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Summary 
In this paper, the global exponential stability is investigated for 
the discrete-time uncertain stochastic bidirectional associate 
memory neural networks with time-varying delays. For the 
neural networks under study, a generalized activation function is 
considered, and the traditional assumptions on the boundedness, 
monotony and differentiability of the activation functions are 
removed. By utilizing suitable Lyapunov–Krasovsky functional 
and using stochastic analysis theory and inequality technique, 
several sufficient conditions for checking the global robust 
exponential stability of the addressed neural networks are 
obtained in terms of linear matrix inequalities (LMIs), which 
can be checked numerically using the effective LMI toolbox in 
MATLAB. An example is given to show the effectiveness and 
less conservatism of the proposed criteria. 
Key words: 
BAM neural network; stochastic neural networks; discrete-time; 
exponential robust stability; time-varying delay. 

1. Introduction 

The bidirectional associative memory (BAM) neural 
network was first introduced by Kosko [1]. Recently, the 
dynamics such as stability and periodicity of BAM neural 
networks have received much attention due to their 
potential application in associative memory, parallel 
computation and optimization problems [2, 3]. In such 
applications, it is of prime importance to ensure that the 
designed neural network is stable.   

As is well known, in both biological and man-made 
neural networks, the delays occur due to finite switching 
speed of the amplifiers and communication time [2]. Time 
delays may lead to oscillation, divergence, or instability 
which may be harmful to a system [3]. Therefore, the 
stability analysis of neural networks with consideration of 
time delays becomes extremely important to manufacture 
high quality neural networks. Recently, many criteria on 
stabilities have been given for various delayed BAM 
neural networks, for example, see [2]-[11] and 
references therein. 

When modeling real nervous systems, stochastic 
disturbances and parameters uncertainties are probably 
two main resources of the performance degradations of 

the implemented neural networks. The reasons are as 
follows: 1) the synaptic transmission is a noisy process 
brought on by random fluctuations from the release of 
neurotransmitters and other probabilistic causes; and 2) 
the connection weights of the neurons depend on certain 
resistance and capacitance that include uncertainties. 
Therefore, the stability analysis for stochastic neural 
networks with or without parameter uncertainties become 
increasingly significant, and some results related to this 
problem have recently been published, for example, see 
[12]-[24] and references therein.  

It is worth noticing that, up to now, most neural 
networks have been assumed to act in a continuous-time 
manner. However, when implementing the continuous-
time recurrent neural network for computer simulation, 
for experimental or computational purposes, it is essential 
to formulate a discrete-time system that is an analogue of 
the continuous-time recurrent neural network. To some 
extent, the discrete-time analogue inherits the dynamical 
characteristics of the continuous-time recurrent neural 
network under mild or no restriction on the discretization 
step-size, and also remains functional similarity to the 
continuous-time recurrent neural network and any 
physical or biological reality that the continuous-time 
recurrent neural network has [25]. Unfortunately, as 
pointed out in [26, 27, 28], the discretization cannot 
preserve the dynamics of the continuous-time counterpart 
even for a small sampling period. Therefore, there is a 
crucial need to study the dynamics of discrete-time neural 
networks. Very recently, the discrete-time uncertain 
stochastic neural networks with time delays was 
considered, the exponential stability problem for a class 
of discrete-time uncertain stochastic neural networks with 
time delays was studied [29]. To the best of our 
knowledge, few authors study the global exponential 
stability problem of bidirectional associate memory neural 
networks with discrete-time uncertain stochastic neural 
networks with time delays.  

