
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

217

Manuscript received August 5, 2008

Manuscript revised August 20, 2008

Storage Techniques for Heterogeneous Reference Type Data in an XML
Schema

Hwan-Seung Yong, Kyoung-Hye Lee†, Wol Young Lee †† and Minsoo Lee†
hsyong@ewha.ac.kr, you-rhee@hanmail.net wylee@scu.ac.kr, mlee@ewha.ac.kr,

 Department of Computer Science and Engineering, Ewha Womans University , Seoul, Korea†
Department of Global Business & Information, Seoul Christian University, Seoul, Korea††

Summary
An XML Schema is an XML-based alternative to DTDs which
describes the structure of an XML document. Although various
storage techniques that can reflect the XML schemas are actively
being researched, new techniques need to be developed due to
the fact that IDREFS type elements can refer to several different
types of data. For example, the PDTNet XML schema data, an
international standard for the PDM data model, is an actual
example document which includes references to all sorts of
elements. However, existing storage techniques only handle
homogeneous reference data. In this paper, we have proposed
efficient storage techniques for such complex heterogeneous
reference type data, and showed that the proposed techniques
significantly improve the query performance
Key words:
PDTNet XML schema, heterogeneous reference type,
IDREFS.

1. Introduction

The XML (eXensible Markup Language) schema was
proposed to improve upon XML DTD (Document Type
Definition), which has very weak support for data types[1].
XML schema also supports namespaces which enables the
definition of various data types to be used in different
application domains. Among the basic built-in data types
supported by the XML schema is the reference type data
which can refer to arbitrary data. That is, an element of the
IDREFS (definition of REFerences to unique IDentifiers)
type can refer to several data elements which are
heterogeneous types. For example, the PDTNet XML
schema, an international standard for the PDM (Product
Data Management) data model [2], is used by an
information system that manages all the data for products,
including planning, designing, manufacturing, validating,
and marketing. Here, IDREFS type elements usually refer
to heterogeneous type data as shown in Fig. 1. In Fig. 1,
the ‘reference’ element, which is IDREFS type, can
reference both the ‘item’ elements and ‘i_ver’ elements.

Previous storage techniques have focused mainly on

referencing homogeneous type data as shown in Fig. 2. In
Fig. 2, the ‘refer_item’ element, which is IDREFS type,
will only reference ‘item’ elements, and the ‘refer_i_ver’
element, which is also IDREFS type, will only reference
‘i_ver’ elements. In these storage techniques, the set
attributes or repeating recursive elements are usually
stored in a separate table. When the IDREFS references
only a specific type of data, this approach is feasible. This
is because a single table only needs to be scanned.
However, if the IDREFS references several different types
of data in different situations, the table scans may need to
be extensively carried out on almost all the tables in the
database to find the appropriate type data that is
referenced. Thus, if an element refers to heterogeneous
type data, the processing time will be slower as many
tables must be scanned to retrieve the information.
Therefore, in order to query complex reference type data
such as the PDTNet XML schema data, this issue becomes
very important.

In this paper, we have developed storage techniques
which will query complex reference type data efficiently.
They are based on the relational database storage model.
We do not store the information of referenced data in a
separate table, but in the same table. That is, we store the
attribute values of referenced elements together in the
same table in one field as a concatenated string. Moreover,
we have developed an application which processes the
string to query reference type data. Our techniques can
improve the performance of query speed for complex
reference type data because they minimize data
redundancy and table joins.

