
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

225

Manuscript received August 5, 2008.
Manuscript revised August 20, 2008.

A Low Cost and Resilient Message Queuing Middleware

Mohammad Reza Selim†, Yuichi Goto†, and Jingde Cheng†

†Department of Information and Computer Sciences
Saitama University, Saitama, 338-8570, Japan

Summary
Message Queuing Middlewares (MQMs) are gaining more and
more attention in large enterprises for building highly available
asynchronous messaging systems and for integrating
heterogeneous applications. However, currently available MQMs
consider underlying networks as static. Therefore, in case of node
failures or a disaster, either they have to suffer long term service
loss or they need to install a lot of extra resources to ensure that
no such failures cause any service loss. They also require large
administrative overhead as the network is managed manually.
Besides, as store-and-forward method is used, reliable delivery of
messages suffers much network delay and generates large
amount of traffics. Current MQMs are not suitable especially if
the network contains a large number of nodes. In our previous
work, we proposed a general purpose middleware called Soft
System Bus (SSB) to solve the continuous availability problem.
In this paper, we redesign SSB based on Pastry so that it solves
the problems of large-scale MQMs. This middleware provides
asynchronous, reliable and in-order delivery service while
ensuring no long term service loss in case of failures or disasters.
Such services can be provided with minimum deployment cost.
Our simulation based evaluation shows that we can provide such
services in a network of large number of nodes while generating
less traffic and requiring minimum administrative overhead.

Key words:
Asynchronous Messaging, Availability, In Order Delivery,
Message Queuing Middleware, Reliability.

1. Introduction

In today’s business environment,
applications need to be connected
loosely to accept continuously
changing business roles. They also
often need to communicate with
each other in a point to
point/multi-point basis. The
purpose of Message Queuing
Middlewares (MQMs) is to enable
applications (also called clients or
programs) to communicate across a
network, without having a private,
dedicated, logical connection to
link them [3, 16]. Applications
communicate indirectly by putting
messages on message queues of the
middleware, and by taking

messages from the queues [3, 16]. MQMs are usually used
when the communicating applications need to execute
independently and concurrently without waiting for one
another to reply, when the users are often disconnected, for
example traveling salesmen, etc. The queues may be
distributed across a network. The applications request a
queue manager [3] running in a middleware node to route
the message to the destination queue. The queue managers
are called brokers or in some middlewares, e.g., in
Microsoft Message Queuing (MSMQ) the routing servers
[16]. In a large enterprise level deployment each site
contains at least a broker or a High Availability (HA)
cluster [11] of brokers and the applications are connected
to that broker or a broker in the cluster [1, 10, 16].
Considering single broker per site, if the broker of a site
fails or taken offline for periodic maintenance or upgrade,
the applications does not have any broker to connect to. It
even does not have any way to failover to a remote broker.
Thus it suffers a long term service unavailability [10].
To avoid this loss, clustering is used. There are several
approaches of clustering. Fig. 1(a) shows a popular
approach called HA master/slave broker cluster [1]. As we
can see the brokers of a cluster keep messages and
configuration files in a shared database. All the
applications of a site are connected to a broker called
master broker who holds the lock of the shared database.
Other brokers in the cluster are slaves and they
continuously try to get the lock of the database. If the
master fails, one of the slaves gets the lock and becomes

Fig. 1: (a) HA master/slave clustering of brokers [5]. (b) HA clustering of database servers [4].

Master
Broker

Slave
Broker 1

Slave
Broker 2

Database

Application 1 Application 2

Database
Server 1

Database
Server 2

LAN
Hub 1

LAN
Hub 1

SAN
switch

SAN
switch Disk 1 Disk 2

(a) (b)

Heartbeat

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

226

the master. If the master gets back, it joins as a slave. Thus
if a broker fails, applications can failover to another
broker.
However, a broker can work only if the database is
available. To ensure that a database does not fail, another
HA cluster of database servers is necessary as shown in
Fig. 1(b). Note that use of the database cluster can be
avoided if data is synchronously replicated to all the
brokers of the cluster. However, this approach has
significant overhead as replication is done for every
incoming and outgoing message. Again, what will happen
if a disaster occurs and all the brokers and database servers
are destroyed? We, again, need to invest for disaster
recovery.
Therefore, one problem of currently available MQMs (we
also call traditional MQMs or simply MQMs) is that there
is no cost effective way to ensure that the service will not
be stopped for a period of failure of a broker or during
periodic maintenance or upgrade.
MQMs’ responsibility is to transfer the messages up to the
destination queue. Then the application’s responsibility is
to get the messages from the destination queue. As
store-and-forward [1, 10, 16] method is used, messages
are stored at each broker from the source application to the
destination application. After storing at a broker, an
acknowledgement is sent to the sending machine.
MQMs provide support for both transactional and
non-transactional messages [16]. If a set of messages is
indicated as transactional they are delivered to the
destination queue exactly once and in the order they are
received. Non-transactional messages are classified into
two types, express and recoverable. Express messages are
not stored in persistent storage but only in the main
memory. Therefore, they are very fast but they are lost if
content of the memory is lost (it can be caused by
software/OS crash, a reset, etc). On the other hand,
recoverable messages are stored in persistent storage so
that they can be recovered in case of failure or cash. In
contrast to the transactional messages, the
non-transactional messages are not guaranteed in order or
exactly once delivery; however they are faster and have
less overhead than the transactional messages.
Both transactional and non-transactional messages can be
set to have reliability property which means that after the
messages reach to the destination queue, an
acknowledgement will be sent to the source site. Another
acknowledgement will be sent after the message is
consumed from the queue. These acknowledgements will
follow the reverse path from destination to the source
queue. Therefore, the sending application can be sure that
the message has been reached to the receiving application.
Note that reliable messages have much overhead as two
acknowledgements are necessary in addition to an
acknowledgement of receipt of a message at each
intermediate broker.

