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Abstract: 
Digital signatures are probably the most important and 
widely used cryptographic primitive enabled by public 
key technology, and they are building blocks of many 
modern distributed computer applications, like, electronic 
contract signing, certified email, and secure web browsing 
etc. But many existing signatures schemes lie in the 
intractability of problems closely related to the number 
theory than group theory. In this paper, we propose a new 
signature scheme based on general non-commutative 
division semiring. The key idea of our scheme is that for a 
given non-commutative division semiring, we can build 
polynomials on additive structure and take them as the 
underlying work structure. By doing so, we can 
implement a new signature scheme on multiplicative 
structure of the semiring. The security of the proposed 
signature scheme is based on the intractability of the 
Polynomial Symmetrical Decomposition Problem over 
the given non-commutative division semiring. 
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1.  Introduction 
 
1.1 Background of Public Key Infrastructure and 

proposals based on Commutative Rings 
 
 There is no doubt that the Internet is affecting 
every aspect of our lives; the most significant changes are 
occurring in private and public sector organizations that 
are transforming their conventional operating models to 
Internet  
based service models, known as eBusiness, eCommerce, 
and eGovernment. Public Key Infrastructure (PKI) is 
probably one of the most important items in the arsenal of 
security measures that can be brought to bear against the 
aforementioned growing risks and threats.  The design of 
reliable Public Key Infrastructure presents a compendium 
challenging problems that have fascinated researchers in 
computer science, electrical engineering and mathematics 

alike for the past few decades and are sure to continue to 
do so. 
 
 In their seminal paper “New directions in 
Cryptography” [1] Diffie and Hellman invited public key 
Cryptography and, in particular, digital signature schemes.  
The trapdoor one-way functions play the key role in idea 
of PKC and digital signature schemes. Today most 
successful signature schemes based on the difficulty of 
certain problems in particular large finite commutative 
rings.  For example, the difficulty of solving Integer 
Factorization Problem (IFP) defined over Zn (where n is 
the product of primes) forms the ground of the basic RSA 
signature scheme [2], variants of RSA and elliptic curve 
version of RSA like KMOV [3].  Another good case is 
that the ElGamal signature scheme[4] is based on the 
difficulty of solving the discrete logarithm problem (DLP) 
defined over a finite field Zp (where P is a large prime), of  
course a commutative ring.  
 The theoretical foundations for the above 
signature schemes lie in the intractability of problems 
closely related to the number theory than group theory [5].  
On Quantum computer, IFP, DLP, as well as DLP over 
ECDLP, turned out to be efficiently solved by algorithms 
due to Shor [6] , Kitaev [7] and proos–Zalka [8].  
Although practical quantum computers are as least 10 
years away, their potential weakness will soon create 
distrust in current cryptographic methods [9]. 
 As addressed in [9], in order to enrich 
Cryptography, there have been many attempts to develop 
alternative PKC based on different kinds of problems. 
Historically, some attempts were made for a 
Cryptographic Primitives construction using more 
complex algebraic systems instead of traditional finite 
cyclic groups or finite fields during the last decade.  The 
originator in this trend was [10], where a proposition to 
use non-commutative groups and semigroups in session 
key agreement protocol is presented.  Some realization of 
key agreement protocol using [10] methodology with 
application of the semigroup action level could be found 
in [11].  Some concrete construction of commutative sub-
semigroup is proposed there.   
 According to our knowledge, the first signature 
scheme designed in an infinite non commutative groups was 
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appeared in [12].  This invention is based on an essential 
gap existing between the Conjugacy Decision Problem 
(CDP) and Conjugator Search Problem (CSP) in non-
commutative group [13]. In, [14], Cao et.al.  Proposed a 
new DH-like key exchange protocol and ElGamal–like 
cryptosystems using the polynomials over non-
commutative rings.    
 
1.2 Our contributions 
 
 In this paper, we would like to propose new 
method for digital signature scheme based on general non-
commutative division semirings.  The key idea of our 
proposal is that for given non-commutative division 
semiring, we generate polynomials on additive structure 
and take them as the underlying work structure.  By doing 
so, we implement a new digital signature scheme on 
multiplicative structure of the semiring. The security of the 
signature basically depends on polynomial symmetrical 
decomposition problem. But the collection of polynomials 
on additive structure and are operated on multiplicative 
structure, are strength of the security of the digital signature. 
 
