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Summary 
Message Queuing Middlewares (MQMs) are gaining more and 
more attention in large enterprises for building highly available 
asynchronous messaging systems and for integrating 
heterogeneous applications. However, currently available MQMs 
consider underlying networks as static. Therefore, in case of node 
failures or a disaster, either they have to suffer long term service 
loss or they need to install a lot of extra resources to ensure that 
no such failures cause any service loss. They also require large 
administrative overhead as the network is managed manually. 
Besides, as store-and-forward method is used, reliable delivery of 
messages suffers much network delay and generates large 
amount of traffics. Current MQMs are not suitable especially if 
the network contains a large number of nodes. In our previous 
work, we proposed a general purpose middleware called Soft 
System Bus (SSB) to solve the continuous availability problem. 
In this paper, we redesign SSB based on Pastry so that it solves 
the problems of large-scale MQMs. This middleware provides 
asynchronous, reliable and in-order delivery service while 
ensuring no long term service loss in case of failures or disasters. 
Such services can be provided with minimum deployment cost. 
Our simulation based evaluation shows that we can provide such 
services in a network of large number of nodes while generating 
less traffic and requiring minimum administrative overhead. 
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1. Introduction 

In today’s business environment, 
applications need to be connected 
loosely to accept continuously 
changing business roles. They also 
often need to communicate with 
each other in a point to 
point/multi-point basis. The 
purpose of Message Queuing 
Middlewares (MQMs) is to enable 
applications (also called clients or 
programs) to communicate across a 
network, without having a private, 
dedicated, logical connection to 
link them [3, 16]. Applications 
communicate indirectly by putting 
messages on message queues of the 
middleware, and by taking 

messages from the queues [3, 16]. MQMs are usually used 
when the communicating applications need to execute 
independently and concurrently without waiting for one 
another to reply, when the users are often disconnected, for 
example traveling salesmen, etc. The queues may be 
distributed across a network. The applications request a 
queue manager [3] running in a middleware node to route 
the message to the destination queue. The queue managers 
are called brokers or in some middlewares, e.g., in 
Microsoft Message Queuing (MSMQ) the routing servers 
[16]. In a large enterprise level deployment each site 
contains at least a broker or a High Availability (HA) 
cluster [11] of brokers and the applications are connected 
to that broker or a broker in the cluster [1, 10, 16]. 
Considering single broker per site, if the broker of a site 
fails or taken offline for periodic maintenance or upgrade, 
the applications does not have any broker to connect to. It 
even does not have any way to failover to a remote broker. 
Thus it suffers a long term service unavailability [10].  
To avoid this loss, clustering is used. There are several 
approaches of clustering. Fig. 1(a) shows a popular 
approach called HA master/slave broker cluster [1]. As we 
can see the brokers of a cluster keep messages and 
configuration files in a shared database. All the 
applications of a site are connected to a broker called 
master broker who holds the lock of the shared database. 
Other brokers in the cluster are slaves and they 
continuously try to get the lock of the database. If the 
master fails, one of the slaves gets the lock and becomes 

Fig. 1: (a) HA master/slave clustering of brokers [5]. (b) HA clustering of database servers [4]. 
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the master. If the master gets back, it joins as a slave. Thus 
if a broker fails, applications can failover to another 
broker.  
However, a broker can work only if the database is 
available. To ensure that a database does not fail, another 
HA cluster of database servers is necessary as shown in 
Fig. 1(b). Note that use of the database cluster can be 
avoided if data is synchronously replicated to all the 
brokers of the cluster. However, this approach has 
significant overhead as replication is done for every 
incoming and outgoing message. Again, what will happen 
if a disaster occurs and all the brokers and database servers 
are destroyed? We, again, need to invest for disaster 
recovery.  
Therefore, one problem of currently available MQMs (we 
also call traditional MQMs or simply MQMs) is that there 
is no cost effective way to ensure that the service will not 
be stopped for a period of failure of a broker or during 
periodic maintenance or upgrade.  
MQMs’ responsibility is to transfer the messages up to the 
destination queue. Then the application’s responsibility is 
to get the messages from the destination queue. As 
store-and-forward [1, 10, 16] method is used, messages 
are stored at each broker from the source application to the 
destination application. After storing at a broker, an 
acknowledgement is sent to the sending machine.  
MQMs provide support for both transactional and 
non-transactional messages [16]. If a set of messages is 
indicated as transactional they are delivered to the 
destination queue exactly once and in the order they are 
received. Non-transactional messages are classified into 
two types, express and recoverable. Express messages are 
not stored in persistent storage but only in the main 
memory. Therefore, they are very fast but they are lost if 
content of the memory is lost (it can be caused by 
software/OS crash, a reset, etc). On the other hand, 
recoverable messages are stored in persistent storage so 
that they can be recovered in case of failure or cash. In 
contrast to the transactional messages, the 
non-transactional messages are not guaranteed in order or 
exactly once delivery; however they are faster and have 
less overhead than the transactional messages.  
Both transactional and non-transactional messages can be 
set to have reliability property which means that after the 
messages reach to the destination queue, an 
acknowledgement will be sent to the source site. Another 
acknowledgement will be sent after the message is 
consumed from the queue. These acknowledgements will 
follow the reverse path from destination to the source 
queue. Therefore, the sending application can be sure that 
the message has been reached to the receiving application. 
Note that reliable messages have much overhead as two 
acknowledgements are necessary in addition to an 
acknowledgement of receipt of a message at each 
intermediate broker. 