We have mainly surveyed routing mechanism used in
MSMQ. It uses an efficient routing algorithm to transfer a
message from source queue to the destination queue. The
routing algorithm used in MSMQ is called Binary Reliable
Message Routing Algorithm (MS-MQBR) [14]. In MSMQ,
an enterprise is considered as a set of sites. Each site has
link to one or more neighboring sites whom it can
communicate directly. Such a link is called routing link
which identifies two neighboring MSMQ sites. The
administrator sets a cost to each routing link. This cost
represents how expensive it is to transfer messages directly
between the two sites.
To build the routing table, each broker considers the
enterprise as a directed graph G = (S, E) where S = set of
vertices, i.e., the sites and E = set of directed non-negative
weighted edges. MSMQ then uses Dijkstra’s algorithm [7]
to find least-cost paths to each destination site by finding a
spanning tree [7] that covers the entire graph. The
algorithm populates the routing table from the built
spanning tree. The routing table contains two fields
{DestinationSiteID, NextHopSiteId} [14]. When sending a
message to a queue, to use the routing table, the broker
must know the ID (called Global Unique Identifier or
GUID) of the site where the destination queue resides.
MSMQ must use another service running in the same site
called the Active Directory (AD) service [16] provided by
the Windows Servers. AD maintains all the queues/objects
created in the whole enterprise (not only those created in
the same site) and the GUIDs of the sites where they have
been created.
To make the algorithm work, in addition to the directory
services several data structures are needed. A table called
SiteRecordTable of size O(N), where N is the number of
sites, containing all the site information. A table called
RoutingLinkRecordTable containing cost information of all
the site links. If the average number of direct links from
one site is f, the size of this table is f×N. A table called
MachineRecordTable containing the node/machine (i.e.,
site gate, routing servers, connected networks etc.)
information of all the sites. The size of the table is O(N).
The routing performance depends on how accurately the
administrator estimated the link costs, how many direct
links for each site have been inserted into the
RoutingLinkRecordTable table. For reasonable values of
these variables, the routing efficiency should be very good.
However, the problem lies elsewhere. Although the routing
performance is better, as the message is stored in each
intermediate hops, it poses a significant amount of delay to
the non-express messages. It also generates much traffic.
Besides, all the aforementioned data structures must be
maintained manually by the site administrators. This is an
error-prone and time consuming job requiring highest
administrative overhead. Thus they are unsuitable
especially if the network contains huge number of nodes.
In our previous work, we proposed a middleware named

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

227

Soft System Bus (SSB) [23, 24] to build continuously
available systems called Persistent Computing Systems [6].
The main features of an SSB are that it provides
asynchronous services and runs continuously even when
they are maintained and upgraded. However, proposed
SSB used a Chord based p2p network requiring quite large
number of hops for messages. It also did not consider
non-transactional message or end-to-end delivery issues.
Thus it was not suitable to use as an MQM. Besides,
experimental evaluation of our previously proposed SSB
was not done.
In this paper, we present the improved and extended
design of SSB based on Pastry p2p protocol [22] to work
as an MQM. We call this SSB Pastry Based Message
Queuing Middleware (PBM). It provides asynchronous
point to point messaging service having reliable, exactly
once and in-order delivery guarantees while eliminating
the aforementioned limitations of MQM. In other words,
PBM has low traffic overhead and deployment cost but
does not cause any long term service loss to the
applications. It also eliminates administrative overhead
while maintaining reasonable routing performance. Our
middleware currently supports only point-to-point
communication. However, multi-cast communication
semantics can be built over this point-to-point service. The
novelty of our work is that we first provide an in order and
reliable messaging services over a structured p2p network.
The rest of the paper is organized as follows. Section 2
presents the design details of PBM. We analyze the
messaging performance and traffic generation of both
PBM and MQM in Section 3. Section 4 evaluates PBM
with respect to MSMQ. Finally before conclusion in
section 6, we present related work in section 5.

2. Design of the Pastry Based MQM

As we have already described, the main problem of
non-cluster deployment of an MQM is that if it fails,
brokers of other site can not take over the responsibility.
This lack of dynamism is solved by using Pastry structured
p2p network. Since Pastry network has self-managing
characteristics [22], it requires no administrative overhead
to maintain the routing information. Besides, as one
broker uses the resource of another broker (usually in
another site) to replicate the stored messages to recover
from failures, it does not need any cluster. Thus it reduces
the cost to deploy and mange a cluster.
Among a number of structured p2p protocols, we use
Pastry because of two reasons: it is very flexible, e.g., the
average number of hops of a message can be adjusted by
varying several parameters and, most importantly, it
provides a proximity routing which facilitates an
approximate mapping between physical and overlay
networks [22].

Throughout our discussion we assume that all the channels
are unreliable (and hence faster). Unlike MQMs, in our
system a message is always destined to an application not
to a queue. Queue is managed implicitly. This relieves the
application developers from managing middleware queues.

2.1 Basic Approach

Our approach is very simple. We let the brokers form a
Pastry based p2p network as shown in Fig 2 (a Chord
based architecture was proposed in our previous work
[24]). Each broker is assigned a 128 bit (hashed) ID called
nodeId which is obtained by applying a hash function H on
the IP address/public key of the broker. Similarly, we use
the same hash function on textual name/address/public key
of an application, say A, to get its hashed key H(A). An
application gets connected to the broker whose nodeId is
numerically closest to its key to get messaging services
from the network of brokers. We call this broker the
responsible broker of A and represent as resp(H(A)). Like
MQMs, PBM supports both transactional and
non-transaction messages. Unlike traditional MQMs, the
responsible broker not necessarily resides in the same site
as of the application it is responsible for.

2.2 Types of Messages Supported

In our previous design [26], SSB only supported
transactional messages. But PBM provides supports for
both non-transactional and transactional messages.
Transactional messages are by default reliable and delivery
order is maintained. Therefore, they must be
acknowledged. If a message is set as non-transactional but
reliable, they must also be acknowledged. But unreliable
messages need not to be acknowledged. All messages,
either transactional or non-transactional, in our system are

31 K

Key 28

24

G
Key 18

D

Key 23 17

L
Key 15

J
Key 17

13

E
Key 10

F

Key 6
H

Key 11

Key 32
I

A

Key 4

C

Key 5

5

B

Key 30

Applications

Broker with
nodeId 17

Fig. 2: Pastry based MQM and applications

Middleware Circular nodeId
space (5 bit)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

228

not necessarily stored in persistent storage. As we will see
such an approach is not suitable for our system. If the
receiving application is offline all messages except the
express messages are replicated by the destination broker.
Unlike MQMs our middleware has not adopted the
atomicity property of a transaction of several messages
(other than only single message) yet but we will adopt it in
our future work. Table 1 shows various types of messages
and their properties.

Table 1: Supported message types and their properties
Type Reliability Properties

Reliable Never replicated (by the destination
broker) but acknowledged

Express

Unreliable Neither replicated nor
acknowledged

Reliable Replicated and acknowledged Recoverable
Unreliable Replicated but not acknowledged