1.3 Outline of the paper: 
 
 The rest of the paper is organized as follows. In 
Section 2, we present the necessary Cryptographic 
assumptions over non-commutative groups. In Section 3, 
first we define polynomial over an arbitrary non-
commutative ring and present necessary assumptions over 
non-commutative division semirings .  In Section 4, we 
propose new digital signature scheme based on underlying 
structure and assumptions. In section 5, we study the 
confirmation theorem and security concepts of the proposed 
signature scheme. In section 6, we verify the algorithm by 
concrete example. Finally, concluding remarks are made in 
Sec-7. 
 
2. Cryptographic Assumptions On Non-
Commutative Groups: 
 
2.1 Two Well-known Cryptographic    
        Assumptions  
 
        In a non-commutative group G, two elements x,  y  are 
conjugate, written x ~ y,   if  
y = z-1 x z  for some  z∈G.  Here z or z-1 is called a 
conjugator.  Over a non commutative group G, we can 
define the following two cryptographic problems which are 
related to conjugacy 
- Conjugator Search Problem (CSP):  
  Given (x,y) ∈  G x G, find z ∈  G such  
   that y = z-1 x z 

-Decomposition Problem (DP): Given (x,y) ∈  G xG 
and S ⊆  G, find 1 2,z z ∈  S such that y =

1 2
z zx  At 

present, we believe that for general non-commutative 
group G, both of the above problems CSP and DP are 
intractable. 
 
2.2 Symmetrical Decomposition and 
Computational Diffie–Hellman Assumptions 
over Non-commutative Groups 
 
 Enlightened by the above problems, we would 
like to define the following Cryptographic problems 
over a non-commutative group G.   
 
- Symmetrical Decomposition Problem  (SDP): Given 
(x,y)∈  G x G and m, n ∈  Z,  the set of integers,  find  z 
∈  G  such that   y = zm   x zn   
 
Generalized symmetrical Decomposition     Problems 
(GSDP):  Given (x,y) ∈  G x  G,  
S⊆  G and m, n ∈  Z, find  z ∈  S  such that 
y = zm x zn. 
 
Computational Diffie–Hellman (CDH) problem over 
Non-Commutative Group G: 

Compute 
1 2 2 1

( )
z z z z

x or x for  given   x,  
1z

x  

and
2z

x ,  where x ∈G,  1 2,z z ∈  S,  for  S⊆  G. 
At present, we have no clue to solve this kind of CDH  

problem without extracting 1 2z zor  from  x and 
1z

x  

(or 
2z

x ).  Then, the CDH assumption over G says that 
CDH problem over G is intractable.  
 

3.  Building  Blocks  For  Proposed Digital 
     SIGNATURE  SCHEME 
 
3.1 Integral Co-efficient Ring Polynomials: 
 
       Suppose that R is a ring with (R, +, 0 ) and (R, •, 1) 
as its additive abelian group and multiple non-abelian 
semigroup, respectively.  Let us proceed to define 
positive integral co-efficient ring Polynomials.  Suppose 
that 
 f(x) = a0+a1x+… + an xn ∈ [ ]0Z x>  is given positive 
integral coefficient polynomial.  We can assign this 
polynomial by using an element r in R and finally obtain 
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( ) ( ) ( ) ( ) ... ( )0 10

n i nf r a r a a r a rnii
= = + + +∑

=  
which is an element in R. (Details see section 3.4 )                                       
                   Further, if we regard r as a variable in R, 
then f(r) can be looked as polynomial about r.  The set 
of all this kind of polynomials, taking over all f(x) ∈ 

[ ]0Z x> , can be looked the extension of 
0

Z
>

with r, 

denoted by [ ]
0

Z r
>

.  We call it the set of 1- ary 

positive integral coefficient R – Polynomials. 
 

3.2  Semiring 
 
       A   Semiring  R   is  a non-empty set,  on which the 
operations of  addition  &  multiplication have been 
defined such that the following conditions are satisfied. 
   (i). ( R, +)  is  a  commutative monoid with identity  
element  “0” 
   (ii). (R, •) is a monoid  with  identity  element   1. 
   (iii).Multiplication  distributes over addition  from either 
side 
    (iv). 0 • r  =  r • 0   for   all   r  in  R 
Note: 
       1. A  Semiring  without   zero divisors  is called 
Entire semiring. 
      2. A  Semiring R is Zerosumfree semiring  if and only 
if   r1 +  r = 0 ⇒  r1 = r = 0                
 
