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Summary 
Most of the association rules mining algorithms to discover 
frequent itemsets do not consider the components of 
transactions like its quantity or weight or its total profit. In 
a large database it is possible that even if the itemset 
appears in a very few transactions, it may be purchased in a 
large quantity for  every transaction in which it is present 
and may lead to  very high profit. Therefore the weight is 
the most important component and without which it may 
lead to lose of information. Our novel method discovers all 
frequent itemsets  based on its weights in a single scan of 
the database. In order to achieve this, we first construct a 
weighted tree containing weights and a set of transaction 
id’s corresponding to every attribute in the database. Then 
by scanning the above tree we can discover all frequent 
itemset. This method is also found to be  efficient than FP-
tree, which require two scans of the database to discover all 
frequent itemsets based on user defined minimum support. 
Further, using  Weighted tree constructed for the above 
method is used for discovering best order or sequence of 
attributes. If database is read in this best sequence , we can 
construct an abstraction of the entire database in the 
memory which occupies less space in the memory when 
compared to sequential reading. 
Index Terms—Association rule, Data mining, frequent  
itemsets,   Support, Weighted Support, Weighted tree. 

I. INTRODUCTION 
 
 The goal of knowledge discovery is to utilize those existing 
data to find out new facts and to uncover new relationships 
that were previously unknown, in an efficient manner with 
minimum utilization of the space and time. At first, our 
method discovers all frequent itemsets based on weighted 
minimum support by constructing the tree called Weighted 
tree in an efficient manner.  Next our method uses Weighted 

 
 

tree and then discovers the best sequence or order of the 
attributes, in which database is read, an abstraction of the 
database can be constructed with a minimum utilization of 
the space. 
 
 
 
A. Weighted frequent itemsets 
 
 Mining association rules is an important branch of data 
mining, which describes potential relations among data 
items (attribute, variant) in databases, the well-known 
Apriori algorithm [1] was proposed by R. Agrawal et al., in 
1993. Mining association rules can be stated as follows:  Let 
I={i1, i2, … im } be a set of items. Let D, the task-relevant 
data, be a set of transactions, where each transaction T is a 
set of items such that T ⊆ I. The quantities of items bought 
are not considered. Each transaction is assigned an identifier, 
called TID. Let A be a set of items, a transaction T is said to 
contain A if and only if A ⊆ T. An association rule is an 
implication of the form A B, where A ⊆ I, B ⊆ I, and 
A∩B=∅. The rule A B holds in the transaction set D with 
support s, where s is the percentage of transactions in D that 
contain AUB (i.e., both A and B). This is taken to be the 
probability, P(A∩B). The rule A B has confidence c in the 
transaction set D if c is the percentage of transactions in D 
containing A that also contain B. This is taken to be the 
conditional probability, P(B|A). That is, 
Support(A B)=P(A∩B)=s,  
Confidence(A B)=P(B|A)  = Support(A B)/Support 
(A)=c. 
Mining of association rules is to find all association rules 
that  
have support and confidence greater than or equal to the 
user-specified minimum support and minimum confidence 
respectively [2]. This problem can be decomposed into the 
following sub problems:  

Discovery of frequent itemsets using   weighted tree 
approach 
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a) All itemsets that have support above the user 
specified minimum support  are discovered. These itemset 
are called the frequent itemsets.  
b) For each frequent itemset, all the rules that have 
user defined minimum confidence are obtained. 
The second sub problem, i.e., Discovering rules for all given 
frequent itemsets and their supports, is relatively 
straightforward as described in [1]. 
There are many interesting algorithms for finding frequent 
itemsets based on user defined minimum support. One of the  
 
key features of all algorithms is that each of these methods 
assumes that the underlying database size is enormous, and 
involves either candidate generation process or non-
candidate generation process. The algorithms with candidate 
generation process require multiple passes over the database 
and are not storage efficient. In addition, the existing 
algorithms discover all frequent itemsets based on user 
defined minimum support without considering the weights 
such quantity, cost and other attributes which lead to profit.  
If an itemset  satisfies user defined weighted support then 
we say that it is weighted frequent itemset. 
Consider for example a sample database given in Table 1 in 
which every element of each transaction represents either 
quantity or cost of the respective attribute or item. 
 