Transactional Reliable by
default

Replicated, acknowledged and
delivered in order

2.3 Message Transfer

Unlike MQMs, PBM avoids store-and-forward approach
for it’s inefficiency. By storing, even if we mean to store
not in persistence storage rather in main memory (more
specifically in a Main-Memory Database called MMDB),
store-and-forward method will not be efficient in PBM. As
in our approach, if a broker fails, another broker takes over
the responsibility immediately; if we want to use
store-and-forward approach we have to store in one broker
and replicate it in several other brokers over the network.
This will cause a very long delivery delay especially if this
process is repeated, like in MQM, in all intermediate
brokers in the path of a message.
Therefore, our approach of transferring a message is as
follows. When an application A wants to send a message to
another application B, it sends the message to the
responsible broker resp(H(A)), i.e., the broker whose ID is
numerically closest to the key H(A) of the application. We
call this broker the source broker of the message. The
source broker keeps a copy of the message in the main
memory to resend later if necessary. The responsible
broker then sets the destination field as H(B) and sends the
message. The message then reaches, may be via some
intermediate brokers, to the destination broker resp(H(B))
which is the numerically closest node of H(B). The
destination broker now checks the status information to
know if application B is online or not. If it is online, it
sends the message to it. After receiving the message
application B sends an acknowledgement back to the
responsible broker. This acknowledgement will now be
forwarded to the source application A through resp(H(A)).
To deliver a message in this way it takes at most ⎡ ⎤Nb2

log
+ 2 number of hops where N is the number of brokers and
b is a Pastry parameter called bits per digit whose usual
value is 4. In contrast, our previously designed SSB would

take about 0.5log2N + 2 on average. It is obvious that
Pastry based design performs better than Chord based
design.
However, if B is not ready to take the message or if it is
currently offline, the message is replicated to K-1 number
of numerically closest brokers (called replica set and
denoted by replicaSet) of resp(H(B)) and stored in the
main memory based queue of resp(H(B)). Only after this
replication and storing operation is confirmed, an
acknowledgement is sent to resp(H(A)). Please note that
all storing and replicating operations are performed on
main memory before sending an acknowledgement.
However, after sending acknowledgement, the memory
based queues can be stored in persistent storage which
may be necessary to save the main memory space but not
essential for recovery or other purposes.
Messaging in our middleware differs with that in
traditional MQMs. In MQMs messages are stored in every
intermediate broker but in case of PBM it is not stored in
intermediate brokers other than source and destination
brokers because unlike MQM, an acknowledgement of a
message does not need to follow a reverse path.
In PBM, communication between application and broker is,
in almost all the cases, inter-site because as a hash based
approach is used, an application not necessarily resides in
the same site of its responsible broker. Therefore, an
application’s messages may need to be sent on the first hop
to a broker in other site. This may cause security risks.
However, as we consider that MQM is deployed in an
enterprise boundary, a broker in another site belongs to the
same enterprise causing less risk. This assumption about a
p2p node in PBM differs from that in traditional p2p based
approach. Nevertheless, a security mechanism must be
adopted. This is subject of our ongoing research. There are
some existing work on similar issue, e.g., PAST [9].

2.4 In-order Delivery and Duplication Elimination

In PBM, transactional messages are sent in-order and are
not duplicated at the destination application. If a message
is transactional, the source application will not send a
second transactional message until it receive the
acknowledgement either from the destination application
or from the destination broker. This slightly differs with
traditional MQMs where an application can send several
transactional messages together to the source broker. This
appears to be a faster process. But the fact is that the
source broker will send those messages to the destination
broker sequentially like that in PBM [10]. The source
application can not be sure about the fate of a transactional
message until an acknowledgement comes from the
destination broker stating that the messages have been
delivered to the destination broker/application. Therefore,
this difference between MQM and our middleware is not
an issue if we consider application-to-application or

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

229

application–to-destination broker delivery because in such
cases MQM should not be faster than our middleware.
About non-transactional messages, we do not put any
restriction like transactional messages. It can send a
message before getting a reply of the previous one, as the
non-transactional messages need not maintain any order.
Duplication elimination and in-order delivery of messages
work together in our middleware. We define in order
delivery as follows: if an application A sends two
transactional messages m1 and m2 at times ts1 and ts2
respectively to the same application B where the messages
m1 and m2 are accepted at times ta1 and ta2 respectively; if
ts2 > ts1, then ta2 > ta1 must be true. Please note that, PBM
(like MQM) does not ensure in-order delivery if the
sources or the destinations of two transactional messages
are different. In applications, an out of order transactional
message, which must be a duplicate of a previously
received message, is discarded.
To ensure in order delivery and duplication elimination,
each message is tagged with a message ID (denoted by
msgId) by the source application. The msgIds do not need
to be consecutive but must be in increasing order. In other
words, if message m1 and m2 with msgIds i1 and i2 are
generated by an application at times t1 and t2 respectively;
if t2 > t1 then i2 > i1 must be true but it not necessarily be
true that i2 = i1 + 1. The following rule must be satisfied by
each application to ensure an in order delivery.

In Order Delivery Assurance Rule: If the msgId of the
last accepted transactional message from an application is
i, accept a received transactional message sent by that
application only if the msgId of the message is greater
than i.

To follow this rule, each application must remember the
msgId of the last received transactional message from each
application. This requires a data structure of maximum
size equal to the number of applications in the system.
However, a broker does not maintain such a data structure;
therefore it may accept an expired transactional message.
When a broker receives a transactional message of id i1
whose source is A and destination is B, it checks the queue
maintained for the application B. If the queue is empty or
there is a message in the queue with id i2 < i1 for the same
source and destination, it accepts and insert the message in
the queue. Therefore, if the queue is empty, an old
message which is already delivered may be accepted and
inserted into the queue. An application may therefore
receive an old (and hence duplicated) transactional
message. However, as the application needs to maintain
the stated data structure, such old transactional messages
are not accepted rather discarded. Fig. 3 shows the
algorithm used for this purpose.
Note that in traditional MQM based systems, an
application is not free from running a duplication

elimination algorithm also. MQM confirms the exactly
once delivery of a transactional message up to the
destination queue (not up to the application). To get a
message from the queue which is in a different machine,
the application need to run a duplication elimination
algorithm if it wants to get the message exactly once.
Please note that once a message, which was replicated to
K-1 closest brokers, is delivered to the receiving
application, the responsibility of the destination broker is
to try to delete the replicas from the K-1 closest brokers.
For this purpose, the destination broker sends a replica
deletion message to those K-1 brokers. These messages are
sent as unreliable express message. If this message does
not reach to a broker containing the replica, it can not
delete it. Therefore, an inconsistency may occur among the
queues maintained by the K-1 brokers. What this loose
consistency can do is to cause an expired message to send
to the application. As we have already seen that this case is
handled by the duplication elimination algorithm.

2.5 Message Reliability

If a reliable message is delivered to the destination
application, it sends an acknowledgement which is
received by the sending application. However, if the
message can not be delivered to the receiving application,
the destination broker replicates and stores the message
and sends an acknowledgement. After receiving the
acknowledgement the sending application can understand
that the message has only been kept by the destination
broker but has not been delivered to the receiving
application yet. After the message is delivered to the
application, the destination broker sends a delivery
confirmation message to the sending application. This

processMsg(m) //runs in broker
if (queue[m.dest] = NULL) queue[m.dest].insert(m) and return
maxMsgId=queue[m.dest].getMaxMsgId(m.src, m.dest, isTransactional=true)
if (m.isTransactional)

if (m.id > maxMsgId) queue[m.dest].insert(m)
else if ((m.id != maxMsgId)) queue[m.dest].insert(m)

end

processMsg(m) //runs in application

maxMsgId = lastAcceptedMsgId[m.dest])
if (m.isTransactional)

if (m.id > maxMsgId)
Accept the msg
lastAcceptedMsgId[m.dest]) = maxMsgId

 else accept the message
end

Fig. 3: In-order delivery and duplication elimination algorithm

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

230

message is treated as unreliable express message.
Therefore, if the sending application is not online, the
message is stored (but not replicated) by the responsible
broker of the sending application. If the sending
application does not receive any delivery confirmation, it
can send the message again. This surely can cause
duplication of a message in the receiving application. But
as each application runs a duplication elimination program,
duplicated messages are automatically discarded.