3.3   Division  semiring   
 
        An  element  r  of  a  semiring  R,  is a  “unit”  if  and 
only if   there exists an element   r1  of   R   satisfying        
r • r1 = 1 =  r1 • r  
       The  element  r1 is  called  the inverse of  r  in  R. If  
such an inverse r1 exists  for  a  unit  r,  it  must be unique. 
We will normally denote the inverse of  r  by  r-1.  It is 
straightforward to see that ,  if   r  &  r1   units of   R, then 
 r•(r1)-1=(r1)-1•r-1 &  In particular  (r-1)-1  =  r. 
 
         we  will  denote the set of all units of  R, by  U(R). 
This set is non-empty, since it  contains “1” &  is not all 
of  R, since it does not contain ‘0’. 
we have just noted that U(R) is a submonoid  of  ( R, •), 
which is infact  a group. If   U(R) = R/{0}, Then R, is  a  
division semiring. 
 
Note: 
1. A commutative  division  semiring   is  called        
     a  semifield. 
 
 
 

3.4     Polynomials on  Division  semiring   
 
          Let ( R, +, •)  be  a non-commutative    
    division semiring. Let us consider positive     
    integral  co-efficient  polynomials  with        
    semiring   assignment  as follows.          
          At first, the notion of scale multiplication over R is 
already on hand. For  k ∈ 0Z>  &  r∈R 
Then  (k) r =r + r + r +… + r + r    (k times ) 
For   k = 0,   it is natural to define    (k) r = 0 
Property 1.      
(a)rm• (b)rn = (ab) •rm+n =(b)rn  •(a)rm ,   
∀  a,b,m,n ∈ Z  , ∀  r∈R 
                                      
Remark:  Note that in general 
    (a)r • (b)s ≠ (b)s • (a)r   when  r ≠ s,  since the 
multiplication in R is non-commutative. 
Now, Let us proceed to define positive integral coefficient 
semiring  polynomials. Suppose that                           

2( ) ...... [ ]0 1 2 0
nf x a a x a x a x Z xn= + + + + ∈ >  

 is given positive integral coefficient polynomial. We can 
assign this polynomial by using an  element  r in  R  &  
finally , we  obtain                             

2( ) ......0 1 2
nf r a a r a r a r Rn= + + + + ∈  

Similarly                             
2( ) ......0 1 2

mh r b b r b r b r Rm= + + + + ∈  

for   some  n ≥  m. Then we have the following 
Theorem1:    
         f(r).h(r) = h(r).f(r)      for   f(r), h(r) € R 
Remark:  If   r  &  s  are  two different variables in R,   
then    f(r) •h(s) ≠ h(s) •f(r)    in   general. 
 
3.5 Further cryptographic assumptions on         
Non- commutative   division  semirings 
 
        Let (R, +, ●) be a non-commutative division semiring.  
For  any  a ∈ R,  we  define the  set Pa ⊆  R   by         

               { ( ) / ( ) [ ]}0f a f x Z xPa
Δ ∈ > . 

         Then, let us consider the new versions of GSD and 
CDH problems over (R,●.) with respect to its subset Pa, 
and name them as polynomial symmetrical decomposition 
(PSD) problem and polynomial Diffie – Hellman (PDH) 
problem – respectively:  
- Polynomial Symmetrical  Decomposition(PSD)  
problem over  Non- commutative division semiring R:  
Given   (a, x, y) ∈ R3 and m, n, ∈ Z, find   z∈Pa   such 
that  
                     y = zm  x zn  
-Polynomial Diffie – Hellman (PDH)   problem over 
Non-commutative division  semirring R:  
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 Compute )
12

(
21 zz

xor
zz

x for   a   given  x, 1zx and 2zx , 
where  x ∈R  and  z1, z2 ∈Pa . 
Accordingly, the PSD (PDH)  Cryptographic assumption 
says that PSD (PDH) problem over  
(R, •) is intractable, i.e. there does not exist  probabilistic 
polynomial time  algorithm which can  solve  PSD (PDH)  
problem over  ( R,  ● ) . 
 
4. Proposed Signature Scheme  
 
Signature Scheme from Non-commutative Division  
semirings:   This Digital Signature scheme contains the 
following main steps. 
Initial setup:   
             suppose that  (S, +, ●) is the non commutative 
division semiring & is the  underlying work fundamental  
infrastructure  in  which  PSD is  intractable  on  the  non-
commutative  group ( S, ● ). Choose two small integers m, 
n ∈Z.   