The paper is organized as follows. Related work is
presented in Section 2. Section 3 explains our proposed
storage techniques for heterogeneous reference type data.
The performance evaluation for the storage techniques is
given in Section 4. And finally, we provide our
conclusion and remarks in Section 5.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

218

PDTNet

product_class item

name refer_item refer_i_ver name i_ver

IDREFSIDREFS

item

name i_ver

2. Related Works

As has been mentioned in [3], the XML-to-SQL query
translation method remains an open problem. The research
on storage techniques for XML currently focuses on how
to store elements of various types [4]. Most studies make
use of relational databases as storage media because these
can easily integrate applications in the Web environment.
The storage techniques using relational databases include
AT&T’s STORED [5], the attribute inlining technique of
Daniela Florescu and Donald Kossmann [6], XML-DBMS
[7], the hybrid inlining technique developed at the
University of Wisconsin [8], a decomposition schema
technique [9] and so on. The technique described in [8]
was expanded to [10] by considering ordered XML. Our
solution can combine the flexibility of the XML model

with the performance of the relational model.
In addition, [11] presented an algorithm that translates

path expression queries to SQL in the presence of
recursion in the schema in the context of the schema-based
XML storage shredding of XML into relations. Here, they
referred to path expression queries having the descendant
axis (//) as recursive XML queries, and to techniques that
store XML data into an RDBMS based on an XML
schema (or DTD) as schema-based XML storage
techniques [12]. In [12], the researchers developed an
algorithm to overcome the incompleteness and
redundancies caused by the shared element of the shared-
inlining algorithm [8].

We have analyzed these storage techniques based on
relational databases. As a result, we recognized that
reference type data are usually stored into separate
overflow tables. In addition, most of the researches do not
discuss the referencing of heterogeneous type data. An
element in XML can refer to all sorts of elements. In the
PDTNet XML schema, an element can actually refer to 50
or more sorts of elements. If the reference type data are
stored in overflow tables, query time increases because the
query processor has to refer to the separate tables.
Furthermore, if the documents reference heterogeneous
type data, the query speed becomes even slower. Thus,
efficient storage techniques are necessary to handle
complex reference type data in the XML schema. In this
paper, we do not include reference type data in separate
overflow tables, but rather the data are presented through
inlining in a table. Our storage technique makes use of
table-based mapping for simplicity. Because it matches the
structure of tables as well as result sets in a relational
database, it is easy to write code based on this mapping;
this code is fast, scales well, and is quite useful for certain
applications such as transferring data between databases
one table at a time.

3. Storage Techniques for Heterogeneous
Reference Types
In this paper, we store not only homogeneous but also
heterogeneous reference type data in the same table.
Therefore, it is possible to process all the data at once and
minimize the data redundancy.

3.1 XML Data Example

Fig. 3 is an example XML document that is based on
PDTNet XML. Here, two underlined ‘Assigned_product’
elements respectively refer to different element types. The
first one containing ‘id:1 id:2 id:3’ references
‘Product_class’ elements, and the second one containing
‘idv:1 idv:2’ references ‘Product_version’ elements. Fig. 4
models the XML document shown in Fig. 3 as a graph. An
element is represented as a rectangle with a solid line. An

P D T N e t

p roduct_c lass item

nam e re fe rence nam e i_ve r

ID R E F S

item

nam e i_ve r

Fig. 1 heterogeneous reference type

Fig. 2 homogeneous reference type

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

219

attribute belonging to an element is represented as a
rectangle with a dotted line and is positioned at the right
side of the element. The solid arrows represent parent-
child relationships among the elements. And the dotted
bold arrows indicate the elements referenced by an
IDREFS type element. It is clearly shown that the two
different ‘Assigned_product’ elements are each
referencing different types, the ‘Product_class’ elements
and the ‘Product_version’ elements.

3.2 FKey-Search storage technique

In the PDTNet XML schema, one IDREFS type element
can refer to various elements of different types. This
makes it hard to store the XML document into relational
databases, and incurs significantly increased query
processing time.

In the FKey-Search (i.e., Foreign Key-Search) storage
technique, each element is mapped to its own dedicated
table which contains all the attributes as fields of the table.
The bounded(i.e., limited number of) simple type
subelements are also stored as fields of the table. The
unbounded(i.e., unlimited number) or complex
subelements are stored in separate tables and the parent-
child relationships are maintained via foreign keys.
However, IDREFS subelements with the referencing id
values encoded in a specific format are stored together in
the parent table. The IDREFS id values are encoded in a
format that contains the type information and sequence
number so that heterogeneous types can be referenced by
IDREFS. For example, in Fig. 5, the ‘Item’, ‘Product
class’, and ‘Document assignment’ elements are stored in
the ‘Item’, ‘Product class’, and ‘Document assignment’
tables, respectively. The parent-child relationships are
stored in the tables by using the ‘a_id’ and ‘f_id’ fields in
the table to store the element id and the parent id of the

element. For example, the ‘Product class’ element with id
value ‘id:1’ is a child of the ‘Pdtnet_schema’ with id value
‘ps:1’.

