodes. A good ordering can
lead to a smaller BDD and faster runtime, whereas a bad
ordering can lead to an exponential growth in the size of
BDD and hence can exceed the available memory [10].
Accordingly, much attention has been devoted to
techniques for finding a good variable ordering. All these
variable ordering techniques fall into two categories:
Static Variable Ordering (SVO) algorithms [11], [12] and
Dynamic Variable Ordering (DVO) algorithms [6], [13].

The evaluation time is also another important
parameter, when BDDs are used to evaluate logic
functions. The evaluation time is proportional to the path
length in the BDD. Therefore, minimization of the path
length can improve the performance of the circuit, which
will eventually increase the quality of the final
implementation. In general the minimum path length in
Decision Diagrams (DD) is important in databases, pattern
recognition, logic simulation and software synthesis
[14].The minimization of Average Path Length (APL)
proposed in [14], [15], [16] reduces the average evaluation
time of logic functions. The minimization of the APL
leads to circuits with a smaller depth on the paths from
Root to Terminal nodes. By this, the circuit is optimized
for speed and the number of very long paths is reduced
[17]. The APL minimization is very much effective in
Real time operating system applications [18], [19], [20].
The minimization of Longest Path Length (LPL) of BDD
can reduce the longest evaluation time which is more
important for Pass Transistor Logic (PTL) [21], [21], [22].
One of the main problems with the pass transistor network
is the presence of long paths: the delay of a chain of n pass
transistors is proportional to n2. The path length can be
reduced by inserting buffers, but this increases area.
Hence the minimization of longest evaluation time will

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

138

improve the performance of the circuit [21], [22]. We
proposed an algorithm for finding the optimal variable
ordering for the minimization of BDD with regard to
number of nodes and the Path length. The resulted initial
variable order will produce the BDD with minimum
possible APL and consequently reducing the number of
nodes to an affordable size.

This paper is organized as follows. Besides section one
being an introduction, we will discuss the necessary
terminology and definitions in section two. In Section
three, we propose the method to calculate the minimum
APL and number of nodes of BDD based on good variable
ordering. Section four explains the proposed method using
an example. The experimental results are given in section
five. Finally in section six we conclude our paper with an
outline of our future work.

2. Preliminaries
Basic definitions for BDDs are given in [1], [2], [23], [24].
In the following we review some of these definitions.

Definition 1: A BDD is a directed acyclic graph (DAG).
The graph has two sink nodes labeled 0 and 1 representing
the Boolean functions 0 and 1. Each non-sink node is
labeled with a Boolean variable v and has two out-edges
labeled 1 (if then) and 0 (or else). Each non-sink node
represents the Boolean function corresponding to its 1
edge if v=1, or the Boolean function corresponding to its 0
edge if v=0.

Definition 2: An Ordered BDD (OBDD) is a BDD in
which each variable is encountered no more than once in
any path. The order of variables is same along each path.

Definition 3: A Reduced OBDD (ROBDD) is an OBDD
that is reduced by two reduction rules: deletion rule and
merging rule. These Reduction rules remove redundancies
from the OBDD.

2.1 Variable Ordering
The size of a BDD is largely affected (and varies from
linear to exponential) by the choice of the variable
ordering. Figure 1 illustrates the effect of the variable
ordering on the size of BDDs [1] for the following
Boolean function (1):

431432121 xxxxxxxxxf ⋅⋅+⋅⋅⋅+⋅= (1)

Figure 1- Effect of variable ordering on the size of BDDs

Definition 4: In a BDD, a sequence of edge and nodes
leading from the root node to a terminal node is a Path.
The number of non-terminal nodes on the path is the Path
Length.

Definition 5: The APL is equal to the sum of the node
traversing probabilities of the non-terminal nodes [14],
[18], which give the following equation (2):

∑
−

=
=

1

0
)(

N

i
ivPAPL (2)

Where, N denotes the number of non-terminal nodes.