Motivated by the above discussion, in this paper, we 
consider the bidirectional associate memory neural 
networks with discrete-time uncertain stochastic neural 
networks with time delays and analyze its global 
exponential robust stability.  
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2. Model description and preliminaries 

In this paper, we consider the following neural  
network  model: 
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where 1 2( ) ( ( ), ( ), , ( ))T
nx k x k x k x k= K , ( )ix k  is the 

state of the i th neuron at time k  from the neural field 
FX ; 1 2( ) ( ( ), ( ), , ( ))T

ny k y k y k y k= K , ( )iy k  is the 

state of the i th neuron at time k  from the neural field 
FY ; ( )1 11 21 1, ,..., 0nC diag c c c= > , 1ic describes the rate 

with which the i th neuron will reset its potential to the 
resting state in isolation when disconnected from the 
networks and external inputs of the neural field FX ; 

( )2 12 22 2, ,..., nC diag c c c= , 2ic  describes the rate with 

which the i th neuron will reset its potential to the resting 
state in isolation when disconnected from the networks 
and external inputs of the neural field FY ; 

1 ( )ij n nA a ×=  is the connection weight matrix from the 

neural field FY ; 1 ( )ij n nB b ×=  is the delayed connection 

weight matrix from the neural field FY ; 2 ( )ij n nA a ×′=  
is the connection weight matrix from the neural 
field FX ; 2 ( )ij n nB b ×′= is the delayed connection weight 

matrix from the neural field FX ; 

1 11 1 21 2 1( ( )) ( ( ( )), ( ( )), , ( ( )))T
n nf y k f y k f y k f y k= K ,

1( ( ))j jf y k denotes the activation function of the j th 

neuron at time k from the neural field FY ;  

2 12 1 22 2 2( ( )) ( ( ( )), ( ( )), , ( ( )))T
n nf x k f x k f x k f x k= K ,

2 ( ( ))j jf x k denotes the activation function of the j th 

neuron at time k from  the neural field FX  ; 
( )( )( ) ( )( )( ) ( )( )( ) ( )( )( )( )1 11 21 1, ,..., ,

T

ng x k k g x k k g x k k g x k kσ σ σ σ− = − − −

( )( )( ) ( )( )( ) ( )( )( ) ( )( )( )( )2 12 22 2, ,..., ;
T

ng x k k g x k k g x k k g x k kτ τ τ τ− = − − −

( )kτ  and ( )kσ are the transmission delays and satisfy 

( )m Mkτ τ τ≤ ≤ and ( )m Mkσ σ σ≤ ≤ ( 0mτ ≥ , 

0Mτ ≥ , 0mσ ≥ , 0Mσ ≥  are known positive integers); 

( ) ( ) ( ) ( ) ( ) ( )kBkBkAkAkCkC 212121 ,,,,, ΔΔΔΔΔΔ  
represent the time-varying parameter uncertainties, and 
are assumed to satisfy the following admissible 
conditions: 

( ) ( ) ( ) ( )[ ]1 1 1 11 21 31, , , ,C k A k B k MF k N N NΔ Δ Δ =⎡ ⎤⎣ ⎦ ,    (2) 

( ) ( ) ( ) ( )[ ]2 2 2 12 22 32, , , ,C k A k B k MF k N N NΔ Δ Δ =⎡ ⎤⎣ ⎦ ,       (3) 

where ( )1 2, , 1, 2,3i iM N N i = are known real constant 

matrices, and ( )F k  is the unknown time-varying 

matrix-valued functions subject to the following 
conditions: 

( ) ( )TF k F k I≤ ,  k N +∀ ∈ ,                         (4) 

In model (1), ( )1w k and ( )2w k  is a scalar Wiener 

process (Brownian Motion) with 
[ ] 0)( =kwE , [ ] 1)(2 =kwE ,                    (5) 

[ ] ( )jijwiwE ≠=0)()( ,                          (6) 

and ( , , )ih k x y : n n nR R R R× × →  is the continuous 
function, and is assumed to satisfy that 

    1 1 1 2

2 2 3 4

( , , ) ( , , ) ,

( , , ) ( , , ) ,

T T T

T T T

h k x y h k x y x x y y

h k x y h k x y x x y y

ρ ρ

ρ ρ

≤ +

≤ +
         (7) 

where 0,0 21 >> ρρ  are known constant scalars. 
The initial conditions associated with model (1) are 

given by  

( ) ( ) [ ]
( ) ( ) [ ]