2.6 Handling Application Failures and Arrivals

If an application leaves the system, the responsible broker
does not need to know it immediately. When the broker
sends a message to the application and gets no reply, it
understands that the application has left the system. The
broker then starts replicating and storing messages on
behalf of that application until the application reconnects.
If an application reconnects, the stored messages are
delivered to the application first. We call this operation
stored message delivery. Before this operation is finished,
the broker needs to take care to initiate any normal
transactional message delivery operation because it may
cause unordered delivery of messages. Suppose stored
message delivery operation contains a transactional
message m1 and before the operation is finished another
transactional message m2 is attempted to deliver to the
same application (i.e., m1.destination = m2.destination)
under a normal delivery operation. Note that if m1.source =
m2.source, m2.msgId > m1.msgId as m2 has generated after
m1. In this case if m2 is propagated before m1, m2 will be
accepted but m1 will not according to the in order delivery
assurance rule. The ultimate result is unordered delivery
of messages. This situation, although rare, can occur
because, unlike MQM, we are not storing every message
in the queue. We avoid such concurrent situations by
prohibiting the normal message delivery operation that
fulfills the above constraints during a stored message
delivery operation. Fig. 4 shows a simplified algorithm to
avoid such situation.

2.7 Handling of Broker Failures and Arrivals

If a broker fails or a new broker joins, the leaf set of some
other brokers is changed. If the leaf set of a broker is
changed, a function named update(nodeId, joined) is
called at the upper layer interface of the same broker. The
current broker then checks if the broker (with ID nodeId)
that joined/left belongs to or were belonged to the set of
K-1 closest nodes called replicaSet. If so and if it has left,
the current broker sends a message to it to delete the data
that it kept as replicas on behalf of current node (assuming
that it has left the replica set but not the network). On the
other hand, if it has joined, the current broker sends the
joining node all the necessary data that need to be
replicated. The data includes the transactional and
recoverable messages and other information (e.g.
application profile) the current broker stores on behalf of
the applications it is responsible for. The data that is
necessary to send can be bundled together before sending
to reduce the protocol overhead. We call this operation
stored data replication. Fig. 5(a) shows a simplified
algorithm of update() function.

However, there is a loss of order issue here. This may
occur due to concurrent operations. Suppose the current
broker is sending a transactional message m1 as part of its
normal replication operation and before it is completed, a
stored data replication operation is initiated which sends
another transactional message m2 as part of its operation.
Note that m1.msgId > m2.msgId as m2 has already been
acknowledged by the broker. If the destination (i.e., the
joining broker) of both operations is same and if m1.source

Fig. 5: (a) Algorithm to handle broker join and leaving. (b) Algorithm
to avoid unordered delivery due to concurrent replication operations

update(nodeId, joined)
if (!joined AND wasInReplicaSet(nodeId))

send a message to nodeId to delete all replica kept for thisNode
else if (!joined AND isInReplicaSet(nodeId))

send necessary replica to nodeId
end

(a)
replicate(m , nodeId) //m –message, nodeId – destination of replica

if (isContinuingSDR(nodeId) //is stored data replication
//operation is going on to nodeId?

if (!checkSDR(m.source, m.destination, isTrans=true, m.id))
 send m to nodeId for replication

else do not send until !isContinuingSDR(nodeId)
else send m to nodeId for replication

end

(b)
deliver(m , key) //m –message, key – destination application

if (isContinuingSMD(key) //is stored message delivery
//operation is going on to key?

if (!checkSMD(m.source, isTrans=true, m.id))
send m to key

else do not send until !isContinuingSMD(key)
else send m to key

end

Fig. 4: Algorithm to avoid unordered delivery due to concurrent
delivery operations

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

231

= m2.source and m1.destination = m2.destination then there
is a probability that m1 will reach first before m2. In such a
case, m2 will not be accepted (although m1 has already
been accepted before m2) by the joining broker (we have
already discussed the reason in subsection 2.4). Therefore,
the queue of the joining broker will not contain m2. The
ultimate result may be that m1 is delivered to the
destination application before m2, causing a loss of order.
We avoid this by prohibiting such situations to occur
concurrently. Note that probability of occurring such
situation is very little as a lot of constraints are related to it.
Fig. 5(b) shows a simplified algorithm to avoid such
situation.
Each broker sends a periodic message to the alive
applications it is responsible for to inform its presence. If
an application does not receive a periodic message it
understands that its broker has failed or left. It then sends a
lookup message to a known broker to know who is
responsible for it. After getting the address of the new
broker it can connect to it and can resume its operation.
Thus within a little time an application can failover to
another broker. In case of MQM, if a broker fails and there
is no cluster member to takeover, the applications have to
wait until broker(s) of that site is fixed [10].

3. Messaging Performance and Traffic
Analysis

We analyze the performance and the generated traffic of
PBM and MQM in this section. We have not considered
the failure of a broker here because of two reasons. First,
in MQM if broker(s) of a site fails, the applications of that
site must have to wait for services until the failed broker(s)
resumes. While in PBM, there is always some broker to
provide services to the applications. Besides the routing
links need to be updated manually in MQM compared to
automatic update in PBM. These incompatible natures
between MQM and PBM make comparison somewhat
illogical. The second reason is that as message queuing
systems are deployed in enterprise boundaries, we assume,
unlike traditional p2p based system where a node leaves
the network very often (e.g., when a user went to sleep
after shutting down his computer), a broker of MQM or
PBM leaves the network only occasionally when it is taken
down for regular maintenance or upgrade or when a (very)
rare failure occurs. The analysis of this rare case does not
have much value. Rather the analysis of the ideal case
(without failure) which contributes all most all the time is
sufficient to know who performs better: PBM or MQM.
Let us assume that the size of a message and its
acknowledgement are lm bits and la bits respectively
including the protocol headers. We assume that all the
broker to broker links has a constant data rate p bps. We
ignore the delay of a message caused by the LAN within a

site. Let us also assume that the average propagation
delay caused by the distance between two brokers is td sec,
the average storing (disk write access) delay is ts sec and
the average number of hop counts for PBM and MQM are
hp and hm respectively. We ignore the storing delay if a
message is stored in main memory. We also ignore various
optimizations that can be used (for both PBM and MQMs)
to improve performance.