<Pdtnet_schema version_id=”1.8” id=”ps:1”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema

-instance”
xsi:noNamespaceSchemaLocation=”Pdtxml

schema.xsd”>
<Product_class id=“id:1”>

<Name>Google</Name>
<Product_id> Product id 1< Product _id>

</ Product_class>
< Product_class id=“id:2”>

<Name>MSN</Name>
< Product _id> Product id 2< Product _id>
< Product _version id=“idv:1”>

 <Id> Product v1</Id>
</ Product _version>
< Product _version id=“idv:2”>

 <Id> Product v2</Id>
</ Product _version>

</ Product_class >
< Product_class id=“id:3”>

<Name>HWP</Name>
< Product _id> Product id 3</ Product _id>

</ Product_class>
<Item id=“ii:1”>
 <Id> i1</Id>
 <Name>supplied item</Name>
 <Item_version id= “iiv:1”>
 <Id>item_version id1</Id>
 <Document_assignment id= “ida:1”>
 <Assigned_product >id:1 id:2 id:3</Assigned_product >
 <Role>Latest document description</Role>
 </Document_assignment>

<Document_assignment id= “ida:2”>
 <Assigned_product >idv:1 idv:2</Assigned_product >
 <Role>Latest version</Role>
 </Document_assignment>
 </Item_version>
<Item>
</Pdtnet_schema>

Fig. 3 Example of PDTNet XML schema

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

220

Fig. 4 XML Graph for Fig. 3

When there are a limited number (or bounded number)
of simple type subelements, all of the subelements are
stored together with the parent element. In Fig. 5, as there
exists only a single ‘Name’ subelement, it is stored
together in its parent ‘Product class’ element table. When
unbounded or complex subelements exist, the subelements
are stored in separate tables. As an example, in Fig. 5, the
‘Item’ and ‘Product class’ elements are not stored together
with the parent element in the ‘Pdtnet_schema’ table. The
parent-child relationships are maintained as previously
discussed using the ‘a_id’ and ‘f_id’ fields. Finally, the
IDREFS subelement is stored together with the parent
element. In Fig. 5, the IDREFS type element
‘Assigned_product’ is stored together in the parent
element table ‘Document_assignment’ as a field named
‘Assigned_product(REF)’. The format of the IDREFS is a
string of id values. Each of the id values are formed using
a designated format. The id values contain a ‘type’ value
and ‘sequence number’ value, separated by a ‘:’ delimiter.
For example, in Fig. 5 the ‘Document_assignment’
element with id value of ‘ida:2’ has a subelement
‘Assigned_product’ which references id values ‘idv:1’ and
‘idv:2’. These id values can be translated into useful
information where the prefix ‘idv’ means
‘Product_version’ type and the following number after the
‘:’ delimiter represents the sequence number of the
‘Product_version’ element to be referenced in the table.
Similarly, the ‘ida’ prefix in the element identifiers mean

the ‘Document_assignment’ type, and the ‘ii’ prefix
means the ‘Item’ element type, etc.

This approach can keep the database size at a
minimum by maintaining the complex parent-child
relationships in the child element. As an exception, only
the IDREFS type is kept in the parent element by using a
special encoding of the id values. Using this storage
approach, heterogeneous elements can be referenced by
the IDREFS. This approach keeps the storage structure to
be simple but requires a parsing mechanism to identify the
types from the id values in the IDREFS field. Because the
exact types can be identified from the id values, the target
tables are immediately identified and efficient query
processing is possible. In contrast, existing mechanisms
would require extensive table scans to find all
heterogeneous matching reference id values.