 
 
 

It may so happen that an itemset appears in a very few 
transactions  in a large quantity or cost which leads to profit 
will not qualify as frequent itemset based on user defined 
minimum support. This results in a lose of information. In 
the  sample database given in the Table 1,if user defined 
minimum support is 2 transactions then an item D is not 
frequent and will not appear in the set of frequent itemsets 
even though  if it is bought in large quantity and leads to 
more profit than other frequent items. This motivated us to 
propose the following method which discovers all frequent 
itemsets by based on user defined minimum weight such as 
quantity, cost etc. 
B. Optimal order of the attributes 

If a database is very large then reading and representing it 
in the memory requires much time and space. In order to 
achieve this, we find the best order of attributes in which it 
is read, an abstraction of entire database like PC –tree 
[4 ]can be constructed with a minimum utilization of 
memory.  
For example, consider the tree construction for the 
sample database in Table 2  

 
 
The dataset given in Table 2  has three attributes. Hence, 
a total of 3! i.e. 6 different combinations of attribute-
orders are possible. The tree structures, for 3 of the 6 
possible combinations of attribute-order, are shown in 
Figure 1. Note that the elements of a particular attribute 
are found at the level specified by the position of that 
attribute in attribute-sequence. Also, take a note of the 
total number of nodes, i.e. the value of n, in the trees 
obtained for different combinations of attributes. Thus, 
our aim is to determine the order of attributes that leads 
to a tree with the minimal number of nodes in the tree. In 
this case (for dataset in Table 2), the best optimal order 
is 2-3-1. 
 

 
 

 
Finding the best sequence of attributes for a dataset by 
checking for all the possible combinations is an exhaustive 
and time-consuming process. As the number of different 
attributes in the database becomes very large, this approach 
of checking for all combinations becomes prohibitive. 
Hence, we came up with an approach that obviates the 
need to iteratively construct the tree for all combinations of 
attributes in order to find an optimal sequence.  
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II. PROPOSED METHOD 
Structure of Weighted tree 
The Weighted tree has two different nodes and is shown in 
the Figure 2. 

(i) The first type of node labeled with 
attribute contains attribute name and two 
pointers, one pointing to the nodes 
containing  transaction ids and weights 
and another is a child pointer pointing to 
the next attribute. This node represents the 
head of that particular branch. 

(ii) The second type of node has 2 parts. First 
part is labeled TID represents a 
transaction number or id and second part 
of which is labeled weight,  indicates 
quantity purchased in that transaction or 
cost or other components. This node has 
only one pointer pointing to the next 
object having this particular attribute. 

 
 

 

 
 
 
A Weighted  Tree for the Sample Database given  
in the Table 1  is shown in Figure 3.  
 
 

 
 

 
 

The Weighted tree algorithm involves 3 steps. They are 
A. Construction of Weighted Tree 
B Removal of infrequent attributes of Weighted  Tree 
C. Discovery of frequent itemsets based on weights 
 

A. Algorithm for constructing Weighted Tree 
 

Input: The database D 
Output: Weighted  tree 
For each attribute weight w in a transaction t € 
D do  begin 
 create  a node labeled with w and add these 
nodes  to the respective attribute node. 

            end  

B. Algorithm for Reducing the  Weighted  Tree  
Input :  w_min_sup =user specified weighted minimum 
support 

      Output: Weighted  tree without infrequent attributes. 
 

          
 
 
 
for each attribute in  a Weighted tree  do 
         begin 

If sum(weights of all nodes) < w_min_sup then  
remove that branch from the tree 

           end 
For example, In the above case if we consider min_sup=3 
then only attributes A and C are frequent in the database. 
The attributes B and D are found to be infrequent.  
If  we consider weighted_minimum_support = 10 then  
the attributes A, C and D will be frequent in the database.   
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C. Algorithm to discover all frequent itemsets 
Input: A reduced Weighted tree, w_min_sup=user specified 
weighted minimum support 
Output: set of all frequent itemsets. Fw  
F= {set of all frequent attributes} 
P=set of all non empty subsets of F excluding the sets 
containing one attribute. 
Begin 
Fw = { set of all frequent attributes or one itemset } 
for each f in P do  
 begin 
                  T={TIDs of first attribute in f }  
for each m in f other than first attribute do 
begin 