, ,0 , 1, 2,..., ,

, ,0 , 1,2,..., .
i i M

i i M

x s s s N i n

y s s s N i n

φ τ

ψ σ

⎧ = ∈ − =⎪
⎨

= ∈ − =⎪⎩
      

(8) 
Throughout this paper, we make the following 
assumptions: 
Assumption (H1). The activation functions in model (1) 
satisfy 

( ) ( )1 2

1 2

ji ji
ji ji

f f
l l

α α
α α

− +−
≤ ≤

−
,                    (9) 

    
( ) ( )1 2

1 2

ji ji
ji ji

g gα α
υ υ

α α
− +−
≤ ≤

−
，               (10) 

for 1, 2;i = 1,2, ,j n= K , 1 2 1 2, , Rα α α α≠ ∈ , 

where jil− , jil+ , ,ji jiυ υ− + are some constants. 

Assumption (H2).  
( ) ( )1 10 0 0,f g= =                                (11) 

( ) ( )2 20 0 0.f g= = .                              (12) 
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Definition 1：The model (1) is said to be robustly 
exponentially stable in the mean square if there exist 
constants ( )1,0,0 ∈> μα  such that every solution of 
the model (1) satisfies that  

( ) ( ){ }2 2
E x k y k+  

( ) ( )2 2

0 0
[ max max ]

M M

k

i i
E x i E y i

τ σ
αμ

− ≤ ≤ − ≤ ≤
≤ +  

for all positive integers. 
To prove our results, the following lemmas are 

necessary, which can be found in [14] and [15]. 
Lemma 1. [14]Given constant matrices P ，Q  and R , 

where TP P= ，
TQ Q= ， then 0T

P R
R Q

⎛ ⎞
<⎜ ⎟−⎝ ⎠

is 

equivalent to the following conditions 
0Q > ，

1 0TP RQ R−+ < . 
Lemma 2. [15]Let F,,ψϑ be real matrices of 

appropriate dimensions with F satisfying IFF T ≤ . 
Then, for any scalar 0>ε : 

( ) ψεψϑϑεψϑψϑ TTTFF +≤+ −1 . 

3. Main results 

In this section, we shall establish our main criteria 
based on the LMI approach. 
   For presentation convenience, in the following, we 
denote 
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       Our main results are given in the following theorem. 
Theorem 1 Suppose that Assumptions (1) and (2) hold. 
Then, the model(1) is robustly globally exponentially 
stable in the mean square, if there exist two positive 
definite matrices P and Q , two scalars 0>∗λ , 0>ε , 

and four diagonal matrices 1Λ , 2Λ , 1Γ  and 2Γ  such that 
the following two LMIs hold:  
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0 0 0 0 0 0 0 0 0ˆ
0 0 0 0 0 0 0 0 0

TP
P

P
⎡ ⎤
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⎣ ⎦

. 

Proof. In order to establish the stability conditions, we 
introduce the following Lyapunov-Krasovskii functional 
candidate: 

)()()()( 321 kVkVkVkV ++= ,                  (15) 
where 
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Calculating the difference of ( )V k  along the model (1), 
and taking the mathematical expectation, we have 
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(19) 
Notice that from (7) and (13), it is easy to see that 

1 1( , ( ), ( ( )) ( , ( ), ( ( ))Th k y k y k k Ph k y k y k kσ σ− −

( )max 1 1( , ( ), ( ( )) ( , ( ), ( ( ))TP h k y k y k k h k y k y k kλ σ σ≤ − −  

( )1 2( ) ( ) ( ( )) ( ( ))T Ty k y k y k k y k kλ ρ ρ σ σ∗≤ + − − ,   (20) 

2 2( , ( ), ( ( )) ( , ( ), ( ( ))Th k x k x k k Ph k x k x k kτ τ− −
( )max 2 2( , ( ), ( ( )) ( , ( ), ( ( ))TP h k x k x k k h k x k x k kλ τ τ≤ − −  

( )))(())(()()( 43 kkxkkxkxkx TT ττρρλ −−+≤ ∗ .        (21) 
Substituting (17)-(21) into (16) yields 
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}{ ( )E V kΔ  
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( )1 1 1 1( ( ),0, ( ), ( ),0,0,0,0)T T T Tk C k A k B kη = , 

( )2 2 2 2(0,0,0,0, ( ),0, ( ), ( ))T T T Tk C k A k B kη = , 
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With 
( ) IQP mM 31 1 ρλττ ∗++−+−=∏ , 

( )2 11M mP Q Iσ σ λ ρ∗∏ = − + − + + . 

