
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

195

Manuscript received August 5, 2008.
Manuscript revised August 20, 2008.

Summary
Most of the association rules mining algorithms to discover
frequent itemsets do not consider the components of
transactions like its quantity or weight or its total profit. In
a large database it is possible that even if the itemset
appears in a very few transactions, it may be purchased in a
large quantity for every transaction in which it is present
and may lead to very high profit. Therefore the weight is
the most important component and without which it may
lead to lose of information. Our novel method discovers all
frequent itemsets based on its weights in a single scan of
the database. In order to achieve this, we first construct a
weighted tree containing weights and a set of transaction
id’s corresponding to every attribute in the database. Then
by scanning the above tree we can discover all frequent
itemset. This method is also found to be efficient than FP-
tree, which require two scans of the database to discover all
frequent itemsets based on user defined minimum support.
Further, using Weighted tree constructed for the above
method is used for discovering best order or sequence of
attributes. If database is read in this best sequence , we can
construct an abstraction of the entire database in the
memory which occupies less space in the memory when
compared to sequential reading.
Index Terms—Association rule, Data mining, frequent
itemsets, Support, Weighted Support, Weighted tree.

I. INTRODUCTION

 The goal of knowledge discovery is to utilize those existing
data to find out new facts and to uncover new relationships
that were previously unknown, in an efficient manner with
minimum utilization of the space and time. At first, our
method discovers all frequent itemsets based on weighted
minimum support by constructing the tree called Weighted
tree in an efficient manner. Next our method uses Weighted

tree and then discovers the best sequence or order of the
attributes, in which database is read, an abstraction of the
database can be constructed with a minimum utilization of
the space.

A. Weighted frequent itemsets

 Mining association rules is an important branch of data
mining, which describes potential relations among data
items (attribute, variant) in databases, the well-known
Apriori algorithm [1] was proposed by R. Agrawal et al., in
1993. Mining association rules can be stated as follows: Let
I={i1, i2, … im } be a set of items. Let D, the task-relevant
data, be a set of transactions, where each transaction T is a
set of items such that T ⊆ I. The quantities of items bought
are not considered. Each transaction is assigned an identifier,
called TID. Let A be a set of items, a transaction T is said to
contain A if and only if A ⊆ T. An association rule is an
implication of the form A B, where A ⊆ I, B ⊆ I, and
A∩B=∅. The rule A B holds in the transaction set D with
support s, where s is the percentage of transactions in D that
contain AUB (i.e., both A and B). This is taken to be the
probability, P(A∩B). The rule A B has confidence c in the
transaction set D if c is the percentage of transactions in D
containing A that also contain B. This is taken to be the
conditional probability, P(B|A). That is,
Support(A B)=P(A∩B)=s,
Confidence(A B)=P(B|A) = Support(A B)/Support
(A)=c.
Mining of association rules is to find all association rules
that
have support and confidence greater than or equal to the
user-specified minimum support and minimum confidence
respectively [2]. This problem can be decomposed into the
following sub problems:

Discovery of frequent itemsets using weighted tree
approach

PREETHAM KUMAR1, ANANTHANARAYANA V.S2

1Department of Information & Communication Technology, M.I.T., Manipal, Karnataka, India

 2Professor and Head, Department of Information Technology, N.I.T.K., Surathkal, Karnataka, India.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

196

a) All itemsets that have support above the user
specified minimum support are discovered. These itemset
are called the frequent itemsets.
b) For each frequent itemset, all the rules that have
user defined minimum confidence are obtained.
The second sub problem, i.e., Discovering rules for all given
frequent itemsets and their supports, is relatively
straightforward as described in [1].
There are many interesting algorithms for finding frequent
itemsets based on user defined minimum support. One of the

key features of all algorithms is that each of these methods
assumes that the underlying database size is enormous, and
involves either candidate generation process or non-
candidate generation process. The algorithms with candidate
generation process require multiple passes over the database
and are not storage efficient. In addition, the existing
algorithms discover all frequent itemsets based on user
defined minimum support without considering the weights
such quantity, cost and other attributes which lead to profit.
If an itemset satisfies user defined weighted support then
we say that it is weighted frequent itemset.
Consider for example a sample database given in Table 1 in
which every element of each transaction represents either
quantity or cost of the respective attribute or item.