T=T ∩ { TIDs m} 
End 
     If  T is non empty then  
            If  Sum of weights of T >= w_min_sup 
            Fw = Fw   U f   
end  
 
Illustration: 
 
Consider for example, a sample database given in Table 1, 
If  w_min_sup =10  then applying above algorithm,  
we get  Fw ={A, C, D} 
P={ {A, C}, {A,D}{C,D}, {A, C, D} } 
Consider a  set {A, C} , which appears in transactions 3 and 
4.  i.e T={3,4} . Also, sum of weights=9+9=18. Hence it is 
frequent.  
By similar arguments, we found that the sets {A, D}, {C,D} 
and {A,C, D} are infrequent sets. 
Hence  Fw = { {A}, {C}, {D},{ A, C}}. 
 

D. Discovery of best order of attributes 
 
To compute the best order of the attributes, we first fill 
the all the entries of  matrix defined below by scanning 
the Weighted tree. Then, we will get the optimal tree if 
we start with an attribute that has least number of nodes 
under it. The order of remaining attributes can be 
determined by taking into account only the number of 
links between two attributes. For easy understanding, we 
can visualize this approach as analogous to Prim’s 
algorithm for finding the minimum spanning tree. 
 
Defining matrix 
 If  the number of attributes in the database is N, then  take a 
matrix of size N*N i.e. Mat[N][N]. 
For   0< i,j <=N,      where i and j represent the attribute 
numbers. 
If (i= =j) 
   Mat[i][j] = number of nodes under the attribute   

                     number i. 
                   // Mat[i][i] stores the number of nodes  
                      under attribute Ai. 
Else  
    Mat[i][j]= number of outgoing links from  

     header number i to header number 
 
Determining the sequence 
Data structure used here are 
Order[N]= Array of size N, storing the order of attributes to 
be considered for obtaining the optimal tree. 
 
Node_min = Mat[i][i], where i is the attribute number of 
attribute having the least number of nodes under it.  
 
Row_min(k) = min ( Mat[i][j]), where i=k , and j is such 
that it is  not equal to k and not already  entered in Order[N].  
     
Attr_order[N] : contains the final order of the attributes to 
be considered 
node_span=denotes the possible number of  nodes at a given 
level in the tree. 
 
attr_count : the number of attributes already  considered for 
the sequence in Order[]. 
 
t_count : value denoting likely number of nodes to occur in 
a tree constructed for a  sequence. 
 
Final_tcount : the t_count value associated with   sequence 
in Attr_order[]; 
For each attribute Ai such that Mat[i][i]= node_min 
 { attr_count=1; 
   Order[attr_count]=i; 
Mat[i][i]=t_count=node_min; 
   Call min_links (i, Order[], attr_count, Mat[i][i],  
    Mat[i][i]); } 
 
Procedure min_links ( attribte number i, Order[N],attr_ 
count, node_span, t_count ) 
{ 
  If attr_count equal to N then 
   { 
      If t_count is less than Final_tcount or if   
      Attr_order[] is empty then 
       { 
           Update Final_tcount to t_count; 
           Update Attr_order[] with entries in Order[];  
        } 
     Return; 
    }  
 
For each j in the ith  row of matrix Mat 
If j is not equal to i as well as j is not already   
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contained in Order[] 
  {r_min = Row_min(i) ; 
 
   If  r_min >nodespan 
        nodespan=r_min; 
          t_count= t_count + node_span; 
  attr_count++; 
       Order[attr_count]=j; 
       
      Call min_links (j, Order[], attr_count,  
        node_span, t_count); 
     }} 
 
Illustration: 
Let us consider the sample database given in Table 2 which 
has 3 attributes and 3 tuples. 
The weighted tree corresponding to the Table 2 is given in 
the Figure 4. 
While discovering the number of nodes under any attribute, 
if we have same weights for 2 different nodes under any 
attribute, we just create one in order to save space in 
memory. Hence, it follows from the Figure 4 that there exist 
3 nodes under A1 with different weights and 1 for A2 and 2 
for A3. Association among the attributes is represented in 
the matrix defined by Table 3.  
 