From (9) and (10), we can get that [29] 

    
( )
( )( )

( )
( )( )

1 1 2 1

1 12 1 1

0
T

y k y kL L
f y k f y kL
⎡ ⎤ ⎡ ⎤Λ − Λ⎡ ⎤

≤⎢ ⎥ ⎢ ⎥⎢ ⎥− Λ Λ⎣ ⎦⎣ ⎦ ⎣ ⎦
,   (23) 

( )
( )( )

( )
( )( )

3 2 4 2

2 24 2 2

0
T

x k x kL L
f x k f x kL
⎡ ⎤ ⎡ ⎤Λ − Λ⎡ ⎤

≤⎢ ⎥ ⎢ ⎥⎢ ⎥− Λ Λ⎣ ⎦⎣ ⎦ ⎣ ⎦
,   (24) 

( )
( )( )

( )
( )( )

1 1 2 1

1 12 1 1

( ) ( )
0

( ) ( )

T
y k k y k k

g y k k g y k k
σ σγ γ
σ σγ

⎡ − ⎤ ⎡ − ⎤Γ − Γ⎡ ⎤
≤⎢ ⎥ ⎢ ⎥⎢ ⎥− −− Γ Γ⎣ ⎦⎣ ⎦ ⎣ ⎦

,   (25) 

( )
( )( )

( )
( )( )

3 2 4 2

2 24 2 2

( )
0

( ) ( )

T
x k k x k

g x k k g x k k
τ γ γ
τ τγ

⎡ − ⎤ ⎡ ⎤Γ − Γ⎡ ⎤
≤⎢ ⎥ ⎢ ⎥⎢ ⎥− −− Γ Γ⎣ ⎦⎣ ⎦ ⎣ ⎦

,   (26) 

It follows from (22)-(26) that 
}{ ( )E V kΔ  

( ){ ( ) ( ) ( ) ( ) ( )1 1 1
T T TE k k k k P k kξ ξ ξ ζ ζ ξ≤ Φ +  

( ) ( ) ( ) ( )}2 2
T Tk k P k kξ ζ ζ ξ+  

( )
( )( )

( )
( )( )

1 1 2 1

1 12 1 1

T
y k y kL L

f y k f y kL
⎡ ⎤ ⎡ ⎤Λ − Λ⎡ ⎤

−⎢ ⎥ ⎢ ⎥⎢ ⎥− Λ Λ⎣ ⎦⎣ ⎦ ⎣ ⎦
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T
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( )
( )( )

( )
( )( )

3 2 4 2

2 24 2 2

( )
( ) ( )

T
x k k x k

g x k k g x k k
τ γ γ
τ τγ

⎡ − ⎤ ⎡ ⎤Γ − Γ⎡ ⎤
−⎢ ⎥ ⎢ ⎥⎢ ⎥− −− Γ Γ⎣ ⎦⎣ ⎦ ⎣ ⎦

1{ ( ) ( ) ( ) ( ) ( ) ( )T T TE k R k k k k kξ ξ ξ η η ξ= + Ξ  ,   (27) 

where 1 2( ) ( ( ), ( ))k k kη η η= ,  

0
0
P

P
⎛ ⎞

Ξ = ⎜ ⎟
⎝ ⎠

, 11 12
1

12 22
T

R R
R

R R
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. 