It may so happen that an itemset appears in a very few
transactions in a large quantity or cost which leads to profit
will not qualify as frequent itemset based on user defined
minimum support. This results in a lose of information. In
the sample database given in the Table 1,if user defined
minimum support is 2 transactions then an item D is not
frequent and will not appear in the set of frequent itemsets
even though if it is bought in large quantity and leads to
more profit than other frequent items. This motivated us to
propose the following method which discovers all frequent
itemsets by based on user defined minimum weight such as
quantity, cost etc.
B. Optimal order of the attributes

If a database is very large then reading and representing it
in the memory requires much time and space. In order to
achieve this, we find the best order of attributes in which it
is read, an abstraction of entire database like PC –tree
[4]can be constructed with a minimum utilization of
memory.
For example, consider the tree construction for the
sample database in Table 2

The dataset given in Table 2 has three attributes. Hence,
a total of 3! i.e. 6 different combinations of attribute-
orders are possible. The tree structures, for 3 of the 6
possible combinations of attribute-order, are shown in
Figure 1. Note that the elements of a particular attribute
are found at the level specified by the position of that
attribute in attribute-sequence. Also, take a note of the
total number of nodes, i.e. the value of n, in the trees
obtained for different combinations of attributes. Thus,
our aim is to determine the order of attributes that leads
to a tree with the minimal number of nodes in the tree. In
this case (for dataset in Table 2), the best optimal order
is 2-3-1.

Finding the best sequence of attributes for a dataset by
checking for all the possible combinations is an exhaustive
and time-consuming process. As the number of different
attributes in the database becomes very large, this approach
of checking for all combinations becomes prohibitive.
Hence, we came up with an approach that obviates the
need to iteratively construct the tree for all combinations of
attributes in order to find an optimal sequence.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

197

II. PROPOSED METHOD
Structure of Weighted tree
The Weighted tree has two different nodes and is shown in
the Figure 2.

(i) The first type of node labeled with
attribute contains attribute name and two
pointers, one pointing to the nodes
containing transaction ids and weights
and another is a child pointer pointing to
the next attribute. This node represents the
head of that particular branch.

(ii) The second type of node has 2 parts. First
part is labeled TID represents a
transaction number or id and second part
of which is labeled weight, indicates
quantity purchased in that transaction or
cost or other components. This node has
only one pointer pointing to the next
object having this particular attribute.

A Weighted Tree for the Sample Database given
in the Table 1 is shown in Figure 3.

The Weighted tree algorithm involves 3 steps. They are
A. Construction of Weighted Tree
B Removal of infrequent attributes of Weighted Tree
C. Discovery of frequent itemsets based on weights

A. Algorithm for constructing Weighted Tree

Input: The database D
Output: Weighted tree
For each attribute weight w in a transaction t €
D do begin
 create a node labeled with w and add these
nodes to the respective attribute node.

 end

B. Algorithm for Reducing the Weighted Tree
Input : w_min_sup =user specified weighted minimum
support

 Output: Weighted tree without infrequent attributes.

for each attribute in a Weighted tree do
 begin

If sum(weights of all nodes) < w_min_sup then
remove that branch from the tree

 end
For example, In the above case if we consider min_sup=3
then only attributes A and C are frequent in the database.
The attributes B and D are found to be infrequent.
If we consider weighted_minimum_support = 10 then
the attributes A, C and D will be frequent in the database.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

198

C. Algorithm to discover all frequent itemsets
Input: A reduced Weighted tree, w_min_sup=user specified
weighted minimum support
Output: set of all frequent itemsets. Fw
F= {set of all frequent attributes}
P=set of all non empty subsets of F excluding the sets
containing one attribute.
Begin
Fw = { set of all frequent attributes or one itemset }
for each f in P do
 begin
 T={TIDs of first attribute in f }
for each m in f other than first attribute do
begin

T=T ∩ { TIDs m}
End
 If T is non empty then
 If Sum of weights of T >= w_min_sup
 Fw = Fw U f
end

Illustration:

Consider for example, a sample database given in Table 1,
If w_min_sup =10 then applying above algorithm,
we get Fw ={A, C, D}
P={ {A, C}, {A,D}{C,D}, {A, C, D} }
Consider a set {A, C} , which appears in transactions 3 and
4. i.e T={3,4} . Also, sum of weights=9+9=18. Hence it is
frequent.
By similar arguments, we found that the sets {A, D}, {C,D}
and {A,C, D} are infrequent sets.
Hence Fw = { {A}, {C}, {D},{ A, C}}.

