
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

146

Web-Based CASE Tool for Automated Rendering of UML
Models

Sellappan Palaniappan and Louis Ling,

Department of Information Technology,

Malaysia University of Science and Technology, Kelana Square, 47301 Petaling Jaya, Malaysia

Abstract
Traditional CASE tools are desktop-based, so they do not
support online software collaboration. That is, they do not
allow members of software project teams who are
geographically distributed to collaborate and work together
on software projects. This constrains software houses from
tapping into global talent pools that can help reduce software
costs and acquire needed expertise. Online CASE tools can
help solve this problem. This paper presents a prototype web-
based CASE tool that supports automated rendering of UML
models by enabling team members who are geographically
distributed to work together. Software modelers specify their
software systems using a set of triplets for each UML
diagram and the tool uses the triplets to automatically render
high-quality SVG graphics, thus eliminating the need for
manual diagramming. The current version supports three
UML diagrams: Class, Use Case and Sequence. The tool is
implemented using Active Server Page (the Microsoft’s
server-side scripting engine) and VBScript (the Microsoft’s
Visual Basic Scripting Language) and can be accessed on the
Web.

Keywords:
Web-based CASE tools, Scalable Vector Graphics,
collaborative software modeling, UML diagrams.

1. Introduction

Software houses (developers) typically use CASE tools
to develop their software systems. CASE tools can
help improve the quality of software produced. They
can be used to specify, design, construct, test and
document software systems. They can also reduce
costs and improve delivery times. Today’s CASE tools
have varying degrees of sophistication. Some support
early phases of software processes, e.g., specification;
some, later phases, e.g., code generation; and some, all
phases (including forward and reverse engineering).

Most existing commercial CASE tools are desktop-
based, i.e., they cannot be accessed on the Web. This
limits software houses to tap into global talent pools
which can help to reduce software costs and acquire

needed expertise. Online or Web-based CASE tools
can help overcome this problem as they allow
developers who are geographically distributed to
collaborate and work together on software projects.
Thus there is a strong case for online CASE tools.

As Internet technology has matured over the years and
has now become the de facto medium for global
communication, it provides an ideal platform for
collaborative software development. It is standards-
based. So it provides a very flexible, inexpensive and
effective environment for collaborative software
development [17].

Thick-client desktop-based CASE tools provide
features such as diagram editing and viewing facilities,
sophisticated interaction features, and information
management on local workstations [6, 7, 9]. However,
they are not accessible via the Web, so they are not
very flexible. Thin-client online CASE tools, on the
other hand, are more flexible as they are accessible via
the Web. They also have a consistent ‘feel and look’
user interface. Web browsers also eliminate the need to
install CASE tools on every workstation whenever
they undergo version changes. Also, they are likely to
be less expensive compared to desktop-based CASE
tools. However, they pose a big challenge: Online
CASE tools are restricted in the types of interaction
allowed.

This research presents a prototype thin-client Web-
based CASE tool that allows members of software
teams who are geographically distributed to collaborate
and work together on software projects. It allows them
to specify software using a set of triplets for each UML
diagram and the tool uses the triplets to automatically
generate the diagram. It is flexible and cost-effective.
The current version supports three UML diagrams:
Class, Use Case and Sequence.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

147

2. Literature Review

2.1 Related Works

Thick-client desktop-based CASE tools provide
features such as repository support, versioning control,
data modeling and diagram views. However, they lack
automated diagramming support and they cannot be
accessed via the Web. To overcome these limitations,
vendors are now beginning to make CASE tools Web-
enabled and provide automated diagram rendering
support.

Some popular desktop-based CASE tools are
Argo/UML [13], Composers [7], Pounamu [18] and
Rational Rose [12]. Because these are based on thick-
clients, they must be installed on every workstation.
There are also meta-CASE tools such as GraMMI [15],
JViews [7] and KOOGE [4] that cater to different user
preferences.

Research on online CASE tools has produced several
prototypes: BSCW [1], OzWeb [8], Webworlds [2],
Web-CASRE [10], Cliki [5], NutCASE [11] and Seek
[9]. However, they do not provide automated diagram
rendering features; users can only view UML diagrams
derived from formal specifications as in TCOZ [16].
Thus there is a need for online CASE tools.