3.3 Subelement-Inlining storage technique

In the Subelement-Inlining technique, the identifiers of the
subelements and the reference information of an element
are stored all together in one table. That is, the technique
stores all the parent-child relationship information as well
as the reference id values in the parent table, as shown in
Fig. 6. In other words, the subelements are inlined into its
parent element, hence the name of the technique is
subelement-inlining. This technique stores the id values of
the subelements in the table in the same way as the
heterogeneous reference types are stored in the FKey-
Search storage technique. For each type of subelement
there exists one field in the table, and this field is encoded

P d tn et_ sc he m a V e rs ion _ id id

P ro d u c t_ clas s id P ro d u c t_ clas s id P ro d u c t_ clas s id Ite m id

id :1

G o o g le P ro d u c t
id 1

id :2 id :3

M S N P ro d u c t
id 2

P ro d u c t_
ve rs io n idP ro d u c t

_ idN a m e

P ro d u c t
_ idN a m e

P ro d u c t
v1

id v:1

P ro d u c t_
ve rs io n id

P ro d u c t
v2

id v:2

H W P P ro d u c t
id 3

P ro d u c t
_ idN a m e Id N a m e Ite m

_ ve rs ion id

iiv:1Ite m
id 1

S u p p lie d
_ item

Id

Ite m
v1

D o c u m e n t_
a s sig nm en t id

id a :1

D o c u m e n t_
a s sig nm en t id

id a :2

A s s ig n ed _
p ro d uc t R o le A s s ig n ed _

p ro d uc t R o le

id :1 ;id :2 ;id :3 L a tes t
d o cu m en t

d e sc rip tio n
id v:1 ;id v:2 L a tes t

ve rs io n

e le m e n t
a ttribu te

re fe re nc e1 .8 p s :1

ii:1

Id Id

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

221

with a string of multiple subelement id values. The
reference id values are stored in the same way as was
discussed in the FKey-Search storage technique. The
encoding of the id values as strings are identical to the
FKey-Search storage technique as well.

For example, in Fig. 6, the ‘Pdtnet_schema’ element
table contains a single field ‘Product class(REF)’ which
stores the id values of the ‘Product class’ subelements as a
concatenated string such as ‘id:1,id:2,id:3’. The dotted
lines in the figure show the parent-child relationship
among the ‘Pdtnet_schema’ element and the ‘Product
class’ subelements. The IDREFS subelements are stored in
the same way as the subelements are stored. In Fig. 3-4,
the ‘Document_assignment’ element table contains an
‘Assigned_product(REF)’ field which is used for IDREFS
and stores the reference id values for heterogeneous type
elements. The ‘Document_assignment’ element with id
value of ‘ida:1’ has an ‘Assigned_product(REF)’ field
containing id values ‘id:1,id:2,id:3’ which are referencing
‘Product class’ elements. In contrast, the
‘Document_assignment’ element with id value of ‘ida:2’
has an ‘Assigned_product(REF)’ field containing id
values ‘idv:1,idv:2,idv:3’ which are referencing ‘Product
version’ elements, which is a different type referenced by
the previous ‘Assigned_product(REF)’ field. The dotted
lines in the figure show the referencing of such elements
among the ‘Document_assignment’ element and the
‘Product class’ and ‘Product version’ elements.

This technique further simplifies the storage structure
compared to the FKey-Search technique by inlining all
subelements into the parent elements as a concatenated
string field. The IDREFS storage method is identical to the
FKey-Search technique. Therefore, all processing related
to finding parent-child relationships and references are
treated in the same manner. In this technique, the query
processor can also easily find the table containing the
subelements of the same type. It will also check all the
reference strings related to elements of the IDREFS type
and search different tables according to the different
element types identified by the prefix of the identifiers.

4. Performance Evaluation

Both the FKey-Search and Subelement-Inlining
techniques store a string for the reference information in
one field, such as ‘id:1;id:2;id:3’ and ‘idv:1;idv:2’. In
order to recognize the string, we have developed an
application which divides the string and searches for the
referenced data. The operation time for the application is
negligible compared to the total query time.