Definition 6: The edge traversing probability, denoted by

)(0ieP (or)(1ieP), is the fraction of all 2n assignments
of values to the variables whose path includes 0ie (or 1ie),
where 0ie (or 1ie) denotes the 0-edge (or the 1-edge)
directed from away node iV [14]. Since all paths include
the root node, this node is traversed with probability 1.00.
Since all assignments to values of variables are equally
likely, we can use the following equation (3) to calculate
the)(iVP for the rest of the nodes:

)()(
2

)(
10 ii ePePviP

== (3)

Definition 7: The Longest Path Length (LPL) of a BDD
denoted by LPL (BDD), is the Length of the Longest Path
from the root to terminal node.

Example 1: Consider the BDD graph given in Figure 2, we
will calculate the APL in following order:

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

139

The root node)(0VP is always equal to 1.00. Then we
calculate the 50.0)()(001 == ePVP and

50.0)()(012 == ePVP . In a similar manner we calculate

25.0)()(
023 == ePVP

25.0)()(124 == ePVP

375.025.0125.0)()()(
11045 =+=+= ePePVP

So,

875.2)(
5

0
=∑=

=I
iVPAPL

44231 =→→→== xxxxhLongestPatLPL

Figure 2- Node Traversing Probability in a BDD

Definition 8: In a Decision Diagram (DD) for logic
function f , the memory size of the DD, denoted by Mem
(DD), is the number of words needed to represent the DD
in memory [18].

In a memory, each non-terminal node requires an index
and pointers to the succeeding nodes. Since each non-
terminal node in a BDD has two pointers, the memory size
needed to represent a BDD is

)()12()(BDDnodesBDDMem ×+= (4)

3. Proposed Method
The proposed method is a static variable ordering
technique [25], [26], [30]. The main focus of the research
work is to develop methods to reduce the complexity of
Boolean functions by finding optimal variable order for
the corresponding ROBDD. The software that will be used
for the entire research work is CUDD (Colorado
university decision diagram)[27] package with C interface.
The following steps will be performed in the proposed
method

Step 1: Using the BLIF file, a graph with input, output and
intermediate nodes is developed and stored in the RAM.

Step 2: The values of 0 is assigned to first variable and the
graph is simplified.

Step 3: The parameters of the new graph (number of
nodes) are recorded.

Step 4: The value of 1 is assigned to first variable and the
graph is simplified.

Step 5: The parameters of the new graph (number of
nodes) are recorded.

Step 6: Steps 2 to 5 are repeated for all the remaining
variables.

Step 7: The assignment (1 or 0) that produced minimum
graph parameter is selected as the variable in the order.

Step 8: Steps 2 to 7 are repeated for the new simplified
graph in a recursive way and all the other variables in the
order are found.

Step 9: Using the variable order generated, the ROBDD is
built with minimum nodes.

Step 10: The method is repeated for benchmark circuits
and results are tabulated to prove the efficiency of the
proposed method.

4. Example
In the following we explain the proposed method

mentioned in section 3 using an example. Consider the
BLIF (Berkley logic interchange format) file shown in the
figure 3.

Figure 3- Example BLIF file

The circuit in figure 3 has four inputs (A,B,C,D) and

one output (Z). The circuit is converted into a graph
shown in figure 4.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

140

Figure 4- Graph for the example BLIF file

From figure 4 it can be seen that the complete BLIF
function requires 8 nodes in the graph. To find the variable
order, the variable A is substituted the value of logic zero
and simplified. After substitution and reduction (of A=0) a
new sub graph in figure 5 is obtained.

Figure 5-Sub graph for variable A = 0

From the sub graph (figure 5) for A=0 it can be seen

that the complete graph reduces from 8 nodes to 3 nodes.
Next the variable A is assigned the value of logic 1 (in
figure 4) and simplified. After assignment (A=1) and
simplification the figure 6 is obtained.

Figure 6- Sub graph for variable A = 1

For the substitution of variable A to the value of logic

1 the graph (figure 6) reduces to 6 nodes. After assigning
values of logic one and zero for variable A, the variable B
is assigned the values. From the graph of full circuit the
variable B is assigned a value of logic 0. After assignment
of B=0 the graph in figure 7 is obtained.