Let H: S  M  be a cryptographic hash function 
which maps S to the message space M.  Then, the public 
parameters of the system would be the  tuple  < S, m, n, M, 
H > 
Key Generation: 
 Alice wants to sign and send a message M to 
Bob for verification.  First Alice selects two random 
elements p, q ∈ S and a random polynomial  f(x) ∈ Z>0[x] 
such that  f(p)( ≠ 0) € S and then takes f(p) as her private 
key, computes y=f(p)m q f(p)n and publishes her public 
key  
(p, q, y) ∈ S3. 
Signature Generation : 
Alice performs the following  simultaneously. 
 
1. Alice  selects  randomly  another  polynomial   
   h(x) € Z>0[x]  such that  h(p) € S  
Then ,She defines salt as 
    
                 u = h(p)mq h(p)n     and 
 
computes  r = f(p)m{H(M)u}f(p)n ,       
 
                 s = h(p)m r h(p)n       

 
               α = h(p)m r f(p)n  
 
                β = f(p)m H(M) h(p)n   
 
                 v1= h(p)mH(M)h(p)n 

Then  ( u, s, α, β,  v1 )  is  the signature of Alice on 
message M & sends it to the  Bob  for  verification and 
then for acceptance. 
 

Verification: 
On  receiving  the signature ( u, s, α, β , v1 )                       
Bob will do the following.   For    this, he computes      v2 
= α y-1 β 
Bob accepts Alice’s signature iff  
               u -1v1 = s -1v2                    
 
Otherwise,  he  rejects the  signature.  
Remark:  If   H(M)  do not contain multiplicative inverse, 
then verification takes form  su-1v1 = v2 

 

5. Confirmation  Theorem      
               Let    ( p ,  q,   y )  €   S 3     
 
5.1 Completeness     
 
              Given  a Signature ( u, s, α ,β, v1)  if Alice 
follows signature verification  algorithm, then Bob always 
accepts ( u, s, α ,β, v1) as a valid  signature. 
Proof :  Let  s be the main part of the valid signature  and 
computes 
u-1.v1  =  h(p)--n.q-1. h(p)--m. h(p)m.H(M).h(p)n 
           =  h(p)--n.q-1.H(M).h(p)n 
           = h(p)--n.r-1. h(p)--m. h(p)m.r.q-1 H(M).h(p)n 
=[h(p)m.r.h(p)n]-1[h(p)m.r.f(p)n][f(p)-nq-1H(M).h(p)n] 
            = s-1α.[f(p)-nq-1 f(p)-m ] [f(p)m H(M).h(p)n] 
             = s-1 α.[f(p)m q f(p)n ]-1 β 
             = s-1 [α.y-1 β] = s-1.v2 
Therefore  u-1.v1  =  s-1.v2  
Hence  the protocol is  complete. 
 
5.2 Security  Analysis: 
 
       Assume that the active eavesdropper “ Eve” can 
obtain , remove , forge and retransmit any message, Alice 
sends to Bob. Any forgered data d, we denote it by d f . 
We study the security of  the signature scheme for three 
main attacks. Data forgering on valid signature and 
signature repudiation on valid data, existential forgering. 
(a) Data forgering: 
       Suppose Eve replaces the original message M, with 
forgered one Mf. Then Bob receives the signature  ( u, s, 
α ,β, v1) . Using  forgered data Mf  or  H(Mf),  verifying 
the equation 
                     u-1.v1  =  s-1.v2  
 is impossible, because  Mf  or  H(Mf) is completely 
involved in the signature generation, but not in the  
verification algorithm. 
Hence u-1.v1 = s-1.v2   is true only for the original message. 
Data forgery without extracting signature is not possible. 
             Another attempt is to try to find Mf , for valid 
H(M). But this is impossible, because we assumed that 
hash function H is cryptographically secure. So the invalid 
data can’t be signed with a valid signature. 
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(b) Signature Repudiation: 
       Assume Alice intends to refuse recognition of his 
signature on some valid data. Then it follows  that valid 
signature  ( u, s, α ,β, v1)  can be forged by Eve  and she 
can sign  the message  M , with  the forgered  signature (uf, 
sf, αf, βf, v1f)  instead. The verification procedure  as 
follows 
V2 = α f .y-1β f  
=[h(p)m.r f(p)n]f[f(p)-n.q-1.f(p)-m][f(p)m H(M).h(p)n]f  
Since   [f(p)n ]f . [f(p)n ] ≠  I , [f(p)-m].[f(p)m ]f ≠ I,  where I 
is the identity element in the multiplicative structure of 
the division semiring. Consequently  [u-1.v1]f  ≠  [s-1.v2 ]f. 
So this signature scheme ensures that the non-repudiation  
property. 
(c) Existential  Forgery:  
       Suppose  Eve is trying to sign a forgered message  Mf. 
Then  she must forge  the private key by replacing with 
some [f(p)]f . Immediately, she faces a difficult with the 
public key, as we believe that  PSD is  intractable on non-
commutative division semiring. Also note that all the 
structures in this signature scheme are constructed on 
non-commutative division semiring  and based on PSD. 
Exact identification these structures are almost intractable 
as long as PSD is so hard on this underlying work 
structure. Consequently  construction new valid signatures, 
without proper knowledge of private key are impossible. 
So Eve is not able to calculate forgered signatures. 
 