1.8ps:1
Version_ida_id

Supplied_item
Name

Item id1
id

ps:1ii:1
fida_id

Product id3HWPps:1id:3
Product id2MSNps:1id:2
Product id1Googleps:1id:1
Product_idNamefida_id

Product V2id:2idv:2
Product V1id:2idv:1

idfida_id

Item v1
id

ii:1iiv:1
fida_id

Pdtnet_schema

Item

Product_class

Item_version

Product_version

Latest versionidv:1; idv:2iiv:1ida:2
Latest document descriptionid:1;id:2; id:3iiv:1ida:1

RoleAssigned_product(REF)fida_id
Document_assignment

Fig. 5 FKey-Search storage technique

ii:1
Item(REF)

id:1;id:2;id:3
Product_class(REF)

1.8
Version_id

ps:1
a_id

Supplied_item
Name

iiv:1
Item_version(REF)

Item id1
id

ii:1
a_id

Product id3
Product id2
Product id1
Product_id

nullHWPid:3
idv:1;idv:2MSNid:2

nullGoogleid:1
Product_version(REF)Namea_id

Product V2idv:2
Product V1idv:1

ida_id

Item v1

id

ida:1;ida:2

Document
assignment(REF)

iiv:1

a_id

Pdtnet_schema

Item

Product_class

Item_version

Product_version

Latest versionidv:1; idv:2ida:2
Latest document descriptionid:1;id:2; id:3ida:1

RoleAssigned_product (REF)a_id
Document_assignment

Fig. 6 Subelement-Inlining storage technique

4.1 Query processing time according to query
types

We have implemented a PDTNet query processor to
search for PDM data and create XML documents as query
results. The implementation environment that was used is
Microsoft Windows XP with SQL Server 2000, and the

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

222

system was developed with C++. Users can access the
database and search by query expressions. Our processor
can return the element specified by a query expression; it
can also return every subelement of the element. The
query processor can automatically convert the searched
data into an XML document.
The query types used for performance evaluation are as
shown in Table 4-1. Basically, we make use of the query
type classification of P. Griffiths Selinger [13]. In Table 1,
a traversal-based query is used to compare the retrieval
time for subelements.

Table 1 Query types for performance evaluation

In general, the query execution time of the FKey-Search
and Subelement-Inlining techniques are similar, as shown
in Fig. 7. However, the insertion time of FKey-Search is
better than that of Subelement-Inlining. In addition, in the
case of joining, the query time of FKey_Search is faster
than that of Subelement-Inlining because the technique
does not require parsing of all id values. Furthermore, we
have compared the query time for a specified element and
all of its subelements. That is, in Table 1, the query Q7
requests that the query processor return only the data of
the Item table. However, the query Q8 prints all the
subelements of the Item satisfying the condition.

Time(ms)

0

5

10

15

20

25

30

35

40

insert update delete join grouping sort
Query types

Subelement-Inlining
FKey-Search

Fig. 7 Query time for basic query

Time(ms)

0
5

10
15
20
25
30
35
40
45
50

FKey-Search Subelement-Inlining
Query types

Item
Item+Subelement

Fig. 8 Query time for traversal-based query

As shown in Fig. 8, in the case of returning only the
specified item, there is not a major difference in the query
times of the two storage techniques. However, in the case
of returning all the subelements of the item element, the
FKey-Search technique is better than the Subelement-
Inlining because the FKey-Search technique does not
require the parsing time for retrieving the subelement
identifiers.

4.2 Query processing time for IDREF/IDREFS
type data

We have compared the FKey-Search and Subelement-
Inlining techniques with XML-DBMS in terms of
handling heterogeneous reference type data. This
experiment can evaluate the performance based on how
reference type data is stored. The FKey-Search and
Subelement-Inlining techniques store an element of
IDREFS type and the reference information in the same
table. In contrast, XML-DBMS store the referenced data
in another separate table as, in general, prior methods have
done. Therefore, in terms of the two storage techniques,
we have evaluated the query time depending on the
amount of reference data and the types of reference data.