From Lemma 2, we know that 

1 ( ) ( ) 0TR k kη η+ Ξ <            (28) 
is equivalent to 

( )
11 12 13

1 12 22 23

13 23 33

0T

T T

R R R
k R R R

R R R
ψ

⎡ ⎤
⎢ ⎥= <⎢ ⎥
⎢ ⎥⎣ ⎦

,          (29) 

where 
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0
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⎢ ⎥
⎢ ⎥
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, 

33

0
0
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R
P
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. 
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Notice that 13R  and 23R  can be decomposed as follows: 

13 13 13R R R= + Δ , 23 23 23R R R= + Δ  
where 
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⎢ ⎥
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Let 

1 1 1 2 1 3

1 1 2 2 2 2 3

1 3 2 3 3 3
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R R R

ψ
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R
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 , 

Then 
( ) ( )1 1 1k kψ ψ ψ= + Δ .                    (30) 

Let 

0 0 0 0 0 0 0 0 0ˆ
0 0 0 0 0 0 0 0 0

TP
P

P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

( ) ( ) ( ) ( )1 1 10ˆ
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⎡Δ Δ Δ
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( ) ( ) ( )2 2 2
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0 0 0C k A k B k

⎤
⎥Δ Δ Δ ⎦ , 

11 21 31

12 22 32

0 0 0 0 0 0 0ˆ
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N N N
N

N N N
⎡ ⎤

=⎢ ⎥
⎣ ⎦

. 

By Lemma 1, it is not difficult to verify that 

( )1
T Tk P Pψ ζ ζΔ = +

) )) )
  

( ) ( )T T T TPMF k N N F k M P= +
) ) ) )

 
1T T TN N PMM Pε ε −≤ +

) ) ) )
.                       (31) 

From (30) and (31), we can get that 
1

1 1
ˆ ˆ ˆ ˆ( ) T T Tk N N PMM Pε ε −Ψ ≤ Ψ + +             (32) 

By Lemma 1, we know that (14) is equivalent to 
1

1
ˆ ˆ ˆ ˆ 0T T TN N PMM Pε ε −Ψ + + < .           (33) 

Along the similar line of the proof of Theorem 1 in [29], 
we can prove that model (1) is global exponentially stable 
in the mean square. The proof is completed. 

4 Example 

Consider a neural network (1), where 
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[ ]11 21 31 12 22 32 0.1 0.1 0.1N N N N N N= = = = = = , 

5Mτ = , 3mτ = ， 2.04321 ==== ρρρρ   
 Take the activation functions as follows 

( ) ( ) sssf sin2.06.0tanh11 −= , ( ) ( )ssf 4.0tanh21 −= , 

( ) ( )ssf 2.0tanh31 −= , ( ) ( ) sssf sin2.06.0tanh12 −= , 

( ) ( )ssf 4.0tanh22 −= , ( ) ( )ssf 2.0tanh32 −= ,    

( )11( ) tanh 0.4 0.2sing s s s= − + , ( )21( ) tanh 0.2g s s= , 

( )sg 4.0tanh31 = , ( ) ssg sin2.04.0tanh12 +−= , 

( )sg 2.0tanh22 = , ( )sg 4.0tanh32 = . 
 From the above parameters, it can be verified that： 
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By using the Matlab LMI Toolbox, we solve LMIs (13) 
and (14), and obtain the feasible solutions as follows: 
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2 , 

2.1953 =ε ,       1854.0* =λ . 

By Theorem 1, we know that the considered neural 

network is robustly globally exponentially stable in the 

mean square.  A numerical simulation of the network is 

shown in the following Figures, and it verifies the 

convergence of the neural network state. 

                          

 
 

 
 

 

5 Conclusions 

In this paper, the global exponential stability has 
been investigated for the discrete-time uncertain 
stochastic bidirectional associate memory neural networks 
with time-varying delays and generalized activation 
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function. A sufficient condition for checking the global 
robust exponential stability of the addressed neural 
networks has been obtained in terms of linear matrix 
inequalities (LMIs), which can be checked numerically 
using the effective LMI toolbox in MATLAB. An 
example is given to show the effectiveness and less 
conservatism of the proposed criteria. 