Figure 7- Sub graph for variable B = 0

From figure 7 it can be inferred that the substitution of
logic zero to variable B gives a sub graph of 6 nodes. Next
variable B is assigned the value of logic 1 and simplified.
Thus figure 8 is obtained for B = 1.

 Figure 8- Sub graph for variable B = 1

By substituting logic 1 to variable B we get the sub graph
(figure 8) with 1 node. Similarly values of logic 0 and
logic 1 is assigned to the remaining variables (C,D) and
sub graphs (figure 9 to figure 12) are obtained.

Figure 9- Sub graph for variable C = 0

Figure 10- Sub graph for variable C = 1

Figure 11- Sub graph for variable D = 0

Figure 12- Sub graph for variable D = 1

The number of nodes in the sub graphs (after
substitution and simplification) is summarized in table 1.

Table 1: Number of nodes in sub graphs

From the table we can infer that simplification occurs
maximum to 1 node. The sub graph gets one node when B

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

141

is substituted with logic 1 or C is substituted with logic 1.
The variable that produces minimum nodes is selected as
next variable in the ROBDD variable order. In this case B
is selected as first variable in order since it produces
minimum nodes for assignment of logic 1. Variable C
(C=1) also produced 1 node but is not selected since B
precedes C in the substitution order.

To generate other variables in order we start wit the sub
graph that produced minimum nodes (with B=1). Figure 8
is taken as parent graph and sub graphs are built with the
remaining variables(A,C,D). This process is repeated
iteratively until all the variables in the order are found.

The example shown in this section is a simple BLIF file
with 4 variables and single output. The example is also a
simple single level PLA structure. The proposed method
explained in this section was applied to much complex
ISCAS benchmarks with multi level circuits and with
many intermediate nodes.

5. Experimental Results
In this section we present experimental results obtained

for selected ISCAS benchmark circuits [28], [29] using the
Colorado University Decision Diagram (CUDD) package.
The CUDD provided interface for C programming. The
proposed model was implemented with approximately
2000 lines of C program. Table 2 illustrates the results of
the proposed method and eleven different CUDD methods.
The results indicate the superiority of the proposed method,
in terms of number of nodes. It is difficult to conduct a
head-to-head comparison of different variables ordering
techniques due to the fact that other parameters such as
memory used while reordering, time taken to reorder,
algorithm complexity etc. need to be considered when
comparing the results. Based on the experimental results it
can be inferred that the proposed method performs better

than most of the CUDD methods for most of the circuits.
Circuits alu2, b1, b12, c8, cc, cht, cm138a, cm162a, cmb,
cordic, decod, lld, misex2, sqrt8, s1rt8ml, sqar5 and tcon
produced lesser nodes than all the eleven methods in
CUDD. The remaining circuits produced lesser nodes than
most of the CUDD methods. Apart from the number of
nodes the experiment was conducted for APL. Table 3
illustrates the APL generated for the benchmarks with the
proposed method and eleven other CUDD methods. From
the results in table 3, it can be inferred that the proposed
method performs better in APL than most of the existing
methods in CUDD.

6. Conclusion
A new algorithm for minimizing the Evaluation time in
BDD has been developed. The algorithm has been
implemented using ISCAS benchmark circuits and the
results have been compared with the eleven CUDD
reordering methods. Experimental results indicates that
this algorithm is promising, yielding better results than
more mature reordering techniques for most of the
benchmarks. It is also quite clear that the minimization of
the Evaluation time of a BDD can improve the
performance of the circuit, and have a strong influence on
the quality of the final implementation. Our future work
and developments will concentrate on investigating
LPL(Longest Path Length) and SPL(Shortest Path Length)
minimization for larger scale benchmark circuits.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

142

Table 2- Experimental Results (number of nodes)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

143

Table 3- Experimental Results (APL)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

144

References
[1] R. E. Bryant, Graph−Based Algorithm for Boolean

Function Manipulation, IEEE Trans. Computers, Vol.
35, pp. 677-691, 1986.

[2] S. B. Akers, Binary Decision Diagram, IEEE Trans.
Computers, Vol. 27, pp. 509-516, 1978.