2.2 The Unified Modeling Language

The Unified Modeling Language (UML), managed by
the Object Management Group (OMG), provides
industry standard mechanisms for visualizing,
specifying, constructing, testing and documenting
artifacts of software systems [14]. UML is used to
understand, design, browse, configure, maintain and
control information on such systems. UML is intended
to be used with all development methods, life cycle
stages, application domains and media. However, the
manner in which these components are used in
lifecycle stages varies. A recent study has shown that
there is considerable variation in the use of these
components: Class, Sequence and Use Case diagrams
are used most frequently while Collaboration diagrams
are used least frequently [3].

2.3 Scalable Vector Graphics

Scalable Vector Graphics (SVG) is an XML-based
graphics standard from the World Wide Web
Consortium (W3C). SVG enables Web developers to
go beyond the limitations of HTML. It lets them create
robust visual contents using a simple declarative
programming model. SVG produces a two-dimensional

vector graphics to display several types of information,
e.g., statistics, graphs, maps, technical diagrams. It is
particularly suited to creating graphics from XML data.
Interest on tools for creating and viewing SVG files on
the Web is still growing.

3. Design and Methods

3.1 Building Blocks for UML Diagrams

A fundamental building block of a UML diagram is the
combination of two identity elements and a binding
element that creates bonding relationship between the
two identity elements. The identity and binding
elements however may differ in different UML
diagrams (e.g., in class diagrams, the identity elements
are classes and the binding elements are relationships).
Some identity and binding elements are unique to a
particular diagram (e.g., extend and include
relationships in a use case) while others may be shared
among diagrams (e.g., the actor element in use case
diagram can appear as stereotype in a sequence
diagram).

Note that each diagram is made up of a finite number
of identity and binding elements (use case consists of
actors, use cases, and relationships between actors,
between actors and use cases, and between use cases).
The tool uses this information to render diagrams
automatically. Every building block or UML diagram
is expressed as a set of triplets. With this one can
deconstruct any diagram and generate the
corresponding triplets that provide the visual
information.

3.2 Automated Rendering of UML Diagrams

Automated rendering of UML diagrams comprises of
sixteen processes, categorized into four groups:

Preliminary

1. Create a pool of identity and binding elements.
2. Create a pool of triplets.
3. Create a virtual canvas.
4. Insert triplets into the virtual canvas.
5. Update the virtual canvas version.
6. Generate a unique filename for SVG and HTML

documents.

SVG Document Authoring

7. Create a SVG document using the unique
filename.

8. Write into the SVG document the SVG starting
framework.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

148

9. Write into the SVG document the definitions of
objects and elements.

10. Write into the SVG document the positions of
objects and elements.

11. Write into the SVG document the SVG closing
framework.

HTML Document Authoring

12. Create a HTML document from the unique
filename.

13. Write into the HTML document the HTML
starting framework.

14. Embed the SVG document into the HTML
document.

15. Write into the HTML document the HTML
closing framework.

Database Update

16. Update the server database.

3.3 Triplet Positioning Algorithm

Although all diagrams are rendered using the steps
listed in Section 3.2, not all diagrams share the same
elements and triplets or use the same triplet positioning
algorithm to position elements on the virtual canvas.
The algorithm for rendering class, use case and
sequence diagrams are described below.

Class Diagram

As the types of relationship between classes are finite,
it is easy to determine the positioning of each triplet.
The strategy is to group each relationship under one of
the following: association, aggregation, composition
and generalization, and assign them to different parts
of the diagram. Figure 1 shows the general pattern.
Each class has a set of four relationships with the
centre class being defined as the source class and the
classes surrounding it being defined as the groups of
destination classes. The automated rendering of class
diagrams appear in the area marked “Template”. The
absolute positions of class names and multiplicity
relationship between classes are determined by using
another algorithm.

Each group of destination classes are further
aggregated into those that fall under the northern or
southern hemisphere. The positions of all destination
classes related to a source class are relative to the
positions of the starting destination classes for each
group and for each hemisphere, which are defined in
the template. The positioning of destination classes
start at the northern hemisphere and proceeds to the
southern hemisphere on an alternate pattern. For each

hemisphere, each destination class is assigned a
position that branches away from the source class as
shown by the arrow for each group.