References 

[1] B. Kosko, Bidirectional associative memories, IEEE 
Transactions on Systems, Man, and Cybernetics, 18 (1) 
(1988): 49-60. 

[2] K. Gopalsamy, X. Z. He, Delay-independent stability 
in bidirectional associative memory networks, IEEE 
Transactions on Neural Networks, 5 (6) (1994): 998-
1002. 

[3] V. Sree Hari Rao, Bh. R. M. Phaneendra, Global 
dynamics of bidirectional associative memory neural 
networks involving transmission delays and dead 
zones, Neural Networks, 12 (3) (1999): 455-465. 

[4] H. Huang, J.D. Cao, On global asymptotic stability of 
recurrent neural networks with time-varying delays, 
Applied Mathematics and Computation, 142 (1) 
(2003): 143-154. 

[5] S. Arik, V. Tavsanoglu, Global asymptotic stability 
analysis of bidirectional associative memory neural 
networks with constant time delays, 
Neurocomputing, 68 (2005): 161-176. 

[6] Ju H. Park, Robust stability of bidirectional 
associative memory neural networks with time delays, 
Physics Letters A, 349 (6) (2006):494-499. 

[7] J.D. Cao, Q.K. Song, Stability in Cohen-Grossberg-
type bidirectional associativememory neural networks 
with time-varying delays, Nonlinearity, 19 (7) (2006): 
1601-1617. 

[8] Q.K. Song, Z.D. Wang, An analysis on existence and 
global exponential stability of periodic solutions for 
BAM neural networks with time-varying delays, 
Nonlinear Analysis: Real World Applications, 8 (4) 
(2007): 1224-1234. 

[9] F.J. Yang, C.L. Zhang, D.Q. Wu, Global stability 
analysis of impulsive BAM type Cohen–Grossberg 
neural networks with delays, Applied Mathematics 
and Computation, 186 (1) (2007): 932-940. 

[10] J.D. Cao, Daniel W.C. Ho, X. Huang, LMI-based 
criteria for global robust stability of bidirectional 
associative memory networks with time delay, 
Nonlinear Analysis, 66 (7) (2007): 1558-1572. 

[11] H.J. Jiang, J.D. Cao, BAM-type Cohen–Grossberg 
neural networks with time delays, Mathematical and 
Computer Modelling, 47 (1-2) (2008): 92-103. 

[12] S. Blythe, X.R. Mao, X.X. Liao, Stability of 
stochastic delay neural networks, Journal of the 
Franklin Institute, 338 (4) (2001): 481-495. 

[13] L. Wan, J.H. Sun, Mean square exponential stability 
of stochastic delayed Hopfield neural networks, 
Physics Letters A, 343(4)(2005): 306-318. 

[14] Z.D. Wang, Y.R. Liu, K. Fraser, X.H. Liu, Stochastic 
stability of uncertain Hopfield neural networks with 
discrete and distributed delays, Physics Letters A, 354 
(4) (2006): 288-297. 

[15] Z.D. Wang, H.S. Shu, J.A. Fang, X.H. Liu, Robust 
stability for stochastic Hopfield neural networks with 
time delays, Nonlinear Analysis: Real World 
Applications, 7(5)(2006): 1119-1128. 

[16] Y.R. Liu, Z.D. Wang, X.H. Liu, On global 
exponential stability of generalized stochastic neural 
networks with mixed time-delays, 
Neurocomputing, 70 (1-3)(2006): 314-326. 

[17] H.Y. Zhao, N. Ding, Dynamic analysis of stochastic 
Cohen–Grossberg neural networks with time delays, 
Applied Mathematics and Computation, 183 (1) 
(2006): 464-470. 

[18] J.H. Zhang, P. Shi, J.Q. Qiu, Novel robust stability 
criteria for uncertain stochastic Hopfield neural 
networks with time-varying delays, Nonlinear 
Analysis: Real World Applications, 8(4)(2007):1349-
1357. 