We have mainly surveyed routing mechanism used in 
MSMQ. It uses an efficient routing algorithm to transfer a 
message from source queue to the destination queue. The 
routing algorithm used in MSMQ is called Binary Reliable 
Message Routing Algorithm (MS-MQBR) [14]. In MSMQ, 
an enterprise is considered as a set of sites. Each site has 
link to one or more neighboring sites whom it can 
communicate directly. Such a link is called routing link 
which identifies two neighboring MSMQ sites. The 
administrator sets a cost to each routing link. This cost 
represents how expensive it is to transfer messages directly 
between the two sites.  
To build the routing table, each broker considers the 
enterprise as a directed graph G = (S, E) where S = set of 
vertices, i.e., the sites and E = set of directed non-negative 
weighted edges. MSMQ then uses Dijkstra’s algorithm [7] 
to find least-cost paths to each destination site by finding a 
spanning tree [7] that covers the entire graph. The 
algorithm populates the routing table from the built 
spanning tree. The routing table contains two fields 
{DestinationSiteID, NextHopSiteId} [14]. When sending a 
message to a queue, to use the routing table, the broker 
must know the ID (called Global Unique Identifier or 
GUID) of the site where the destination queue resides. 
MSMQ must use another service running in the same site 
called the Active Directory (AD) service [16] provided by 
the Windows Servers. AD maintains all the queues/objects 
created in the whole enterprise (not only those created in 
the same site) and the GUIDs of the sites where they have 
been created. 
To make the algorithm work, in addition to the directory 
services several data structures are needed. A table called 
SiteRecordTable of size O(N), where N is the number of 
sites, containing all the site information. A table called 
RoutingLinkRecordTable containing cost information of all 
the site links. If the average number of direct links from 
one site is f, the size of this table is f×N. A table called 
MachineRecordTable containing the node/machine (i.e., 
site gate, routing servers, connected networks etc.) 
information of all the sites. The size of the table is O(N). 
The routing performance depends on how accurately the 
administrator estimated the link costs, how many direct 
links for each site have been inserted into the 
RoutingLinkRecordTable table. For reasonable values of 
these variables, the routing efficiency should be very good. 
However, the problem lies elsewhere. Although the routing 
performance is better, as the message is stored in each 
intermediate hops, it poses a significant amount of delay to 
the non-express messages. It also generates much traffic. 
Besides, all the aforementioned data structures must be 
maintained manually by the site administrators. This is an 
error-prone and time consuming job requiring highest 
administrative overhead. Thus they are unsuitable 
especially if the network contains huge number of nodes. 
In our previous work, we proposed a middleware named 
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Soft System Bus (SSB) [23, 24] to build continuously 
available systems called Persistent Computing Systems [6]. 
The main features of an SSB are that it provides 
asynchronous services and runs continuously even when 
they are maintained and upgraded. However, proposed 
SSB used a Chord based p2p network requiring quite large 
number of hops for messages. It also did not consider 
non-transactional message or end-to-end delivery issues. 
Thus it was not suitable to use as an MQM. Besides, 
experimental evaluation of our previously proposed SSB 
was not done.  
In this paper, we present the improved and extended 
design of SSB based on Pastry p2p protocol [22] to work 
as an MQM. We call this SSB Pastry Based Message 
Queuing Middleware (PBM). It provides asynchronous 
point to point messaging service having reliable, exactly 
once and in-order delivery guarantees while eliminating 
the aforementioned limitations of MQM. In other words, 
PBM has low traffic overhead and deployment cost but 
does not cause any long term service loss to the 
applications. It also eliminates administrative overhead 
while maintaining reasonable routing performance. Our 
middleware currently supports only point-to-point 
communication. However, multi-cast communication 
semantics can be built over this point-to-point service. The 
novelty of our work is that we first provide an in order and 
reliable messaging services over a structured p2p network. 
The rest of the paper is organized as follows. Section 2 
presents the design details of PBM. We analyze the 
messaging performance and traffic generation of both 
PBM and MQM in Section 3. Section 4 evaluates PBM 
with respect to MSMQ. Finally before conclusion in 
section 6, we present related work in section 5. 

2. Design of the Pastry Based MQM 

As we have already described, the main problem of 
non-cluster deployment of an MQM is that if it fails, 
brokers of other site can not take over the responsibility. 
This lack of dynamism is solved by using Pastry structured 
p2p network. Since Pastry network has self-managing 
characteristics [22], it requires no administrative overhead 
to maintain the routing information.  Besides, as one 
broker uses the resource of another broker (usually in 
another site) to replicate the stored messages to recover 
from failures, it does not need any cluster. Thus it reduces 
the cost to deploy and mange a cluster.  
Among a number of structured p2p protocols, we use 
Pastry because of two reasons: it is very flexible, e.g., the 
average number of hops of a message can be adjusted by 
varying several parameters and, most importantly, it 
provides a proximity routing which facilitates an 
approximate mapping between physical and overlay 
networks [22]. 

Throughout our discussion we assume that all the channels 
are unreliable (and hence faster). Unlike MQMs, in our 
system a message is always destined to an application not 
to a queue. Queue is managed implicitly. This relieves the 
application developers from managing middleware queues. 

2.1 Basic Approach 

Our approach is very simple. We let the brokers form a 
Pastry based p2p network as shown in Fig 2 (a Chord 
based architecture was proposed in our previous work 
[24]). Each broker is assigned a 128 bit (hashed) ID called 
nodeId which is obtained by applying a hash function H on 
the IP address/public key of the broker. Similarly, we use 
the same hash function on textual name/address/public key 
of an application, say A, to get its hashed key H(A). An 
application gets connected to the broker whose nodeId is 
numerically closest to its key to get messaging services 
from the network of brokers. We call this broker the 
responsible broker of A and represent as resp(H(A)). Like 
MQMs, PBM supports both transactional and 
non-transaction messages. Unlike traditional MQMs, the 
responsible broker not necessarily resides in the same site 
as of the application it is responsible for. 

 

2.2 Types of Messages Supported 

In our previous design [26], SSB only supported 
transactional messages. But PBM provides supports for 
both non-transactional and transactional messages. 
Transactional messages are by default reliable and delivery 
order is maintained. Therefore, they must be 
acknowledged. If a message is set as non-transactional but 
reliable, they must also be acknowledged. But unreliable 
messages need not to be acknowledged. All messages, 
either transactional or non-transactional, in our system are 
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not necessarily stored in persistent storage. As we will see 
such an approach is not suitable for our system. If the 
receiving application is offline all messages except the 
express messages are replicated by the destination broker. 
Unlike MQMs our middleware has not adopted the 
atomicity property of a transaction of several messages 
(other than only single message) yet but we will adopt it in 
our future work. Table 1 shows various types of messages 
and their properties. 