Query
types Example queries

Insert Q1. Insert description field if Name of
Product_class is ‘Google’.

Update
Q2. Replace the value with
‘MS_WORD’ if Name of
Product_class is ‘HWP’.

Delete Q3. Delete if Id of Item is ‘Item id2’.

Join Q4. Search Product_id if Name of
Product_class is ‘MSN’.

Grouping
Query

Q5. Count if Name of Item is
‘Supplied_item’.

Sort Q6. Sort by Id if Name of Item is
‘Supplied_item’.
Q7. Print the Item table if Id of Item is
‘Item id2’. Traversal

-based
Query

Q8. Print the Item table and all the
subelement tables if Id of Item is ‘Item
id2’.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

223

4.2.1 Homogeneous reference types

In an XML-DBMS, when IDREFS type elements refer to
homogeneous type data, the query time increases
dramatically, as shown in Fig. 9, depending on the
quantity of referenced data.

Fig. 9 Homogenous reference type elements

As the number of reference elements increase from 1 to
100, the Subelement-Inlining and FKey-Search techniques
show much better performance than the XML-DBMS. The
XML-DBMS stores referenced data in another table
separately. Therefore, the processor has to join the tables
whenever a reference element refers to data. This is why
the query time of previous methods is usually slow when it
comes to reference type data.

4.2.2 Heterogeneous reference types

Fig. 10 shows the query time measured as the quantity of
the heterogeneous reference data of one element varies.
The types of reference elements vary from 1 to 10, and
each element refers to only a single data.

Fig. 10 Heterogeneous reference type elements

As is clear from the figure, the Subelement-Inlining and
FKey-Search techniques are always faster than the XML-
DBMS. The more types of reference data there are, the
greater the difference between the XML-DBMS
Subelement-Inlining/FKey-Search becomes. This is
because previous XML-DBMS methods store referenced
data in separate tables, whereas our technique stores it in
one table as one string. Earlier methods increase the
number of table joins. If an element refers to 50 or more
subelements, as can happen in the PDTNet XML schema,
these storage techniques cause not only a waste of storage
space, but also increase the time overhead during querying.

To summarize the experiemental results, the
Subelement-Inlining and FKey-Search techniques always
show much better performance than XML-DBMS when
accessing reference type data.

The FKey-Search storage technique uses a primary key
and foreign key concept to model parent-child
relationships in XML. It uses complex query expressions,
due to the upper and lower relationship of tables, to query
all subelements. Thus, the optimization of query
expressions is required. The index size of FKey-Search is
larger than that of Subelement-Inlining due to the use of
both primary keys and foreign keys. Moreover, the time it
takes to insert a new element is greater than that of
Subelement-Inlining due to the integrity checking of the
relationship between primary keys and foreign keys.

The Subelement-Inlining storage technique stores the
concatenated string of the attribute values of subelements
as subelement information. This is the same as the way in
which the information of referenced data is stored. The
time it takes to insert a new element is less than that of
FKey-Search. The Subelement-Inlining is slower than the
FKey-Search in querying all subelements because a query
processor has to create many query expressions for the
subelement information. It also has to solve the reference
integrity problem using an extra program.

5. Conclusions

In this paper, we have proposed storage methods to
support efficient processing of queries on an XML-based
document containing complex reference types. We have
developed the FKey-Search and Subelement-Inlining
storage techniques and evaluated their performance in
terms of the PDTNet XML schema data. This data model
is an international standard for PDM (Product Data
Management). The two storage techniques show
significant performance benefits for such semi-structured
XML documents. These techniques minimize data
redundancy and improve the performance of query speed
for complex reference type data.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

224

Acknowledgments. This work was supported by grant No.
(R01-2006-000-10609-0) from the Basic Research
Program of the Korea Science and Engineering
Foundation.

References

[1] XML schema, http://www.w3.org/XML/Schema, W3C,
2004.