3.1 Messaging Delay in PBM

Receiving Application is Online
In PBM, if the destination application is online a message
is delivered directly to it. Therefore the average delivery
delay
tt = time to transfer from sending application to the source
broker + time to transfer from source to destination broker
+ time to transfer from the destination broker to the
destination application

= (hp+2) (2lm/p + td) (1)

The time to transfer the acknowledgement from the
destination broker to the source broker is

ta = (hp+2) (2la/p + td)

Therefore, the round trip time (RTT) is

trt = tt + ta = (hp+2) (2/p(lm + la) + 2td) (2)

This delivery time tt and the RTT trt is for all type of
messages assuming that the destination application is
online.

Receiving Application is Offline
When the destination application is offline, in PBM, the
destination broker replicates the message into closest K-1
leaf set members, stores it in its own memory and sends an
acknowledgement. Therefore in this case:
trt = message transfer time from sending application to
destination broker + replica transfer time + replica
acknowledgement transfer time + message
acknowledgement transfer time

= (1+hp) (2lm/p + td) + (2lm/p + td) + (2la/p + td)+ (1+hp)
(2la/p + td)

= (hp+2) (2/p(lm + la) +2td) (3)

We assume here that replicating to K-1 node is done in
parallel. We ignore a small additional delay caused by
sending K-1 replica sequentially through a single channel.
As we see that it is same as RTT for message that is
directly delivered to the receiving application. However,
this expression is not valid for express messages because
the express messages are not replicated. Therefore, for
express messages:

trt = (1+hp) (2lm/p + td) + (1+hp) (2la/p + td)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

232

= (hp+1) (2/p(lm + la) +2td) (4)

3.2 Messaging Delay in MQMs

In MQMs, delay between application and the broker is
negligible as they reside in the same site. But in case of
transactional and recoverable messages additional delay is
added due to storing of a message in each broker from
source to destination application. When the
acknowledgement is sent back through the reverse path,
another disk access is needed in each broker. Therefore,
for MQMs

tt = hm (2lm/p + td) + ts(hm+1) (5)

ta = hm (2la/p + td) + ts(hm+1)

Therefore, the round trip time is

trt = tt + ta

= 2ts(hm+1)+ hm (2/p(lm + la) + 2td) (6)

We assume here that message storing time and access time
during acknowledgement process is same. In fact the
difference is negligible for small message size.
tt and trt are for recoverable messages. The transactional
messages may require some more time as it follows a
complex protocol. However, in MQMs express message
requires less time as it is not stored in persistent store. For
express messages:

tt = hm (2lm/p + td) (7)

ta = hm (2la/p + td)

Therefore, the round trip time is

trt = hm (2/p(lm + la) + 2td) (8)

3.3 Traffic Generated for a Message in PBM

We would like to calculate, for a single message transfer
from the sending application to the receiving application,
how much inter-site traffic (the message, replicas and the
acknowledgements) is generated in PBM. We ignore the
traffic that is limited within a site.
Any communication between brokers is treated as an
inter-site traffic. Unlike MQMs, in PBM communication
between application and broker is assumed to be inter-site
because in all most all the cases an application does not
reside in the same site of its responsible broker. Therefore,
the total inter-site traffic if the destination is online:

lis = lm(hp+2) + la(hp+2)

= (hp+2)(lm+ la)

Total number of messages nis = 2(hp+2). This is valid for
all type of reliable messages. For unreliable messages as
acknowledgement is not necessary, the inter-site traffic and
the number of messages will be lm(hp+2) and (hp+2)

respectively.
However, if receiving application is offline, extra
messages are necessary to replicate, to send an
acknowledgement from destination broker to destination
sending application, to send a second acknowledgement
when the message is delivered after the destination
application comes online and to delete the replica.
Therefore in such cases for recoverable (reliable) and
transactional messages:

lis = lm(hp+1) + (K-1)(lm + la) + la(hp+1) + lm + la
(hp+2)+la(K-1)

= lm(hp+K+1) + la(2hp+2K+1)

We assume here that the replica deletion message size is
same as acknowledgement. Total number of messages nis =
(3hp+3K+2). For reliable express messages

lis = lm(hp+1) + la(hp+1) + lm + la (hp+2)

= lm(hp+2) + la(2hp+3)

Total number of messages nis = (3hp+5). Therefore, for
unreliable express message lis = lm(hp+2) and nis = (hp+2).
But for unreliable recoverable messages they are
lm(hp+K+1) + la(2K-2) and hp+3K-1 respectively.

3.4 Traffic Generated for a Message in MQMs

For MQMs, the amount of inter-site traffic is almost same
for all type of reliable messages. In MQMs as an
application and its responsible broker resides in the same
site, inter-site traffic is reduced. However, every broker,
when receives a message, must send an acknowledgement
first. Additionally, as all the messages are stored in the
destination broker, every (reliable) message is
acknowledged more two times, one when stored by the
destination broker, another when delivered to the receiving
application. Compared with PBM, this increases the traffic
significantly when the receiving application is online.
Therefore, for MQMs:

lis = lmhm + lahm + lahm + la hm

= lmhm + 3lahm

Total number of messages nis = 4hm. For unreliable
messages no final acknowledgements are necessary.
Therefore, the amount of traffic will be reduced much.
Therefore, for unreliable express and recoverable
messages lis = hm(lm+ la) and nis = 2hm

3.5 Summary

As we see from the expressions of delivery delay and RTT
(expr. (1) to (8)) that one of the main factors that affects
these delays is the propagation delay td. Therefore, if the
routing algorithm dispatches the messages through short
paths, messaging performance should be improved. In case

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

233

of MSMQ, as it uses a least-cost path from source broker
to the destination broker, the average td will be very low.
PBM can not choose a least-cost path but can chose a low
cost path as it take routing decision based on a proximity
metric. Moreover, link between an application and its
responsible DIS is not optimal because it is not chosen
based on proximity metric rather on a hash value.
Therefore, in PBM the path of a message is much longer
than that in MSMQ. However, PBM optimizes it by, unlike
MQM (expr. (5) and (6)), not storing messages in the
persistent storage (expr. (1) to (4)) through the path way.
In PBM, a message is replicated by the destination broker
only if the receiving application is not online (expr. (3) and
(4)). Whereas in MQMs, every recoverable (expr. (5) and
(6)) message is persisted in every broker from the source
to the destination application.
Other than propagation delay td and storing delay ts,
another factor that affects both performance and message
overhead is the hop count (all the expressions in
sub-sections 3.1 to 3.4). Our Pastry based approach
performs better than MQMs in this regard because hop
count increases not linearly but logarithmically in PBM.
As we are using replication based approach, the value of K,
that is, how many brokers will contain the replica of a
single broker is also a factor that affects the performance
and message traffic.