Sequence Diagram

As in the class diagram, the pattern in the sequence
diagram is expressed in terms of types of objects and
types of messages. Messages in sequence diagrams
proceed vertically down and all actor objects are
organized from top left. The strategy used in the triplet
positioning algorithm is to position all objects in the
order of actor objects, boundary objects, entity objects
and control objects as shown in Figure 2.

After assigning positions for the interacting objects,
their lifelines are drawn. The lifelines depend on the
number and type of messages passed. A lifeline can
accommodate one sequence triplet if the message is of
type self call or two sequence triplets if the message is
of any other type.

After setting the layout of the sequence diagram each
triplet is assigned a position as follows:

1. Obtain the positions of the source and

destination objects of the triplets on the virtual
canvas.

2. Determine the direction of the message.
3. Determine the distance between the source and

destination objects.
4. Write the message type, message timeline and

message contents.
5. Update the starting y-coordinate of the focus of

control for the next set of triplet.

Use Case Diagram

Use case diagram has only three types of triplets: actor-
actor, actor-use case, and use case-use case. In the
actor-actor triplet, only one type of relationship exists:
inheritance. In the actor-use triplet, only one type of
relationship exists: association. In the use case-use case
triplet, three types of relationships exist: inheritance,
extension and inclusion. For automated rendering of
diagrams, only the last two types of triplets are used.

The strategy used in the triplet positioning algorithm is
to partition a virtual canvas into three columns: left
column for all actors, centre column for all primary use
cases; and right column for all subsidiary use cases
(Figure 3). The right column is further partitioned into
three rows: top row for all subsidiary use cases that
have inheritance relationship with primary use case
(denoted by the «inherit» link to primary use case);

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

149

middle row for all subsidiary use cases that have
extension relationship with primary use case (denoted
by the «extend» link to primary use case); and bottom
row for all subsidiary use cases that have inclusion
relationship with the primary use case (denoted by the
«include» link to primary use case).

Figure 3 shows the template for the automated diagram.
The positioning of element names is given by another
algorithm. The «inherit» and «extend» subsidiary use
cases are aggregated further into groups of those that
fall in the northern and southern hemispheres. The
position of all subsidiary use cases related to the
primary use case are relative to the position of the
starting subsidiary use case for each group and for each
hemisphere. The positioning for each subsidiary use
case starts at the northern hemisphere and proceeds to

the southern hemisphere on an alternate pattern. For
each hemisphere, each subsidiary use case is assigned a
position that branches away from the primary use case
as shown by the arrow for each group.

4. Evaluation

4.1 File Size Comparison

We can evaluate performance by comparing the size of
image files sent over the Internet for the various
graphics formats. Table 1 shows the file size for
various graphics formats for a sequence diagram. It
also shows whether there is loss of color information
needed to perform automatic rendering. The smallest

 Class Class Class

Class

Class

Class

Class

Class

Class

Class

Class

Class

Class

Class

Class Class

Fig.1 A compendium of four relationships for a class.

A
ss

oc
ia

tio
n

G
en

er
al

iza
ti

A

ggregation
C

om
position

Class Class

Class

Template

Fig 2 An example of UML sequence diagram created from the automated rendering of UML diagrams.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

150

file size without any loss of color information is the
SVG format. Next is the GIF format but it suffers from
loss of color information. PNG, JPEG and TIFF files
retain color information, but they are much larger than
the SVG file. The BMP file for all resolutions and
colors is the largest and suffers from loss of color
information. This tells that BMP format is not suitable
for sending images on the Internet.

Table 1. File size comparison for images of different graphics
standards.

Graphics
Format

Size
(KB)

Loss of Color
Information

SVG 10.2 No
GIF 14.9 Yes

PNG 30.8 No
JPEG 48.9 No
TIFF 66.2 No

Monochrome BMP 109 Yes
16-Colour BMP 434 Yes

256-Colour BMP 870 Yes

The study has shown that for any image, the file size of
vector graphics is always smaller than the file size of
raster graphics. The vector graphics always retains
color information while the raster graphics may or may
not retain color information.