[2] PDTnet Project – Product Data Technology,
http://www.prostep.de/en/services/projekte/pdtnet/, 2006.
[3] Krishnamurthy, R., Kaushik, R., and Naughton, J.F.,

“XML-to-SQL Query Translation Literature: The
State of the Art and Open Problems,” In XML
Database Symposium, 2003.

[4] Abiteboul, S., Buneman, P., Sucui, D., “Data on the
Web – From Relations to Semistructured Data and
XML,” Morgan Kaufmann, October, 1999.

[5] Suciu, D., Deutsch, A., Fernandex, M., “Storing Semi-
structured Data Using {STORED},” In Proc. of ACM
SIGMOD, pp431-442, 1999.

[6] Florescu, D., Kossmann, D., “A Performance
Evaluation of Alternative Mapping Schemes for
Storing XML Data in a Relational Database,” INRIA
Technical Report, INRIA, Mo.3680, May, 1999.

[7] Boirret, R., “XML-DBMS Version 1.01,”
http://www.rpbourret.com/xmldbms/ readme.htm,
2000.

[8] Shanmuhasundaram, J., Tyfte, K., He, G., He, C.,
Zhang, C., DeWitt, D., Naughton, J., “Relational
Databases for Querying XML Documents:
Limitations and Opportunities,” In Proc. of the 25th
VLDB Conference, pp.302-304, 1999.

[9] Schmidt, A., Kersten, M., Windhouwer, M., Waas, F.,
“Efficient Relational Storage and Retrieval of XML
Documents,” In WebDB, 2000.

[10] Tatarinov, I., Viglas, S., Beyer, K. S.,
Shanmugasundaram, J., Shekita, E. J., Zhang, C.,
“Storing and Querying Ordered XML Using a
Relational Database System,” In SIGMOD
Conference, pages 204–215, 2002.

[11] Krishnamurthy, R., Chakaravarthy, V. T., Kaushik,
R., Naughton, J., “Recursive XML Schemas,
Recursive XML Queries, and Relational Storage:
XML-to-SQL Query Translation,” In Proc. of the
20th International Conference on Data Engineering,

pages 42–53, Boston, Massachusetts, USA, March
2004.

[12] Lu, S., Sun, Y., Atay, M., Fotouhi, F., “A New
Inlining Algorithm for Mapping XML DTDs to
Relational Schemas,” In Proc. of the First
International Workshop on XML Schema and Data
Management, in Conjunction with the 22nd ACM
International Conference on Conceptual Modeling
(ER2003), Chicago, Illinois, October 2003.

[13] Selinger, P. G., Astrahan, M., Chamberlin, D., Lorie,
R., Price, T., “Access Path Selection in a Relational
Database Management System,” In Proc. of the ACM
SIGMOD International Conference on Management
of Data, pp23-34, 1979.

Hwan-Seung Yong received the B.S., M.S.
and Ph.D degrees in Computer Engineering
from Seoul National University in 1983, 1985
and 1994, respectively. During 1985-1989, he
was a member of research staff in Eletronics
and Communications Research Institute (ETRI.
Since 1995, He is a professor of Ewha
Womans University.

Kyoung-Hye Lee received the B.A.
degree in Christian Studies and M.S.
degree in Computer Science from Ewha
Womans University in 2004, 2006
respectively. She is a member of
technical staff at Samsung Electronics
Corp.

Wol Young Lee received the B.S., M.S. and
Ph.D degrees in Computer Engineering from
Ewha Woman's University in 1988, 2000 and
2005, respectively. During 1988-1998,
she was a CEO of Daegi Computer Institute.
During 2005-2007, She was also a professor
of Seoul Christian University.

Minsoo Lee received the B.S., M.S. degrees
in Computer Engineering from Seoul
National University in 1992, 1995
respectively. And he received Ph.D degree
in Computer and Information Sciences and
Engineering from University of Florida 2000.
During 2000-2002, he was a member of
technical staff at ORACLE Corp, U.S.A.

Since 2002, he is a associate professor of Ewha Womans
University.