4. Evaluation

We have shown that our middleware can tolerate failure of
a broker. If a broker fails, there always has another broker
who can take the responsibility provided that at least one
broker is alive in the system. In this section we show that
despite providing such facilities, our middleware claims
lower deployment cost and generates less traffic. The
messaging performance is also reasonable.
To know how PBM performs we design and run some
experiments using OverSim [20] in Omnetpp [18]
simulation environment. Our simulation scenario is as
follows: we consider that a large enterprise deploys a
messaging system in its many sites located over a large
geographical area. Each site has a broker and a number of
client applications connected in a LAN. We obtain the keys
by applying a sha1 hash function on the names of the
applications and the nodeIds by applying the same hash
function on the IP address of the brokers. An application
sends a message to another application via the responsible
broker whose nodeId is numerically closest to the
application’s key. To understand the effect correctly we
balance the load, i.e., we set the simulation in such a way
that each broker is responsible for equal number of
applications and each application sends one message for
each type to every application including itself.
We set various parameters as follows: the Pastry

configuration parameter b called bits per digit is 4, both
number of leaves and number of neighbors is set to 16. We
choose disk write access time randomly from 5 ms to 10
ms range [4]. To simulate the delay between brokers, at the
starting of the simulation, we fix the delay from each
broker to every other broker randomly. The random value
ranges from 1 ms to maxDistance ms where maxDistance
is the one-way propagation delay (in ms) between the
farthest brokers. We put these values in a distance matrix.
We do not use a two dimensional plane to simulate the
distance because, in real situations, triangular inequality
does not hold. The propagation delay does not include the
transmission and reception delay caused by the channel
bandwidth. We assume that all channels between brokers
have a bandwidth/data rate of 3.152Mbps.
We compare PBM with MSMQ to understand how the
system would perform if MSMQ were deployed in case of
PBM. We use the same distance matrix used in PBM.
MSMQ uses a least-cost path algorithm to route a message
from one broker to another. We consider propagation delay
as the cost. We do not include storing delay in the cost,
because express messages are not stored. As MSMQ is
configured and maintained manually we assume that from
every broker there are direct links to 5 other brokers. We
assume that the administrator is careful enough (although
in real it is very difficult) to choose the least-cost links as
the direct links. We choose smallest 5 values from each
row of the distance matrix for 5 direct links. Based on
these direct links we run Dijkstra's algorithm to find the
least-cost path from each broker to every other broker.
These least-cost paths are used for messaging between
applications in our MSMQ simulator.

4.1 Scalability

To know how PBM perform as the broker network grows
in size, we fix the maximum one way propagation delay
(indicates the length of the geographic area) to 15 ms and
vary the number of brokers from 64 to 1024. Then we plot
the one way average delivery delay in Fig. 6(a) and round
trip time in Fig. 6(b) for different types of messages in log
scale (with base 2b = 16). When the

Fig. 6: (a) Delivery delay Vs. number of brokers

Delivery Delay Vs. Number of Brokers/DISs

64 128 256 512 1024
0.020
0.030
0.040
0.050
0.060
0.070
0.080
0.090
0.100

Number of brokers/DISs

D
el

iv
er

y
de

la
y

in

se
c

SSB MSMQ(Recoverable Msg) MSMQ(Express Msg)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

234

receiving application is offline, we measured the delay
between the sending application and the destination
broker.

As we see from both Fig. 6(a) and 6(b) that the growth
of one way delivery delay and RTT in MSMQ is more
rapid than that in PBM. This indicates that as the number
of brokers grows PBM performs better than that of MSMQ.
Also for maximum propagation delay of 15 ms and for all
type of messages except for express messages, PBM
perform much better than MSMQ especially for higher
number of brokers. But as we will see in a subsequent
experiment that in very long geographic areas our
middleware does not perform well.

4.2 Traffic Generation

In the same experiment for measuring scalability, we
measure how many inter-site messages (original messages,
replicas and the acknowledgements) are generated for
transferring a single message from one broker to another
broker. This experiment gives an idea how much traffic is
generated in PBM compared to MSMQ. We assume that,
in PBM, the value of K = 3, i.e, if the receiving application
is offline, the destination broker replicates into K-1 = 2
closest (numerically) brokers and store it in itself.

Our assumption K = 3 is reasonable because in order for a
long term service loss of the applications in a site all 3
brokers must fail within a very short time. The probability
of such occurrence is extremely low as those 3 brokers are
dispersed geographically. In PBM network with K = 3 is
more resilience than the network in MSMQ with three
cluster members in each site because PBM is not affected
by a disaster while MSMQ does. We plot the number of
messages generated in reliable and unreliable messaging in
Fig. 7(a) and 7(b) respectively.
As we see from the figures that in MSMQ the number of
generated messages grows very rapidly than that in PBM.
This is another proof that PBM is more scalable. In
MSMQ the number of generated messages is same if the
receiving application is offline or online because all the
messages are stored. In contrast, in PBM if the receiving
application is online it requires much less number of
messages as the message is not replicated. However, if it is
offline, a slightly higher number of messages are required
as the message is replicated. Even though, if the number of
brokers is above 1000, MSMQ performs worse than PBM.
The usual case is that for most of the messages the
receiving application is online. Therefore, on average
PBM generates much less traffic than MSMQ.

4.3 Effect of Broker to Broker Distance

As we have stated that messaging performance is affected
by the propagation delay between two communicating
brokers. In this experiment we compare the messaging
delays with that in MSMQ for various propagation delays.
We vary the maximum one way propagation delays from
10 ms to 60 ms and plot the messaging delays in Fig. 8(a)
and 8(b). The maximum propagation delay indicates how
large the geographic area is where the messaging system is
deployed.
As we see from the figures, in PBM the one way delivery

Fig. 7: (b) Inter-site traffic generated for each unreliable message
delivery Vs. number of brokers

Inter-site Traffic Generated for Each Unreliable Message Delivery

64 128 256 512 1024
2

5

8

11

Number of brokers/DISs

N
um

be
r o

f
m

es
sa

ge
s

SSB (Receiving Application is Online - All Msg; Offline - Express Msg)
MSMQ(Receiving Application is Online/Offline)
SSB(Receiving Application - Offline, Non-Express Msg)

Fig. 7: (a) Inter-site traffic generated for each reliable message
delivery Vs. number of brokers

Inter-site Traffic Generated for Each Reliable Message Delivery

102451225612864
5

8

11

14

17

20

Number of brokers/DISs

N
um

be
r o

f
m

es
sa

ge
s

SSB (Receiving Application is Online)
MSMQ(Receiving Application is Online/Offline)
SSB(Receiving Application - Offline, Non-Express Msg)
SSB(Receiving Application - Offline, Express Msg)

Fig. 6: (b) RTT Vs. number of brokers

RTT Vs. Number of Brokers/DISs

64 128 256 512 1024
0.020
0.040
0.060
0.080
0.100

0.120
0.140
0.160
0.180
0.200

Number of brokers/DISs

R
TT

 in
 s

ec

SSB(Receiving Application is Online) MSMQ(Recoverable Msg)
MSMQ(Express Msg) SSB (Receiving Application is Offline)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

235

delay and RTT varies rapidly as the maximum distance
increases. However, in MSMQ they are almost constant
because the messages are always getting a least-cost path
which is slightly affected if the average propagation delay
increases. As we see in MSMQ express messages have
very good performance which is comparable with PBM
only if deployed within a limited geographic area.
However, in a messaging system transactional and
recoverable messages should dominate. For these types of
messages our middleware performs very well within a
geographic area bounded by the propagation delay about
35 seconds. Over this value, MSMQ perform well.
According to our measurement using ping command (in
peak hours), propagation delay of 35 sec (hence RTT is
about 70 sec) covers a medium sized country boundary e.g.
Japan (far ends of). Therefore, within such a country
boundary PBM performs better than MSMQ.