D. Discovery of best order of attributes

To compute the best order of the attributes, we first fill
the all the entries of matrix defined below by scanning
the Weighted tree. Then, we will get the optimal tree if
we start with an attribute that has least number of nodes
under it. The order of remaining attributes can be
determined by taking into account only the number of
links between two attributes. For easy understanding, we
can visualize this approach as analogous to Prim’s
algorithm for finding the minimum spanning tree.

Defining matrix
 If the number of attributes in the database is N, then take a
matrix of size N*N i.e. Mat[N][N].
For 0< i,j <=N, where i and j represent the attribute
numbers.
If (i= =j)
 Mat[i][j] = number of nodes under the attribute

 number i.
 // Mat[i][i] stores the number of nodes
 under attribute Ai.
Else
 Mat[i][j]= number of outgoing links from

 header number i to header number

Determining the sequence
Data structure used here are
Order[N]= Array of size N, storing the order of attributes to
be considered for obtaining the optimal tree.

Node_min = Mat[i][i], where i is the attribute number of
attribute having the least number of nodes under it.

Row_min(k) = min (Mat[i][j]), where i=k , and j is such
that it is not equal to k and not already entered in Order[N].

Attr_order[N] : contains the final order of the attributes to
be considered
node_span=denotes the possible number of nodes at a given
level in the tree.

attr_count : the number of attributes already considered for
the sequence in Order[].

t_count : value denoting likely number of nodes to occur in
a tree constructed for a sequence.

Final_tcount : the t_count value associated with sequence
in Attr_order[];
For each attribute Ai such that Mat[i][i]= node_min
 { attr_count=1;
 Order[attr_count]=i;
Mat[i][i]=t_count=node_min;
 Call min_links (i, Order[], attr_count, Mat[i][i],
 Mat[i][i]); }

Procedure min_links (attribte number i, Order[N],attr_
count, node_span, t_count)
{
 If attr_count equal to N then
 {
 If t_count is less than Final_tcount or if
 Attr_order[] is empty then
 {
 Update Final_tcount to t_count;
 Update Attr_order[] with entries in Order[];
 }
 Return;
 }

For each j in the ith row of matrix Mat
If j is not equal to i as well as j is not already

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

199

contained in Order[]
 {r_min = Row_min(i) ;

 If r_min >nodespan
 nodespan=r_min;
 t_count= t_count + node_span;
 attr_count++;
 Order[attr_count]=j;

 Call min_links (j, Order[], attr_count,
 node_span, t_count);
 }}

Illustration:
Let us consider the sample database given in Table 2 which
has 3 attributes and 3 tuples.
The weighted tree corresponding to the Table 2 is given in
the Figure 4.
While discovering the number of nodes under any attribute,
if we have same weights for 2 different nodes under any
attribute, we just create one in order to save space in
memory. Hence, it follows from the Figure 4 that there exist
3 nodes under A1 with different weights and 1 for A2 and 2
for A3. Association among the attributes is represented in
the matrix defined by Table 3.

Finding the sequence: (step 3 of algorithm)

It can be observed that the row number as well as the
column number in the matrix denote the Header number
(attribute number).

After scanning the matrix diagonally, we get Node_min = 1
and corresponding value of i as 2. thus,
i=2;
t_count = 1;
node_span=1.
attr_count=1.
So, Order[1] = 2.
One thing to be noted is that, once we have considered an
attribute number i.e.header number in the array Order[], we
cannot consider column number corresponding to that
header numbers, for finding the Row_min value in the
specified row, besides the exclusion of the position in the
row where row number and column number are same as that
position stores the node number, not the number of links.

Since i=2, we go to 2rd row of the matrix and call the
function Row_min(2) to get minimum available row_min
value in the 2rd row i.e. row_min = 2, corresponding to i=3.
Hence,
i=3
Order[2] = 3.
attr_count =1+1=2;
Since row_min > node_span.
Node_span = 2
New t_count = 1+2 = 3. (i.e. previous t_count + node_span).