4.2 Triplet Positioning Algorithm Limitations

The triplet positioning algorithms for rendering class,
sequence and use case diagrams have their limitations.
For class diagram, itemization of each class and
grouping of other classes based on relationship for
each itemized class can be viewed to give detailed
information on each class. However, the algorithm is

not designed to position class triplets to create a class
diagram where the position of each class is arbitrary.
From the viewpoint of each itemized class, the region
for each type of class relationship has been
predetermined and the position of each class depends
on the type of relationship it has with each itemized
class.

For sequence diagram, ordering of participating objects
presents a problem. The current practice orders the
actor objects to the left of the diagram. While results of
the automated rendering correspond to the ordering of
participating objects (the first object in the set of
interactions appears at the left and the last object at the
right), there is no mechanism for the user to determine
the order of participating objects manually. It is
possible to introduce some flexibility that allows the
user to manually order the participating objects.

For use case diagram, itemization of each primary use
case and grouping of subsidiary use cases based on
relationships with each itemized primary use case can
be viewed to have more information on each class.
However, the algorithm is not designed to position

Fig 3 “Virtual” canvas division for UML use case diagram in the automated rendering of UML diagrams.

Primary
Use

Case

Subsidiary Use Cases (Inheritance)

Subsidiary Use Cases (Extend)

Subsidiary Use Cases (Include)

Actor

Template

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

151

triplets where the position of each class is arbitrary.
From the viewpoint of each itemized primary use case,
the region for each type of primary use case
relationship with subsidiary use cases has been
predetermined and the position of each subsidiary use
case depends on the type of relationship it has with
each itemized class.

Current categorization of use case triplets is still
incomplete. We could add another category of triplets:
subsidiary use case-subsidiary use case. The triplet
interaction in use case is more complex and the
categorization fails to address this complexity.

5. Conclusion and Future Work

Although existing thick client desktop-based CASE
tools perform complex tasks covering all or most of the
software processes, they have two shortcomings: (1)
they lack automatic diagram rendering and (2) they are
not Web-enabled. This research has presented a
prototype thin-client Web-based CASE tool that allows
members of software teams who are geographically
distributed to collaborate and work together on
software projects. The tool overcomes both these
limitations. It generates UML diagrams automatically
and it is Web-enabled. The current version supports
Class, Use Case and Sequence diagrams. Further work
can incorporate other UML diagrams. The triplet
positioning algorithms can be further improved to
provide dynamic triplet positioning and interactive
system-rendered diagrams.

Acknowledgements

This paper was supported by E-Science Research Grant
(No. 01-02-05-SF0016), Ministry of Science and
Technology and Innovation (MOSTI), Government of
Malaysia.

References

[1] Bentley, R., Horstmann, T., Sikkel, K., and Trevor, J.

(1995). Supporting Collaborative Information Sharing
with the World Wide Web: The BSCW Shared
Workspace System, In Proc. of the 4th International
World Wide Web Conference, Boston, Massachusetts,
11–14 December 1995.

[2] Chalk, P. D. (2000). Webworlds – Online Modeling
Environment for Learning Software Engineering, Journal
of Computer Science Education, 10(1), April 2000, pp.
39–56.

[3] Dobing, B and Parsons, J. (2006). How UML Is Used?
Communications of the ACM, 49(5), May 2006, pp. 109-
113.

[4] Ebert, J., Süttenbach, R., Uhe, I. (1997). Meta-CASE in
Practice: A Case for KOGGE, In Proc. of the 9th
International Conference on Advanced Information
Systems Engineering, Lecture Notes on Computer
Science, 1250, Barcelona, Spain, Springer-Verlag, pp.
203–216.

[5] Gordon, D., Biddle, R., Noble, J. and Tempero, E. (2003).
A Technology for Lightweight Online Visual
Applications, In Proc. of the 2003 IEEE Symposium on
Human Centric Computing Languages and Environments,
Auckland, New Zealand, 28–31 October 2003, IEEE
Computer Society Press, pp. 245–247.