4.4 Administrative Overhead

As we see that in MSMQ, in order to populate the routing
table by the routing algorithm, a number of input tables are
needed, e.g., SiteRecordTable, RoutingLinkRecordTable,
MachineRecordTable. Such tables need to be maintained
manually by the site administrator [14]. This might be easy

if the messaging system is deployed in a limited number of
sites. As the number of sites grows, maintaining such
tables manually becomes very difficult and time
consuming. PBM does not suffer from this problem. Here
nothing needs to be maintained manually. The routing
tables, neighbor sets, leaf sets, queues, applications’
connection information all are updated automatically as
the broker or application leaves or arrives. Although this
requires some extra traffic overhead due to periodic
communication among brokers, MSMQ also is not free
from such overhead. For example, it needs active directory
service which generates some extra traffic.

4.5 Deployment Cost

Unlike MQM, PBM does not require that every site must
install a broker. Therefore, PBM can be deployed with
very little cost. Even if we consider that every site should
have a broker, deployment cost is not higher compared to
MQM. If a cluster based deployment is used for MQM,
each site must have at least two application servers and
two database servers assuming that the popular
master/slave clustering is used. If a non-cluster based
deployment is used, each site requires one server resulting
in equal cost of PBM. Table 2 shows per site cost
comparison between PBM and MQM assuming that as an
application server Dell PowerEdge 2970 and as a database
server Dell PowerEdge 2950 III is used. As we see for a
cluster based deployment MQM requires more than five
times investment compared to PBM excluding the disaster
recovery management cost. However, a non-cluster based
deployment of MQM costs same as PBM. However, such
deployment is not robust against failures/maintenance.

Table 2: Per site cost comparisons between PBM and MQM
Type of
Deployment Hardware Quantity Typical

Price (USD)
Total
Price

PBM Application
Server 1 2000 2000

MSMQ with
Clustering

Application
Server 2 2000 4000

 Database
Server 2 3500 7000

MSMQ without
Clustering

Application
Server 1 2000 2000

4.6 Discussion

The scalability experiments shows that as the number of
broker increases, messaging delays grow slowly in PBM
compared to that in MSMQ. However, in the last
experiment we have seen that PBM perform better only in
a country boundary. These two results mean that PBM
performs well if more number of brokers are installed
within that boundary. For example, if there are 1000 sales
centers of an enterprise over a country, they can deploy a
PBM for better services compared to MSMQ. Outside this

Fig. 8 (b): RTT Vs. size of the geographic area in term of
propagation delay between the farthest brokers

RTT Vs. Maximum Distance Between Sites

0.05
0.10
0.15
0.20
0.25
0.30
0.35

10 20 30 40 50 60

Maximum one way distance in ms

R
TT

 in
 s

ec

SSB(Receiving Application is Online)
MSMQ(Non-Express Msg)
MSMQ(Express Msg)
SSB(Receiving Application is Offline)

Fig. 8: (a) One-way delivery delay Vs. size of the geographic area in
term of propagation delay between the farthest brokers

Delivery Delay Vs. Maximum Distance Between Sites

0.02

0.07

0.12

0.17

10 20 30 40 50 60

Max. one way distance in ms

D
el

iv
er

y
D

el
ay

 in
 s

ec

SSB MSMQ(Non-Express Msg) MSMQ(Express Msg)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

236

boundary although PBM can not provide better
performance but what it can provide is lesser traffic
generation, lower deployment cost, automatic failover,
minimum administrative overhead.

5. Related Work

In our previous works [24, 26], we provide architecture of
a general purpose SSB. In this paper, we include
large-scale deployment issues, e.g., scalability,
administrative overhead, deployment cost, etc. and
evaluate the applicability of SSB in large-scale. We also
extend the services for express and recoverable messages
in addition to transactional messages. We have not found
any work which considers the issues directly related to the
currently available MQMs. JMS [12] and AMQP [2] tries
to standardize communication between applications and
brokers. But they do not define how the message should be
routed (which is our main concern) between brokers
distributed in a network. However, we have found several
works related to messaging systems built on p2p networks.
P2P based systems are used mainly to provide persistent
shared storage services to the clients, e.g., CFS [8], PAST
[9], etc. In such systems, unlike our use, a file is
stored/uploaded once but accessed many times. Therefore,
file searching, efficient use of storage are two of the main
issues of shared storage. However, these are not issues for
our system where a message will be deleted from the
queue once it is delivered. P2P network is also used as a
middleware for multicast/anycast or publish-subscribe
based systems, e.g., Hermes [21], REM [25], SCRIBE [5],
and REBECA [17]. We use Pastry as a point to point
message queuing middleware (not as publish-subscribe). It
needs to solve issues related to reliable, in-order and
exactly once delivery semantics and replication of
messages. Some instant messaging systems, e.g., DIMA
[13], which is partially related to our work, have been built
on Pastry but they have not considered those issues.
Another related work is POST [15], a general purpose
messaging system based on Pastry. POST uses
store-and-forward architecture and can provide multi-cast
communication. However, POST has some limitations. It
does not consider in-order delivery issue as it is not a
message queuing middleware. Each of the messages is
stored in persistent storage and replicated to a number of
brokers compared to only those messages that can not be
delivered in our middleware. As the cost of storing and
replicating in a network is very high, our system should be
much faster than POST. Besides, sending a message must
be followed by a notification message consuming more
bandwidth in POST. If the destination application of a
notification is not alive, it adopts a costly approach to
deliver the notification.

6. Conclusion

We have redesigned a previously proposed middleware
called SSB to work as a large-scale MQM. It is based on
Pastry peer to peer protocol. This middleware eliminates a
number of problems of traditional MQMs. It failovers
automatically to another broker located in a different site if
the current broker fails, it eliminates the administrative
overhead necessary to maintain the broker network.
Experimental evaluation shows that such services can be
obtained with reduced traffic overhead and that our
middleware is especially appropriate for a network of large
number of brokers deployed in a relatively large (but not
worldwide, e.g. within country boundary) geographic area.
However, we have to consider some more issues. Since the
states of the middleware not necessarily be persisted, if a
broker losses its memory content or if it is restarted, it
must get necessary states and replicas from its replica set
members. Besides, as the network is self-managed, in
some cases, it can create a network partition. We have not
considered it yet although existing methods are available
to guard against or recover from such partitions. Also, we
have to consider how a point to multi-point
communication can be provided based on point to point
service.