Table 1: Supported message types and their properties 
Type Reliability Properties 

Reliable Never replicated (by the destination 
broker) but acknowledged 

Express 

Unreliable Neither replicated nor  
acknowledged 

Reliable Replicated and acknowledged Recoverable 
Unreliable Replicated but not acknowledged 

Transactional Reliable by 
default 

Replicated, acknowledged and 
delivered in order 

2.3 Message Transfer 

Unlike MQMs, PBM avoids store-and-forward approach 
for it’s inefficiency. By storing, even if we mean to store 
not in persistence storage rather in main memory (more 
specifically in a Main-Memory Database called MMDB), 
store-and-forward method will not be efficient in PBM. As 
in our approach, if a broker fails, another broker takes over 
the responsibility immediately; if we want to use 
store-and-forward approach we have to store in one broker 
and replicate it in several other brokers over the network. 
This will cause a very long delivery delay especially if this 
process is repeated, like in MQM, in all intermediate 
brokers in the path of a message. 
Therefore, our approach of transferring a message is as 
follows. When an application A wants to send a message to 
another application B, it sends the message to the 
responsible broker resp(H(A)), i.e., the broker whose ID is 
numerically closest to the key H(A) of the application. We 
call this broker the source broker of the message. The 
source broker keeps a copy of the message in the main 
memory to resend later if necessary. The responsible 
broker then sets the destination field as H(B) and sends the 
message. The message then reaches, may be via some 
intermediate brokers, to the destination broker resp(H(B)) 
which is the numerically closest node of H(B). The 
destination broker now checks the status information to 
know if application B is online or not. If it is online, it 
sends the message to it. After receiving the message 
application B sends an acknowledgement back to the 
responsible broker. This acknowledgement will now be 
forwarded to the source application A through resp(H(A)). 
To deliver a message in this way it takes at most ⎡ ⎤Nb2

log  
+ 2 number of hops where N is the number of brokers and 
b is a Pastry parameter called bits per digit whose usual 
value is 4. In contrast, our previously designed SSB would 

take about 0.5log2N + 2 on average. It is obvious that 
Pastry based design performs better than Chord based 
design. 
However, if B is not ready to take the message or if it is 
currently offline, the message is replicated to K-1 number 
of numerically closest brokers (called replica set and 
denoted by replicaSet) of resp(H(B)) and stored in the 
main memory based queue of resp(H(B)). Only after this 
replication and storing operation is confirmed, an 
acknowledgement is sent to resp(H(A)). Please note that 
all storing and replicating operations are performed on 
main memory before sending an acknowledgement. 
However, after sending acknowledgement, the memory 
based queues can be stored in persistent storage which 
may be necessary to save the main memory space but not 
essential for recovery or other purposes. 
Messaging in our middleware differs with that in 
traditional MQMs. In MQMs messages are stored in every 
intermediate broker but in case of PBM it is not stored in 
intermediate brokers other than source and destination 
brokers because unlike MQM, an acknowledgement of a 
message does not need to follow a reverse path. 
In PBM, communication between application and broker is, 
in almost all the cases, inter-site because as a hash based 
approach is used, an application not necessarily resides in 
the same site of its responsible broker. Therefore, an 
application’s messages may need to be sent on the first hop 
to a broker in other site. This may cause security risks. 
However, as we consider that MQM is deployed in an 
enterprise boundary, a broker in another site belongs to the 
same enterprise causing less risk. This assumption about a 
p2p node in PBM differs from that in traditional p2p based 
approach. Nevertheless, a security mechanism must be 
adopted. This is subject of our ongoing research. There are 
some existing work on similar issue, e.g., PAST [9]. 

2.4 In-order Delivery and Duplication Elimination 

In PBM, transactional messages are sent in-order and are 
not duplicated at the destination application. If a message 
is transactional, the source application will not send a 
second transactional message until it receive the 
acknowledgement either from the destination application 
or from the destination broker. This slightly differs with 
traditional MQMs where an application can send several 
transactional messages together to the source broker. This 
appears to be a faster process. But the fact is that the 
source broker will send those messages to the destination 
broker sequentially like that in PBM [10]. The source 
application can not be sure about the fate of a transactional 
message until an acknowledgement comes from the 
destination broker stating that the messages have been 
delivered to the destination broker/application. Therefore, 
this difference between MQM and our middleware is not 
an issue if we consider application-to-application or 
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application–to-destination broker delivery because in such 
cases MQM should not be faster than our middleware. 
About non-transactional messages, we do not put any 
restriction like transactional messages. It can send a 
message before getting a reply of the previous one, as the 
non-transactional messages need not maintain any order.  
Duplication elimination and in-order delivery of messages 
work together in our middleware. We define in order 
delivery as follows: if an application A sends two 
transactional messages m1 and m2 at times ts1 and ts2 
respectively to the same application B where the messages 
m1 and m2 are accepted at times ta1 and ta2 respectively; if 
ts2 > ts1, then ta2 > ta1 must be true. Please note that, PBM 
(like MQM) does not ensure in-order delivery if the 
sources or the destinations of two transactional messages 
are different. In applications, an out of order transactional 
message, which must be a duplicate of a previously 
received message, is discarded. 
To ensure in order delivery and duplication elimination, 
each message is tagged with a message ID (denoted by 
msgId) by the source application. The msgIds do not need 
to be consecutive but must be in increasing order. In other 
words, if message m1 and m2 with msgIds i1 and i2 are 
generated by an application at times t1 and t2 respectively; 
if t2 > t1 then i2 > i1 must be true but it not necessarily be 
true that i2 = i1 + 1. The following rule must be satisfied by 
each application to ensure an in order delivery. 
 