  

 
 

 
 
 
Finding the sequence: (step 3 of algorithm) 
 

It can be observed  that the row number as well as the 
column number in the matrix denote the Header number 
(attribute number).  
 
After scanning the matrix diagonally, we get Node_min = 1 
and corresponding value of i as 2. thus, 
i=2; 
t_count = 1; 
node_span=1. 
attr_count=1.  
So, Order[1] = 2.  
One thing to be noted is that, once we have considered an 
attribute number i.e.header number in the array Order[], we 
cannot consider column number corresponding to that 
header numbers, for finding the Row_min value in the 
specified row, besides the exclusion of the position in the 
row where row number and column number are same as that 
position stores the node number, not the number of links. 
 
Since i=2, we go to 2rd row of the matrix and call the 
function Row_min(2)  to get minimum available row_min 
value in the 2rd row i.e. row_min = 2, corresponding to i=3.  
Hence, 
i=3 
Order[2] = 3. 
attr_count =1+1=2; 
Since row_min > node_span. 
Node_span = 2 
New t_count = 1+2 = 3. (i.e. previous t_count + node_span). 
 
Now we go to row number 3 and find the available row_min 
value. Here, we note that the minimum available row_min 
value of 3 occurs at all positions. We take i=1 since i=2 and 
3 already considered. 
Order[3]=1 
attr_count=2+1=3 
Since row_min > node_span. 
Node_span = 3 
Row_min=3. 
  
t_count = 3+3 = 6 
At this point attr_count equals N, and thus a complete 
sequence is obtained in the array Order[] as shown below. 
   2 3 1             
Thus the final sequence obtained in Attr_order is: 
 
Final Sequence: 2  3  1 . 
i.e  rding the database in the above order produces minimum 
number of nodes. 

III. PERFORMANCE ANALYSIS 
A. Weighted frequent itemsets 
For the performance analysis, simulation of buying patterns 
of the customers in retail patterns is generated and in the 
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data set which we used every element of the transaction is 
considered as quantity of the corresponding attribute in the 
database. We have compared our algorithm with FP- tree 
and we found that ours is more time efficient. 
The above algorithm is implemented and used for 
discovering frequent itemsets for data sets containing the 
transactions 100, 500, 1000, 5000 with 20 attributes and 
time required to discover all frequent itemsets is shown the 
figure 5.  
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The proposed algorithm excels the FP-tree algorithm in 
three ways: 
1.  Scans database only once 
2. No sorting of each item of the transaction. 
3. No repeatedly searching the header table for maintaining 
    links, while inserting a new node into tree. 
4. Considers most important components like quantity, cost 
etc. 
 
B. Best Sequence of attributes 
In order to test the algorithm for discovering best order 
of attributes against a dataset having a large number of 
attributes i.e. having a large number of possible 
combinations of attributes, we used SPECTF Heart 
Data[5], that contained 45 attributes and had 187 tuples 
i.e N= 45 and Tn=187 . 

The best sequence of attributes obtained is as 
follows: 0(36)—31(126)—32(133)—34(138)—
21(141)—12(145)—17(136)—18(144)—7(152)—
9(148)—10(151)—4(143)—3(150)—8(151)—
14(147)--13(151)—22(153)—5(152)—33(155)—
27(154)—2(164)—30(148)—29(155)—1(161)—
37(152)—38(159)—15(156)—20(159)—6(159)—
16(160)—36(160)—25(175)—40(171)—41(161)—
43(164)—44(165)—42(166)—26(167)—24(159)—
23(168)—39(171)….  
The values in bracket along with the attribute 
numbers in the sequence denote the total number of 
nodes obtained. 
     The results of the experiment are shown in the 
following Table. 

 
We observe that the sequence leading to optimal tree leads to 
a saving of 1078 nodes (space), as compared to a tree 
constructed  using the serial order of attributes (no sorting of 
elements required in this case). But, the best part is the huge 
saving in time that is achieved by this algorithm to find the 
sequence for obtaining optimal tree structure. 

IV CONCLUSION 
The Weighted  Tree Algorithm is a new method for finding 
frequent itemset based on user defiend weights and is found 
to be efficient when compared to FP-tree. Also we found a 
method for representing the database in a memory which 
consumes less space. As such, we are still working on it 
with the aim of extending the application of this algorithm 
to various kinds of databases. 
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