[19] Y.H. Sun, J.D. Cao, p − th moment exponential 
stability of stochastic recurrent neural networks with 
time-varying delays, Nonlinear Analysis: Real World 
Applications, 8(4)(2007): 1171-1185. 

[20] L. Wan, Q.H. Zhou, Convergence analysis of 
stochastic hybrid bidirectional associative memory 
neural networks with delays, Physics Letters A, 370 
(5-6) (2007): 423-432. 

[21] X.W. Liu, T.P. Chen, Robust μ − stability for 
uncertain stochastic neural networks with unbounded 
time-varying delays, Physica A: Statistical Mechanics 
and its Applications, 387(12)(2008): 2952-2962. 

[22] C.X. Huang, Y.G. He, L.H. Huang, W.J. Zhu, p − th 
moment stability analysis of stochastic recurrent 
neural networks with time-varying delays, 
Information Sciences, 178 (9) (2008): 2194-2203. 

[23] R. Rakkiyappan, P. Balasubramaniam, Delay-
dependent asymptotic stability for stochastic delayed 
recurrent neural networks with time varying delays, 
Applied Mathematics and Computation, 198 (2) 
(2008): 526-533. 

[24] Q.K. Song, Z.D. Wang, Stability analysis of 
impulsive stochastic Cohen–Grossberg neural 
networks with mixed time delays, Physica A: 
Statistical Mechanics and its Applications, 387 (13) 
(2008): 3314-3326. 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008 
 

 

263

[25] S. Mohamad, K. Gopalsamy, Exponential stability of 
continuous-time and discrete-time cellular neural 
networks with delays, Applied Mathematics and 
Computation, 135 (1) (2003): 17-38. 

[26] J.L. Liang, J.D. Cao, Daniel W.C. Ho, Discrete-time 
bidirectional associative memory neural networks 
with variable delays, Physics Letters A, 335 (2-3) 
(2005): 226-234. 

[27] W.H. Chen, X.M. Lu, D.Y. Liang, Global 
exponential stability for discrete-time neural networks 
with variable delays, Physics Letters A, 358 (3) 
(2006): 186-198. 

[28] K.L. Mak, J.G. Peng, Z.B. Xu, K.F.C. Yiu, A new 
stability criterion for discrete-time neural networks: 
Nonlinear spectral radius, Chaos, Solitons & 
Fractals, 31 (2) (2007): 424-436.  

[29] Y.R. Liu, Z.D. Wang, X.H. Liu, Robust stability of 
discrete-time stochastic neural networks with time-
varying delays, Neurocomputing, 71 (4-6) (2008): 
823-833. 

 
 Yongming Li was born in 1965. 
He received the B.S. degree in 
Mathematics in 1986 from 
Sichuan Normal University, 
Chengdu, China. His current 
research interests include neural 
networks, chaos synchronization 
and stability theory. 
 
 
 Qizhan Lu was born in 1985. He 
received the B.S. degree in 
information and computing 
science in 2008 from Chongqing 
Jiaotong University, Chongqing, 
China. His current research 
interests include chaos 
synchronization and stability 
theory. 

 
 Qiankun Song was born in 1964. 
He received the B.S. degree in 
Mathematics in 1986 from 
Sichuan Normal University, 
Chengdu, China, and the M.S. 
degree in Applied Mathematics in 
1996 from Northwestern 
Polytechnical University, Xi’an, 
China. He was a student at 

refresher class in the Department of Mathematics, 
Sichuan University, Chengdu, China, from September 
1989 to July 1990. From July 1986 to December 2000, he 
was with Department of Mathematics ， Sichuan 

University of Science and Engineering，Sichuan, China. 
From January 2001 to June 2006, he was with the 
Department of Mathematics, Huzhou University, 
Zhejiang, China. In July 2006, he moved to the 
Department of Mathematics, Chongqing Jiaotong 
University, Chongqing, China. He is currently a Professor 
at Chongqing Jiaotong University. He is the author or 
coauthor of more than 40 journal papers and one edited 
book. His current research interests include neural 
networks, chaos synchronization and stability theory. 
 