In Order Delivery Assurance Rule: If the msgId of the 
last accepted transactional message from an application is 
i, accept a received transactional message sent by that 
application only if the msgId of the message is greater 
than i. 
 
To follow this rule, each application must remember the 
msgId of the last received transactional message from each 
application. This requires a data structure of maximum 
size equal to the number of applications in the system. 
However, a broker does not maintain such a data structure; 
therefore it may accept an expired transactional message. 
When a broker receives a transactional message of id i1 
whose source is A and destination is B, it checks the queue 
maintained for the application B. If the queue is empty or 
there is a message in the queue with id i2 < i1 for the same 
source and destination, it accepts and insert the message in 
the queue. Therefore, if the queue is empty, an old 
message which is already delivered may be accepted and 
inserted into the queue. An application may therefore 
receive an old (and hence duplicated) transactional 
message. However, as the application needs to maintain 
the stated data structure, such old transactional messages 
are not accepted rather discarded. Fig. 3 shows the 
algorithm used for this purpose. 
Note that in traditional MQM based systems, an 
application is not free from running a duplication 

elimination algorithm also. MQM confirms the exactly 
once delivery of a transactional message up to the 
destination queue (not up to the application). To get a 
message from the queue which is in a different machine, 
the application need to run a duplication elimination 
algorithm if it wants to get the message exactly once. 
Please note that once a message, which was replicated to 
K-1 closest brokers, is delivered to the receiving 
application, the responsibility of the destination broker is 
to try to delete the replicas from the K-1 closest brokers. 
For this purpose, the destination broker sends a replica 
deletion message to those K-1 brokers. These messages are 
sent as unreliable express message. If this message does 
not reach to a broker containing the replica, it can not 
delete it. Therefore, an inconsistency may occur among the 
queues maintained by the K-1 brokers. What this loose 
consistency can do is to cause an expired message to send 
to the application. As we have already seen that this case is 
handled by the duplication elimination algorithm. 

2.5 Message Reliability 

If a reliable message is delivered to the destination 
application, it sends an acknowledgement which is 
received by the sending application. However, if the 
message can not be delivered to the receiving application, 
the destination broker replicates and stores the message 
and sends an acknowledgement. After receiving the 
acknowledgement the sending application can understand 
that the message has only been kept by the destination 
broker but has not been delivered to the receiving 
application yet. After the message is delivered to the 
application, the destination broker sends a delivery 
confirmation message to the sending application. This 

processMsg(m) //runs in broker 
if (queue[m.dest] = NULL) queue[m.dest].insert(m) and return 
maxMsgId=queue[m.dest].getMaxMsgId(m.src, m.dest, isTransactional=true) 
if (m.isTransactional) 

if (m.id > maxMsgId) queue[m.dest].insert(m) 
else if ((m.id != maxMsgId)) queue[m.dest].insert(m) 

end 
 
processMsg(m) //runs in application 

maxMsgId = lastAcceptedMsgId[m.dest]) 
if (m.isTransactional) 

if (m.id > maxMsgId)  
Accept the msg 
lastAcceptedMsgId[m.dest]) = maxMsgId 

  else accept the message 
end 

Fig. 3: In-order delivery and duplication elimination algorithm 
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message is treated as unreliable express message. 
Therefore, if the sending application is not online, the 
message is stored (but not replicated) by the responsible 
broker of the sending application. If the sending 
application does not receive any delivery confirmation, it 
can send the message again. This surely can cause 
duplication of a message in the receiving application. But 
as each application runs a duplication elimination program, 
duplicated messages are automatically discarded. 

2.6 Handling Application Failures and Arrivals 

If an application leaves the system, the responsible broker 
does not need to know it immediately. When the broker 
sends a message to the application and gets no reply, it 
understands that the application has left the system. The 
broker then starts replicating and storing messages on 
behalf of that application until the application reconnects.  
If an application reconnects, the stored messages are 
delivered to the application first. We call this operation 
stored message delivery. Before this operation is finished, 
the broker needs to take care to initiate any normal 
transactional message delivery operation because it may 
cause unordered delivery of messages. Suppose stored 
message delivery operation contains a transactional 
message m1 and before the operation is finished another 
transactional message m2 is attempted to deliver to the 
same application (i.e., m1.destination = m2.destination) 
under a normal delivery operation. Note that if m1.source = 
m2.source, m2.msgId > m1.msgId as m2 has generated after 
m1. In this case if m2 is propagated before m1, m2 will be 
accepted but m1 will not according to the in order delivery 
assurance rule. The ultimate result is unordered delivery 
of messages. This situation, although rare, can occur 
because, unlike MQM, we are not storing every message 
in the queue. We avoid such concurrent situations by 
prohibiting the normal message delivery operation that 
fulfills the above constraints during a stored message 
delivery operation. Fig. 4 shows a simplified algorithm to 
avoid such situation.  

2.7 Handling of Broker Failures and Arrivals 

If a broker fails or a new broker joins, the leaf set of some 
other brokers is changed. If the leaf set of a broker is 
changed, a function named update(nodeId, joined) is 
called at the upper layer interface of the same broker. The 
current broker then checks if the broker (with ID nodeId) 
that joined/left belongs to or were belonged to the set of 
K-1 closest nodes called replicaSet. If so and if it has left, 
the current broker sends a message to it to delete the data 
that it kept as replicas on behalf of current node (assuming 
that it has left the replica set but not the network). On the 
other hand, if it has joined, the current broker sends the 
joining node all the necessary data that need to be 
replicated. The data includes the transactional and 
recoverable messages and other information (e.g. 
application profile) the current broker stores on behalf of 
the applications it is responsible for. The data that is 
necessary to send can be bundled together before sending 
to reduce the protocol overhead. We call this operation 
stored data replication. Fig. 5(a) shows a simplified 
algorithm of update() function. 