References
[1] Active MQ. http://activemq.apache.org/.
[2] Advanced Message Queuing Protocol. http://amqp.org/.
[3] An Introduction to Messaging and Queuing. Document:

GC33-0805-01, IBM, June 1995. ftp://ftp.software.ibm.com
/software/mqseries/pdf/horaa101.pdf.

[4] Average Random Access Time (Write), Drive Performance
Database. http://www.storagereview.com/.

[5] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron.
Scribe. A large-scale and decentralised application-level
multicast infrastructure. In IEEE JSAC, 2002.

[6] J. Cheng. Persistent Computing Systems Based on Soft
System Buses as an Infrastructure of Ubiquitous Computing
and Intelligence (Invited Paper), Journal of Ubiquitous
Computing and Intelligence, Vol. 1, No. 1, pp. 35-41,
American Scientific Publishers, April 2007.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to
Algorithms , The MIT Press, 1990.

[8] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I.
Stoica. Wide-area cooperative storage with CFS. In Proc. of
18th ACM Symposium on Operating Systems Principles, pp.
202–215, October 2001.

[9] P. Druschel and A. Rowstron. PAST: A large-scale,
persistent peer-to-peer storage utility. HotOS VIII, Schoss
Elmau, Germany, May 2001.

[10] Group Discussions in microsoft.public.msmq.networking,
http://www.microsoft.com/communities/newsgroups/list/en-
us/default.aspx?dg=microsoft.public.msmq.networking

[11] High-availability cluster. (2008, June 24). In Wikipedia, The
Free Encyclopedia. Retrieved 05:57, June 30, 2008, from
http://en.wikipedia.org/w/index.php?title=High-availability_
cluster&oldid=221338263.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

237

[12] Java Message Service (JMS), Sun Java Developer Network.
http://java.sun.com/products/jms/.

[13] H. Lundgren, R. Gold, E. Nordström, M. Wiggberg. A
Distributed Instant Messaging Architecture based on the
Pastry Peer-To-Peer Routing Substrate, In Proc. of Swedish
National Computer Networking Workshop, Stockholm, Sept.
2003.

[14] Message Queuing (MSMQ): Binary Reliable Message
Routing Algorithm.
http://msdn.microsoft.com/en-us/library/cc235039.aspx

[15] A. Mislove, A. Post, C. Reis, P. Willmann, P. Druschel, D.
Wallach, X. Bonnaire, P. Sens, and J. Busca. POST: a
secure, resilient, cooperative messaging system, Proc. of the
9th conference on Hot Topics in Operating Systems, pp.
11-11, Hawaii, May 2003.

[16] MSMQ, Microsoft Developer Network Library.
http://msdn.microsoft.com/en-us/library/ms878320.aspx.

[17] G. Muhl. Large-Scale Content-Based Publish/Subscribe
Systems. PhD thesis, Darmstadt University of Technology,
2002. http://elib.tu-darmstadt.de/diss/000274/.

[18] OMNet++. Discrete Event Simulation System.
http://www.omnetpp.org/.

[19] Open Message Queue. http://www.mq.dev.java.net/.
[20] OverSim: A Flexible Overlay Network Simulation

Framework. http://www.oversim.org/.
[21] P. R. Pietzuch and J. M. Bacon. Hermes: A distributed

Event-Based Middleware Architecture. In Proc. of the 1st
International Workshop on Distributed Event-Based
Systems, July 2002.

[22] A. Rowstron, P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems. In Proc. of IFIP/ACM Middleware, pp. 329–350,
November 2001.

[23] M. R. Selim, T. Endo, Y. Goto, and J. Cheng. A
Comparative Study between Soft System Bus and
Traditional Middlewares, in R. Meersman, Z. Tari, P.
Herrero et al. (Eds.), "On the Move to Meaningful Internet
Systems and Ubiquitous Computing: OTM 2006 Workshops,
Montpellier, France, October 2006”, LNCS 4278, pp.
1264-1273, Springer-Verlag, October 2006.

[24] M. R. Selim, T. Endo, Y. Goto, and J. Cheng. Distributed
Hash Table Based Design of Soft System Buses, In Proc. of
the 2nd Intl. Conf.ce on Scalable Information Systems,
Suzhou, China, ACM Press, June 2007.

[25] M. R. Selim, Y. Goto, and J. Cheng. A Replication Oriented
Approach to Event Based Middleware Over Structured Peer
to Peer Networks, In Proc. of the 5th International
Workshop on Middleware for Pervasive and Ad-Hoc
Computing, A Workshop of ACM/IFIP/USENIX 8th
International Middleware Conference (MPAC 2007 of
Middleware 2007), pp. 61-66, Newport Beach, USA, ACM
Press, November 2007.

[26] M. R. Selim, Y. Goto, and J. Cheng. Ensuring Reliability
and Availability of Soft System Bus, In Proc. 2nd IEEE
International Conference on Secure System Integration and
Reliability Improvement, pp. 52-59, Yokohama, Japan, July
2008.

Mohammad Reza Selim
received the B.Sc.(Hons.) and M.Sc.
degrees in Electronics and
Computer Science from Shahjalal
Univ. of Sc. and Tech. (SUST),
Bangladesh in 1995 and 1996,
respectively. He has been working
as a faculty member since 1998 in
the Dept. of Computer Sc. and
Engg. of the same university from
where he received his B.SC. and
M.Sc. Currently, he is a final year

Ph.D. student in the Dept. of Information and Computer Sciences,
Saitama University, Japan. His research interests include peer to
peer networks, messaging middlewares, reliability of distributed
systems and persistent computing systems.

Yuichi Goto is an assistant
professor of computer science at
Graduate School of Science and
Engineering, Saitama University
in Japan. He received the degree
of Bachelor of Engineering in
computer science, the degree of
Master of Engineering in
computer science, and the degree
of Doctor of Engineering in
computer science from Saitama
University in 2001, 2003, and

2005, respectively. His current research interests include relevant
reasoning and its applications, automated theorem finding,
anticipatory reasoning-reacting systems, and Web services
engineering. He is a member of ACM, IEEE-CS, IPSJ, and JSAI.

Jingde Cheng is a professor of
computer science at Graduate
School of Science and
Engineering, Saitama University
in Japan. He received the
Bachelor of Engineering degree in
computer science from Tsinghua
University in China in 1982, and
the Master of Engineering degree
and the Doctor of Engineering
degree, both in computer science,

from Kyushu University in Japan, in 1986 and 1989 respectively.
Before he joined Saitama University in 1999, he was a research
associate (1989-1991), an associate professor (1991-1996), and a
professor (1996-2000) at Kyushu University. His current
research interests include ampliative reasoning and relevant
reasoning, relevant logic and its applications, epistemic
programming paradigm for scientific discovery, autonomous
evolution of knowledge-based systems, anticipatory
reasoning-reacting systems, persistent computing, and
information security engineering environment. He is a senior
member of ACM, and a member of IEEE-CS, IEEE-SMC, IEEE,
and IPSJ.