[6] Green, T. R. G. (1989). Cognitive Dimensions of
Notations, In A. Sutcliffe and L. Macaulay (Eds.) Proc.
of the 5th Conference of the British Computer Society,
Human-Computer Specialist Group on People and
Computers V, Cambridge, United Kingdom, Cambridge
University Press, pp. 443–460.

[7] Grundy, J. C., Mugridge, W. B., and Hosking, J. G.
(2000). Constructing Component-Based Software
Engineering Environments: Issues and Experiences,
Journal of Information and Software Technology, 42(2),
January 2000, pp. 117–128.

[8] Kaiser, G. E., Dossick, S. E., Jiang, W., Yang, J. J., Ye, S.
X. (1998). WWW-Based Collaboration Environments
with Distributed Tool Services, World Wide Web, 1(1),
March 1998, pp. 3–25.

[9] Khaled, R., MacKay, D., Biddle, R., Noble, J. and
Tempero, E. (2002). A Lightweight Online CASE Tool
for Sequence Diagrams, In Proc. of SIGCHI-NZ
Symposium on Computer-Human Interaction, Hamilton,
New Zealand, 11–12 July 2002, pp. 55–60.

[10] Lyu, M. R. and Schönwälder, J. (1998). Web-CASRE:
An Online Tool for Software Reliability Modeling, In
Proc. of the 9th International Symposium on Software
Reliability Engineering, Paderborn, Germany, 4–7
November 1998, IEEE Computer Society Press, pp. 151–
160.

[11] Mackay, D., Biddle, R. and Noble, J. (2003). A
Lightweight Online CASE Tool for UML Class
Diagrams, In Proc. of the 4th Australasian User Interface
Conference on User Interfaces, Adelaide, South Australia,
4–7 February 2003, Australian Computer Society, pp.
95–98.

[12] Quatrani, T. and Booch, G. (2002). Visual Modeling
with Rational Rose 2002 and UML (3rd ed.), Addison-
Wesley Professional, 2003.

[13] Robbins, J., Hilbert, D. M., and Redmiles, D. F. (1998).
Extending Design Environments to Software Architecture
Design, Journal of Automated Software Engineering,
5(3), July 1998, pp. 261–290.

[14] Rumbaugh, J., Jacobson, I., and Booch, G. (2005). The
Unified Modeling Language Reference Manual (2nd ed.).
New York: Addison-Wesley Professional.

[15] Sapia, C., Blaschka, M. and Höfling, G. (2000).
GraMMi: Using a Standard Repository Management
System to Build a Generic Graphical Modeling Tool, In
Proc. of the 33rd Hawaii International Conference on
System Sciences, Maui, Hawaii, 4–7 January 2000, IEEE
Computer Society Press, pp. 1–10.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

152

[16] Sun J., Dong, J. S., Liu, J. and Wang, H. (2001). An
XML/XSL Approach to Visualize and Animate TCOZ,
In Proc. of the 8th Asia-Pacific on Software Engineering
Conference, Macau SAR, China, 4–7 December 2001,
IEEE Computer Society Press, pp. 453–460.

[17] Webster, M. (2005). The Requirements for Managing
the Geographically Distributed Development
Organization and the CollabNet Solution, IDC, February
2005. Retrieved 16 May 2007, from http://enterprise-
development.open.collab.net/files/documents/86/24/.

[18] Zhu, N., Grundy, J. C., and Hosking, J. G. (2004).
Pounamu: A Meta-Tool for Multi-View Visual Language
Environment Construction, In Proc. of International
Conference on Visual Languages and Human Centric
Computing, Rome, Italy, 25–29 September 2004, IEEE
Computer Society Press, pp. 254–256.

Louis Ling obtained his MSc in
Information Technology from Malaysia
University of Science and Technology
(MUST). He is a Research Affiliate Officer
in the Department of Information
Technology at MUST. His current research
interests include Collaborative CASE Tool
and Scalable Vector Graphics (SVG).

Sellappan Palaniappan obtained his PhD
in Interdisciplinary Information Science
from University of Pittsburgh and a MSc
in Computer Science from University of
London. He is an Associate Professor at
the Department of Information
Technology, Malaysia University of
Science and Technology. His current
research interests include information
integration, clinical decision support
systems, OLAP and data mining, web
services and collaborative CASE tools.