However, there is a loss of order issue here. This may 
occur due to concurrent operations. Suppose the current 
broker is sending a transactional message m1 as part of its 
normal replication operation and before it is completed, a 
stored data replication operation is initiated which sends 
another transactional message m2 as part of its operation. 
Note that m1.msgId > m2.msgId as m2 has already been 
acknowledged by the broker. If the destination (i.e., the 
joining broker) of both operations is same and if m1.source 

Fig. 5: (a) Algorithm to handle broker join and leaving. (b) Algorithm 
to avoid unordered delivery due to concurrent replication operations 

update(nodeId, joined) 
if (!joined AND wasInReplicaSet(nodeId)) 

send a message to nodeId to delete all replica kept for thisNode 
else if (!joined AND isInReplicaSet(nodeId)) 

send necessary replica to nodeId  
end 

(a) 
replicate(m , nodeId )  //m –message, nodeId – destination of replica 

if (isContinuingSDR(nodeId) //is stored data replication 
//operation is going on to nodeId? 

if (!checkSDR(m.source, m.destination, isTrans=true, m.id)) 
 send m to nodeId for replication 

else do not send until !isContinuingSDR(nodeId) 
else send m to nodeId for replication 

end 

(b) 
deliver(m , key)  //m –message, key – destination application  

if (isContinuingSMD(key) //is stored message delivery 
//operation is going on to key? 

if (!checkSMD(m.source, isTrans=true, m.id)) 
send m to key 

else do not send until !isContinuingSMD(key) 
else send m to key 

end 

Fig. 4: Algorithm to avoid unordered delivery due to concurrent 
delivery operations 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008 
 

 

231

= m2.source and m1.destination = m2.destination then there 
is a probability that m1 will reach first before m2. In such a 
case, m2 will not be accepted (although m1 has already 
been accepted before m2) by the joining broker (we have 
already discussed the reason in subsection 2.4). Therefore, 
the queue of the joining broker will not contain m2. The 
ultimate result may be that m1 is delivered to the 
destination application before m2, causing a loss of order. 
We avoid this by prohibiting such situations to occur 
concurrently. Note that probability of occurring such 
situation is very little as a lot of constraints are related to it. 
Fig. 5(b) shows a simplified algorithm to avoid such 
situation. 
Each broker sends a periodic message to the alive 
applications it is responsible for to inform its presence. If 
an application does not receive a periodic message it 
understands that its broker has failed or left. It then sends a 
lookup message to a known broker to know who is 
responsible for it. After getting the address of the new 
broker it can connect to it and can resume its operation. 
Thus within a little time an application can failover to 
another broker. In case of MQM, if a broker fails and there 
is no cluster member to takeover, the applications have to 
wait until broker(s) of that site is fixed [10]. 

3. Messaging Performance and Traffic 
Analysis 

We analyze the performance and the generated traffic of 
PBM and MQM in this section. We have not considered 
the failure of a broker here because of two reasons. First, 
in MQM if broker(s) of a site fails, the applications of that 
site must have to wait for services until the failed broker(s) 
resumes. While in PBM, there is always some broker to 
provide services to the applications. Besides the routing 
links need to be updated manually in MQM compared to 
automatic update in PBM. These incompatible natures 
between MQM and PBM make comparison somewhat 
illogical. The second reason is that as message queuing 
systems are deployed in enterprise boundaries, we assume, 
unlike traditional p2p based system where a node leaves 
the network very often (e.g., when a user went to sleep 
after shutting down his computer), a broker of MQM or 
PBM leaves the network only occasionally when it is taken 
down for regular maintenance or upgrade or when a (very) 
rare failure occurs. The analysis of this rare case does not 
have much value. Rather the analysis of the ideal case 
(without failure) which contributes all most all the time is 
sufficient to know who performs better: PBM or MQM. 
Let us assume that the size of a message and its 
acknowledgement are lm bits and la bits respectively 
including the protocol headers. We assume that all the 
broker to broker links has a constant data rate p bps. We 
ignore the delay of a message caused by the LAN within a 

site.  Let us also assume that the average propagation 
delay caused by the distance between two brokers is td sec, 
the average storing (disk write access) delay is ts sec and 
the average number of hop counts for PBM and MQM are 
hp and hm respectively. We ignore the storing delay if a 
message is stored in main memory. We also ignore various 
optimizations that can be used (for both PBM and MQMs) 
to improve performance. 

3.1 Messaging Delay in PBM 

Receiving Application is Online 
In PBM, if the destination application is online a message 
is delivered directly to it. Therefore the average delivery 
delay  
tt = time to transfer from sending application to the source 
broker + time to transfer from source to destination broker 
+ time to transfer from the destination broker to the 
destination application 

= (hp+2) (2lm/p + td)                            (1) 

The time to transfer the acknowledgement from the 
destination broker to the source broker is 

ta = (hp+2) (2la/p + td) 

Therefore, the round trip time (RTT) is  

trt = tt + ta = (hp+2) (2/p(lm + la) + 2td)              (2) 

This delivery time tt and the RTT trt is for all type of 
messages assuming that the destination application is 
online. 

Receiving Application is Offline 
When the destination application is offline, in PBM, the 
destination broker replicates the message into closest K-1 
leaf set members, stores it in its own memory and sends an 
acknowledgement. Therefore in this case: 
trt = message transfer time from sending application to 
destination broker + replica transfer time + replica 
acknowledgement transfer time + message 
acknowledgement transfer time 

= (1+hp) (2lm/p + td) + (2lm/p + td) + (2la/p + td)+ (1+hp) 
(2la/p + td) 

= (hp+2) (2/p(lm + la) +2td)                       (3) 

We assume here that replicating to K-1 node is done in 
parallel. We ignore a small additional delay caused by 
sending K-1 replica sequentially through a single channel. 
As we see that it is same as RTT for message that is 
directly delivered to the receiving application. However, 
this expression is not valid for express messages because 
the express messages are not replicated. Therefore, for 
express messages: 

trt = (1+hp) (2lm/p + td) + (1+hp) (2la/p + td) 
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= (hp+1) (2/p(lm + la) +2td)                       (4) 