[3] K. Priyank, VLSI Logic Test, Validation and
Verification, Properties & Applications of Binary
Decision Diagrams, Lecture Notes, Department of
Electrical and Computer Engineering University of
Utah, Salt Lake City, UT 84112, 1997.

[4] Ingo W.: “Complexity of Boolean function”, John
Wiley & Sons Ltd, and B. G. Teubner, Stuttgart, 1987.

[5] P. W. C. Prasad and A. K. Singh, An Efficient
Method for Minimization of Binary Decision
Diagrams, Proceedings of 3rd Int. Conf. on Advances
in Strategic Technologies, pp. 683-688, 2003.

[6] R. Rudell, “Dynamic Variable Ordering for Ordered
Binary Decision Diagrams,” Proceedings of the
International Conference on Computer Aided Design
(ICCAD), pp. 42-47, 1993.

[7] R. Ebendt, Reducing the number of variable
movements in exact BDD minimization, Proceedings
of 2003 Int. Symp. on Circuits and Systems, pp. 605-
608, 2003.

[8] Fadi A. Aloul, Igor L. Markov, Karem A. Sakallah,
“Improving the Efficiency of Circuit-to-BDD
Conversion by Gate and Input Ordering” 20th
International Conference on Computer Design (ICCD
2002), pp. 64-69, 2002.

[9] Justin E. Harlow and Franc Brglez, “Design of
Experiments and evaluation of BDD ordering
Heuristics”, Inter. Journal on Software Tools for
Technology Transfer, Vol. 3 , No.2 , pp. 193-206,
2001.

[10] F. Aloul, I. Markov, K. Sakallah, “MINCE: A Static
Global Variable-Ordering Heuristic for SAT Search
and BDD Manipulation”, Journal of Universal
Computer Science (JUCS), Vol 10, No 4, pp 1-6,
2004.

[11] M. Fujita, H. Fujisawa, and N. Kawato, “Evaluation

and Improvements of Boolean Comparison Method
Based on Binary Decision Diagrams,” Proceedings of
the InternationalConference on Computer Aided
Design (ICCAD), pp. 2-5, 1988.

[12] S. Malik, A. Wang, R. Brayton, and A. Sangiovanni-
Vincentelli, “Logic Verification Using Binary
Decision Diagrams in a Logic Synthesis
Environment,” Proceedings of the International
Conference on Computer Aided Design (ICCAD), pp.
6-9, 1988.

[13] F. Somenzi, “Efficient Manipulation of Decision
Diagrams,” in International Journal on Software Tools

for Technology Transfer (STTT), 3(2), pp. 171-181,
2001.

[14] S. Nagayama, A. Mishchenko, T. Sasao, and J. T.
Butler, “Minimization of average path length in BDDs
by variable reordering,” International Workshop on
Logic and Synthesis, pp. 207-213, Laguna Beach,
California, U.S.A., May 28-30, 2003.

[15] R. Ebendt, S. Hoehne, W. Guenther, and R. Drechsler,
“Minimization of the expected path length in BDDs
based on local changes,” Proceedings of Asia and
South Pacific Design Automation Conference (ASP-
DAC’2004), pp. 866-871, Yokohama, Japan, Jan.
2004.

[16] Y. Liu, K. H. Wang, T. T. Hwang, C. L. Liu, “Binary
decision Diagrams with minimum expected path
length,“ Proceedings of DATE 01, pp. 708–712, Mar.
13-16, 2001.

[17] Görschwin Fey, Junhao Shi and Rolf Drechsler,
“BDD Circuit Optimization for Path Delay Fault-
Testability”, Proceedings of EUROMICRO
Symposium on Digital System Design, pp. 168-172,
2004.

[18] S. Nagayama and T. Sasao, "On the minimization of
longest path length for decision diagrams,"
International Workshop on Logic and Synthesis
(IWLS), June 2-4, Temecula, California, U.S.A., pp.
28-35, 2004.