Now we go to row number 3 and find the available row_min
value. Here, we note that the minimum available row_min
value of 3 occurs at all positions. We take i=1 since i=2 and
3 already considered.
Order[3]=1
attr_count=2+1=3
Since row_min > node_span.
Node_span = 3
Row_min=3.

t_count = 3+3 = 6
At this point attr_count equals N, and thus a complete
sequence is obtained in the array Order[] as shown below.
 2 3 1
Thus the final sequence obtained in Attr_order is:

Final Sequence: 2 3 1 .
i.e rding the database in the above order produces minimum
number of nodes.

III. PERFORMANCE ANALYSIS
A. Weighted frequent itemsets
For the performance analysis, simulation of buying patterns
of the customers in retail patterns is generated and in the

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

200

data set which we used every element of the transaction is
considered as quantity of the corresponding attribute in the
database. We have compared our algorithm with FP- tree
and we found that ours is more time efficient.
The above algorithm is implemented and used for
discovering frequent itemsets for data sets containing the
transactions 100, 500, 1000, 5000 with 20 attributes and
time required to discover all frequent itemsets is shown the
figure 5.

Time Graph

0
500

1000
1500

1 2 3 4

Data Sets Used

Ru
n

tim
e

in
 m

se

co
nd

s

FP-tree

Weighted
Tree

The proposed algorithm excels the FP-tree algorithm in
three ways:
1. Scans database only once
2. No sorting of each item of the transaction.
3. No repeatedly searching the header table for maintaining
 links, while inserting a new node into tree.
4. Considers most important components like quantity, cost
etc.

B. Best Sequence of attributes
In order to test the algorithm for discovering best order
of attributes against a dataset having a large number of
attributes i.e. having a large number of possible
combinations of attributes, we used SPECTF Heart
Data[5], that contained 45 attributes and had 187 tuples
i.e N= 45 and Tn=187 .

The best sequence of attributes obtained is as
follows: 0(36)—31(126)—32(133)—34(138)—
21(141)—12(145)—17(136)—18(144)—7(152)—
9(148)—10(151)—4(143)—3(150)—8(151)—
14(147)--13(151)—22(153)—5(152)—33(155)—
27(154)—2(164)—30(148)—29(155)—1(161)—
37(152)—38(159)—15(156)—20(159)—6(159)—
16(160)—36(160)—25(175)—40(171)—41(161)—
43(164)—44(165)—42(166)—26(167)—24(159)—
23(168)—39(171)….
The values in bracket along with the attribute
numbers in the sequence denote the total number of
nodes obtained.
 The results of the experiment are shown in the
following Table.

We observe that the sequence leading to optimal tree leads to
a saving of 1078 nodes (space), as compared to a tree
constructed using the serial order of attributes (no sorting of
elements required in this case). But, the best part is the huge
saving in time that is achieved by this algorithm to find the
sequence for obtaining optimal tree structure.

IV CONCLUSION
The Weighted Tree Algorithm is a new method for finding
frequent itemset based on user defiend weights and is found
to be efficient when compared to FP-tree. Also we found a
method for representing the database in a memory which
consumes less space. As such, we are still working on it
with the aim of extending the application of this algorithm
to various kinds of databases.

REFERENCES
[1] J. Han and M. Kamber. Data Mining, Concepts and techniques.

Morgan Kaufmann publishers, 2001
[2] J. Han, J. Pei, and Y. Yin. Mining frequent patterns

without candidate generation. In ACM-SIGMOD, Dallas,
2000.

[3] R. Hemlata, A. Krishnan, C. Scenthamarai, R. Hemamalini.
Frequent Pattern Discovery based on Co-occurrence
Frequent Tree. In Proceeding ICISIP-2005.

[4] Ananthanarayana V. S, Subramanian, D.K., Narasimha
Murthy, M- Scalable, Distributed and Dynamic Mining
of Association Rules using PC-Tree; p559- 66, HIPC,
Bangalore, INDIA, 2000.

[5] SPECTF Heart Data
[6] IBM/Quest/Synthetic data.