3.2 Messaging Delay in MQMs 

In MQMs, delay between application and the broker is 
negligible as they reside in the same site. But in case of 
transactional and recoverable messages additional delay is 
added due to storing of a message in each broker from 
source to destination application. When the 
acknowledgement is sent back through the reverse path, 
another disk access is needed in each broker. Therefore, 
for MQMs 

tt = hm (2lm/p + td) + ts(hm+1)                     (5) 

ta = hm (2la/p + td) + ts(hm+1) 

Therefore, the round trip time is 

trt = tt + ta  

= 2ts(hm+1)+ hm (2/p(lm + la) + 2td)                (6) 

We assume here that message storing time and access time 
during acknowledgement process is same. In fact the 
difference is negligible for small message size. 
tt and trt are for recoverable messages. The transactional 
messages may require some more time as it follows a 
complex protocol. However, in MQMs express message 
requires less time as it is not stored in persistent store. For 
express messages: 

tt = hm (2lm/p + td)                              (7) 

ta = hm (2la/p + td) 

Therefore, the round trip time is 

trt = hm (2/p(lm + la) + 2td)                        (8) 

3.3 Traffic Generated for a Message in PBM 

We would like to calculate, for a single message transfer 
from the sending application to the receiving application, 
how much inter-site traffic (the message, replicas and the 
acknowledgements) is generated in PBM. We ignore the 
traffic that is limited within a site.  
Any communication between brokers is treated as an 
inter-site traffic. Unlike MQMs, in PBM communication 
between application and broker is assumed to be inter-site 
because in all most all the cases an application does not 
reside in the same site of its responsible broker. Therefore, 
the total inter-site traffic if the destination is online: 

lis =  lm(hp+2) + la(hp+2)  

= (hp+2)(lm+ la ) 

Total number of messages nis = 2(hp+2). This is valid for 
all type of reliable messages. For unreliable messages as 
acknowledgement is not necessary, the inter-site traffic and 
the number of messages will be lm(hp+2) and (hp+2) 

respectively. 
However, if receiving application is offline, extra 
messages are necessary to replicate, to send an 
acknowledgement from destination broker to destination 
sending application, to send a second acknowledgement 
when the message is delivered after the destination 
application comes online and to delete the replica. 
Therefore in such cases for recoverable (reliable) and 
transactional messages: 

lis =  lm(hp+1) + (K-1)(lm +  la) + la(hp+1) + lm +  la 
(hp+2)+la(K-1) 

= lm(hp+K+1) + la(2hp+2K+1) 

We assume here that the replica deletion message size is 
same as acknowledgement. Total number of messages nis = 
(3hp+3K+2). For reliable express messages 

lis =  lm(hp+1) +  la(hp+1) + lm +  la (hp+2) 

= lm(hp+2) + la(2hp+3) 

Total number of messages nis = (3hp+5). Therefore, for 
unreliable express message lis = lm(hp+2) and nis = (hp+2). 
But for unreliable recoverable messages they are 
lm(hp+K+1) + la(2K-2) and hp+3K-1 respectively. 

3.4 Traffic Generated for a Message in MQMs 

For MQMs, the amount of inter-site traffic is almost same 
for all type of reliable messages. In MQMs as an 
application and its responsible broker resides in the same 
site, inter-site traffic is reduced. However, every broker, 
when receives a message, must send an acknowledgement 
first. Additionally, as all the messages are stored in the 
destination broker, every (reliable) message is 
acknowledged more two times, one when stored by the 
destination broker, another when delivered to the receiving 
application. Compared with PBM, this increases the traffic 
significantly when the receiving application is online. 
Therefore, for MQMs: 

lis =  lmhm +  lahm  + lahm +  la hm 

= lmhm + 3lahm 

Total number of messages nis = 4hm. For unreliable 
messages no final acknowledgements are necessary. 
Therefore, the amount of traffic will be reduced much. 
Therefore, for unreliable express and recoverable 
messages lis = hm(lm+ la) and nis = 2hm 

3.5 Summary 

As we see from the expressions of delivery delay and RTT 
(expr. (1) to (8)) that one of the main factors that affects 
these delays is the propagation delay td. Therefore, if the 
routing algorithm dispatches the messages through short 
paths, messaging performance should be improved. In case 
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of MSMQ, as it uses a least-cost path from source broker 
to the destination broker, the average td will be very low. 
PBM can not choose a least-cost path but can chose a low 
cost path as it take routing decision based on a proximity 
metric. Moreover, link between an application and its 
responsible DIS is not optimal because it is not chosen 
based on proximity metric rather on a hash value. 
Therefore, in PBM the path of a message is much longer 
than that in MSMQ. However, PBM optimizes it by, unlike 
MQM (expr. (5) and (6)), not storing messages in the 
persistent storage (expr. (1) to (4)) through the path way. 
In PBM, a message is replicated by the destination broker 
only if the receiving application is not online (expr. (3) and 
(4)). Whereas in MQMs, every recoverable (expr. (5) and 
(6)) message is persisted in every broker from the source 
to the destination application.  
Other than propagation delay td and storing delay ts, 
another factor that affects both performance and message 
overhead is the hop count (all the expressions in 
sub-sections 3.1 to 3.4). Our Pastry based approach 
performs better than MQMs in this regard because hop 
count increases not linearly but logarithmically in PBM. 
As we are using replication based approach, the value of K, 
that is, how many brokers will contain the replica of a 
single broker is also a factor that affects the performance 
and message traffic. 