[19] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A.
Jurecska, L. Lavagno, A. Sangiovanni-Vincentelli, E.
M. Sentovich, and K. Suzuki, “Synthesis of software
programs for embedded control applications,” IEEE
Trans. CAD, Vol. 18, No. 6, pp. 834-849, June 1999.

[20] M. Lindgren, H. Hansson, and H. Thane, “Using
measurements to derive the worst-case execution
time,” 7th International Conference on Real-Time
Systems and Applications (RTCSA’00), pp. 15-22,
2000.

[21] R. S. Shelar and S. S. Sapatnekar, Recursive
Bipartitioning of BDD's for Performance Driven
Synthesis of Pass Transistor Logic, Proceedings of
IEEE/ACM ICCAD, pp. 449 – 452, 2001

[22] V. Bertacco, S. Minato, P. Verplaetse, L. Benini, and
G. De Micheli: "Decision Diagrams and Pass
Transistor Logic Synthesis", Stanford University CSL
Technical Report, No. CSL-TR-97-748, Dec. 1997.

[23] R. Drechsler, B. Becker, Binary Decision Diagrams
Theory and Implementation, Kluwer Academic
Publishers, 1998

[24] R. Drechsler and D. Sieling, Binary Decision
Diagrams in Theory and Practice, Springer-Verlag
Trans., pp. 112-136, 2001.

[25] P.W.C. Prasad, M. Raseen, A. Assi and S.M.N.A.
Senanayake, "BDD Path Length Minimization based
on Initial Variable Ordering", Journal of Computer

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

145

Science, Vol. 1, Issue 4, pp.521-529, Science
Publications, USA, 2005

[26] P. W. C. Prasad, M. Raseen and S. Sasikumaran,
"Delay Minimization in Pass Transistor Logic use of
Binary Decision Diagram", 2nd International
Conference on Information Technology (ICIT 2005),
pp 66-70, Jordan, May 2005.

[27] F. Somenzi, CUDD: Colorado University Decision
Diagram Package. ftp://vlsi.colorado.edu/ pub/., 2003.

[28] S. yang. Logic synthesis and optimization
benchmarks user guide version 3.0. Technical report,
Microelectronic Centre of North Caroline, Research
Triangle Park, NC, January 1991.

[29] M. Hansen, H. Yalcin, and J. P. Hayes, "Unveiling
the ISCAS-85 Benchmarks: A Case Study in Reverse
Engineering," IEEE International Journal on Design
and Test, vol. 16, no. 3, pp. 72-80, July-Sept. 1999.

 [30] P.W. C. Prasad, A. Assi, A. Harb and V.C. Prasad,
“Binary Decision Diagrams: An Improved Variable
Ordering using Graph Representation of Boolean
Functions”, International Journal of Computer
Science, vol. 1, no. 1, pp 1-7, 2006.

Mohamed Raseen is
currently a research scholar
in Coimbatore Institute of
Engineering and
information technology.
He has obtained his MS
degree in university of
Houston-Clearlake and his
bachelor’s degree from
Government college of
Technology, Coimbatore

 India. He has published 17 papers in international
conferences and journals. His research area is binary
decision diagrams and algorithms.

Dr.K.Thanushkodi has got 30 yrs of
teaching experience in Government
Engineering Colleges. He has
published 45 papers in international
journals and conferences. He has
guided 1 PhD and 1 MS (by research)
students. He is currently guiding 15
research scholars in the area of power
system engineering, power
electronics and computer networks.
He has been principal in-charge and
Dean in Government College of
engineering

Bargur. Heserved as senate member in periyar university salem.
He served as member of the research board, Anna University at
channai. He Served as Member, Academic Council, Anna
University, Chennai. He is Serving as Member Board of Studies

in Electrical Engineering, Anna University, Chennai. He is
serving as Member, Board of Studies in Electrical and
Electronics & Electronics and Communication Engineering,
Amritha Viswa Vidya Peetham, Deemed University,
Coimbatore. He is sServing as Governing Council Member
SACS MAVMM Engineering College, Madurai. He served as
Professor and Head of E&I, EEE, CSE & IT Departments at
Government College of Technology, Coimbatore.