4. Evaluation 

We have shown that our middleware can tolerate failure of 
a broker. If a broker fails, there always has another broker 
who can take the responsibility provided that at least one 
broker is alive in the system. In this section we show that 
despite providing such facilities, our middleware claims 
lower deployment cost and generates less traffic. The 
messaging performance is also reasonable. 
To know how PBM performs we design and run some 
experiments using OverSim [20] in Omnetpp [18] 
simulation environment. Our simulation scenario is as 
follows: we consider that a large enterprise deploys a 
messaging system in its many sites located over a large 
geographical area. Each site has a broker and a number of 
client applications connected in a LAN. We obtain the keys 
by applying a sha1 hash function on the names of the 
applications and the nodeIds by applying the same hash 
function on the IP address of the brokers. An application 
sends a message to another application via the responsible 
broker whose nodeId is numerically closest to the 
application’s key. To understand the effect correctly we 
balance the load, i.e., we set the simulation in such a way 
that each broker is responsible for equal number of 
applications and each application sends one message for 
each type to every application including itself.  
We set various parameters as follows: the Pastry 

configuration parameter b called bits per digit is 4, both 
number of leaves and number of neighbors is set to 16. We 
choose disk write access time randomly from 5 ms to 10 
ms range [4]. To simulate the delay between brokers, at the 
starting of the simulation, we fix the delay from each 
broker to every other broker randomly. The random value 
ranges from 1 ms to maxDistance ms where maxDistance 
is the one-way propagation delay (in ms) between the 
farthest brokers. We put these values in a distance matrix. 
We do not use a two dimensional plane to simulate the 
distance because, in real situations, triangular inequality 
does not hold. The propagation delay does not include the 
transmission and reception delay caused by the channel 
bandwidth. We assume that all channels between brokers 
have a bandwidth/data rate of 3.152Mbps. 
We compare PBM with MSMQ to understand how the 
system would perform if MSMQ were deployed in case of 
PBM. We use the same distance matrix used in PBM. 
MSMQ uses a least-cost path algorithm to route a message 
from one broker to another. We consider propagation delay 
as the cost. We do not include storing delay in the cost, 
because express messages are not stored. As MSMQ is 
configured and maintained manually we assume that from 
every broker there are direct links to 5 other brokers. We 
assume that the administrator is careful enough (although 
in real it is very difficult) to choose the least-cost links as 
the direct links. We choose smallest 5 values from each 
row of the distance matrix for 5 direct links. Based on 
these direct links we run Dijkstra's algorithm to find the 
least-cost path from each broker to every other broker. 
These least-cost paths are used for messaging between 
applications in our MSMQ simulator.  

4.1 Scalability 

To know how PBM perform as the broker network grows 
in size, we fix the maximum one way propagation delay 
(indicates the length of the geographic area) to 15 ms and 
vary the number of brokers from 64 to 1024. Then we plot 
the one way average delivery delay in Fig. 6(a) and round 
trip time in Fig. 6(b) for different types of messages in log 
scale (with base 2b = 16). When the 

Fig. 6: (a) Delivery delay Vs. number of brokers 
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receiving application is offline, we measured the delay 
between the sending application and the destination 
broker. 

As we see from both Fig. 6(a) and 6(b) that the growth 
of one way delivery delay and RTT in MSMQ is more 
rapid than that in PBM. This indicates that as the number 
of brokers grows PBM performs better than that of MSMQ. 
Also for maximum propagation delay of 15 ms and for all 
type of messages except for express messages, PBM 
perform much better than MSMQ especially for higher 
number of brokers. But as we will see in a subsequent 
experiment that in very long geographic areas our 
middleware does not perform well. 

 

4.2 Traffic Generation 

In the same experiment for measuring scalability, we 
measure how many inter-site messages (original messages, 
replicas and the acknowledgements) are generated for 
transferring a single message from one broker to another 
broker. This experiment gives an idea how much traffic is 
generated in PBM compared to MSMQ. We assume that, 
in PBM, the value of K = 3, i.e, if the receiving application 
is offline, the destination broker replicates into K-1 = 2 
closest (numerically) brokers and store it in itself. 

Our assumption K = 3 is reasonable because in order for a 
long term service loss of the applications in a site all 3 
brokers must fail within a very short time. The probability 
of such occurrence is extremely low as those 3 brokers are 
dispersed geographically. In PBM network with K = 3 is 
more resilience than the network in MSMQ with three 
cluster members in each site because PBM is not affected 
by a disaster while MSMQ does. We plot the number of 
messages generated in reliable and unreliable messaging in  
Fig. 7(a) and 7(b) respectively.  
As we see from the figures that in MSMQ the number of 
generated messages grows very rapidly than that in PBM. 
This is another proof that PBM is more scalable. In 
MSMQ the number of generated messages is same if the 
receiving application is offline or online because all the 
messages are stored. In contrast, in PBM if the receiving 
application is online it requires much less number of 
messages as the message is not replicated. However, if it is 
offline, a slightly higher number of messages are required 
as the message is replicated. Even though, if the number of 
brokers is above 1000, MSMQ performs worse than PBM. 
The usual case is that for most of the messages the 
receiving application is online. Therefore, on average 
PBM generates much less traffic than MSMQ. 

4.3 Effect of Broker to Broker Distance 

As we have stated that messaging performance is affected 
by the propagation delay between two communicating 
brokers. In this experiment we compare the messaging 
delays with that in MSMQ for various propagation delays. 
We vary the maximum one way propagation delays from 
10 ms to 60 ms and plot the messaging delays in Fig. 8(a) 
and 8(b). The maximum propagation delay indicates how 
large the geographic area is where the messaging system is 
deployed.  
As we see from the figures, in PBM the one way delivery 

Fig. 7: (b) Inter-site traffic generated for each unreliable message 
delivery Vs. number of brokers 
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delay and RTT varies rapidly as the maximum distance 
increases. However, in MSMQ they are almost constant 
because the messages are always getting a least-cost path 
which is slightly affected if the average propagation delay 
increases. As we see in MSMQ express messages have 
very good performance which is comparable with PBM 
only if deployed within a limited geographic area. 
However, in a messaging system transactional and 
recoverable messages should dominate. For these types of 
messages our middleware performs very well within a 
geographic area bounded by the propagation delay about 
35 seconds. Over this value, MSMQ perform well. 
According to our measurement using ping command (in 
peak hours), propagation delay of 35 sec (hence RTT is 
about 70 sec) covers a medium sized country boundary e.g. 
Japan (far ends of). Therefore, within such a country 
boundary PBM performs better than MSMQ. 

4.4 Administrative Overhead 

As we see that in MSMQ, in order to populate the routing 
table by the routing algorithm, a number of input tables are 
needed, e.g., SiteRecordTable, RoutingLinkRecordTable, 
MachineRecordTable. Such tables need to be maintained 
manually by the site administrator [14]. This might be easy 

if the messaging system is deployed in a limited number of 
sites. As the number of sites grows, maintaining such 
tables manually becomes very difficult and time 
consuming. PBM does not suffer from this problem. Here 
nothing needs to be maintained manually. The routing 
tables, neighbor sets, leaf sets, queues, applications’ 
connection information all are updated automatically as 
the broker or application leaves or arrives. Although this 
requires some extra traffic overhead due to periodic 
communication among brokers, MSMQ also is not free 
from such overhead. For example, it needs active directory 
service which generates some extra traffic.  

4.5 Deployment Cost 

Unlike MQM, PBM does not require that every site must 
install a broker. Therefore, PBM can be deployed with 
very little cost. Even if we consider that every site should 
have a broker, deployment cost is not higher compared to 
MQM. If a cluster based deployment is used for MQM, 
each site must have at least two application servers and 
two database servers assuming that the popular 
master/slave clustering is used. If a non-cluster based 
deployment is used, each site requires one server resulting 
in equal cost of PBM. Table 2 shows per site cost 
comparison between PBM and MQM assuming that as an 
application server Dell PowerEdge 2970 and as a database 
server Dell PowerEdge 2950 III is used. As we see for a 
cluster based deployment MQM requires more than five 
times investment compared to PBM excluding the disaster 
recovery management cost. However, a non-cluster based 
deployment of MQM costs same as PBM. However, such 
deployment is not robust against failures/maintenance. 

Table 2: Per site cost comparisons between PBM and MQM 
Type of 
Deployment Hardware Quantity Typical 

Price (USD)
Total 
Price 

PBM Application 
Server 1 2000 2000 

MSMQ with 
Clustering 

Application 
Server 2 2000 4000 

 Database 
Server 2 3500 7000 

MSMQ without 
Clustering 

Application 
Server 1 2000 2000 

4.6 Discussion 

The scalability experiments shows that as the number of 
broker increases, messaging delays grow slowly in PBM 
compared to that in MSMQ. However, in the last 
experiment we have seen that PBM perform better only in 
a country boundary. These two results mean that PBM 
performs well if more number of brokers are installed 
within that boundary. For example, if there are 1000 sales 
centers of an enterprise over a country, they can deploy a 
PBM for better services compared to MSMQ. Outside this 

Fig. 8 (b):  RTT Vs. size of the geographic area in term of 
propagation delay between the farthest brokers 
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boundary although PBM can not provide better 
performance but what it can provide is lesser traffic 
generation, lower deployment cost, automatic failover, 
minimum administrative overhead. 

5. Related Work 

In our previous works [24, 26], we provide architecture of 
a general purpose SSB. In this paper, we include 
large-scale deployment issues, e.g., scalability, 
administrative overhead, deployment cost, etc. and 
evaluate the applicability of SSB in large-scale. We also 
extend the services for express and recoverable messages 
in addition to transactional messages. We have not found 
any work which considers the issues directly related to the 
currently available MQMs. JMS [12] and AMQP [2] tries 
to standardize communication between applications and 
brokers. But they do not define how the message should be 
routed (which is our main concern) between brokers 
distributed in a network. However, we have found several 
works related to messaging systems built on p2p networks. 
P2P based systems are used mainly to provide persistent 
shared storage services to the clients, e.g., CFS [8], PAST 
[9], etc. In such systems, unlike our use, a file is 
stored/uploaded once but accessed many times. Therefore, 
file searching, efficient use of storage are two of the main 
issues of shared storage. However, these are not issues for 
our system where a message will be deleted from the 
queue once it is delivered. P2P network is also used as a 
middleware for multicast/anycast or publish-subscribe 
based systems, e.g., Hermes [21], REM [25], SCRIBE [5], 
and REBECA [17]. We use Pastry as a point to point 
message queuing middleware (not as publish-subscribe). It 
needs to solve issues related to reliable, in-order and 
exactly once delivery semantics and replication of 
messages. Some instant messaging systems, e.g., DIMA 
[13], which is partially related to our work, have been built 
on Pastry but they have not considered those issues. 
Another related work is POST [15], a general purpose 
messaging system based on Pastry. POST uses 
store-and-forward architecture and can provide multi-cast 
communication. However, POST has some limitations. It 
does not consider in-order delivery issue as it is not a 
message queuing middleware. Each of the messages is 
stored in persistent storage and replicated to a number of 
brokers compared to only those messages that can not be 
delivered in our middleware. As the cost of storing and 
replicating in a network is very high, our system should be 
much faster than POST. Besides, sending a message must 
be followed by a notification message consuming more 
bandwidth in POST. If the destination application of a 
notification is not alive, it adopts a costly approach to 
deliver the notification. 

6. Conclusion 

We have redesigned a previously proposed middleware 
called SSB to work as a large-scale MQM. It is based on 
Pastry peer to peer protocol. This middleware eliminates a 
number of problems of traditional MQMs. It failovers 
automatically to another broker located in a different site if 
the current broker fails, it eliminates the administrative 
overhead necessary to maintain the broker network. 
Experimental evaluation shows that such services can be 
obtained with reduced traffic overhead and that our 
middleware is especially appropriate for a network of large 
number of brokers deployed in a relatively large (but not 
worldwide, e.g. within country boundary) geographic area. 
However, we have to consider some more issues. Since the 
states of the middleware not necessarily be persisted, if a 
broker losses its memory content or if it is restarted, it 
must get necessary states and replicas from its replica set 
members. Besides, as the network is self-managed, in 
some cases, it can create a network partition. We have not 
considered it yet although existing methods are available 
to guard against or recover from such partitions. Also, we 
have to consider how a point to multi-point 
communication can be provided based on point to point 
service. 
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