5.3   Soundness  
 
       The  key  idea  is  that choosing a polynomial  f(x)  
randomly, with semiring assignment and for any  p € S, 
such that  f(p) (≠ 0) €  (S,+,● ). A  cheating  prover P*   
has no way to identify the polynomial f(x) € Z>0[x] such 
that f(p) (≠0) € (S, +, ●), even if he has infinite 
computational power. Let  n be the number of elements of  
S, P* best strategy is to guess the value of  p, and  there 
are n choices for  p. Hence , even with infinite computing 
power, the cheating  prover P*   with a negligible 
probability to trace the exact private key f(p) € S, so as to 
provide a valid response for an invalid  signature. Hence  
this signature  scheme is sound.         
 
 
6. Example: Proposed   Digital Signaturte 
 
     SCHEME ON MATRIX DIVISION  SEMIRING:   
Initial setup:   
     In this case, we choose  S = M2(ZP) as defined below,  
is a  matrix  division  semiring, under the usual operations 
of  addition  &  multiplication. Trivially it is non-
commutative.  
Let H : S→ M = M2(ZP)  be a cryptographic hash function, 
which maps  S to the message space M  &  is  defined by  

  2 mod
mijmij p→    for  mij € Zp                    

We choose  P = 23, m = 3, n = 5.  &  ( S , +,  ● ) 

{ } 0 0
: , , , & 0

0 0
a b

a b c d Z ad bcpc d
S ∈ − ≠= ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
U is clearly 

non-commutative division semiring. 
For  simplifying  computation &  verification , we 
evaluate  the  calculations  over    the  multiplication  
modulo  23. 
Key  Generation 
Alice  chooses   two  random  elements  

2 5 1 9
7 4 3 2

,p q S= = ∈⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 &  

a  polynomial  randomly  
             f(x) = 3x3 + 4x2 + 5x + 6 € Z:>0[x] 
such that  f(p) (≠ 0) € S. 

f(p)  =
3 2

2 5 2 5 2 5
3 4 5 6

7 4 7 4 7 4
I+ + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
  

        = 1036 1090
mod 23

1526 1472
⎡ ⎤
⎢ ⎥⎣ ⎦

 =  1 9
8 0
⎡ ⎤
⎢ ⎥⎣ ⎦

 

as  her private key.  &  Computes 
y = f(p)mqf(p)n =  f(p)3qf(p)5  

   = 
3 5

1 9 1 9 1 9
8 0 3 2 8 0
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

mod 23 = 4 6
6 6
⎡ ⎤
⎢ ⎥⎣ ⎦

 

Publishes her public key  ( p, q, y ) € S3. 
Signature Generation 

For  a  given message   M = 22 19
14 08
⎡ ⎤
⎢ ⎥⎣ ⎦

  &  then 

 Alice  computes                       

H(M) =
22 19

2 2 1 3
mod 2314 08 8 32 2

=
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

Alice also chooses another polynomial randomly  h(x) =  
x5 + 5x +1 € Z:>0[x]  and     Computes 

h(p) = 
5

2 5 2 5 1 5
5 {mod23}

7 4 7 4 7 3
I+ + =

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭
 

u = h(p)mqh(p)n =  h(p)3qh(p)5 

    = 
3 5

1 5 1 9 1 5
7 3 3 2 7 3
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

mod 23  =  2 16
10 21
⎡ ⎤
⎢ ⎥⎣ ⎦

 

 r = f(p)m {H(M)u}f(p)n = f(p)3 {H(M)u}f(p)5  

    = { }3 5
1 9 1 3 2 16 1 9
8 0 8 3 10 21 8 0
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 mod 23 

    =  13 09
10 13
⎡ ⎤
⎢ ⎥⎣ ⎦

 

 s = h(p)m r h(p)n  = h(p)3 r h(p)5  
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    = 
3 5

1 5 13 9 1 5
7 3 10 13 7 3
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

mod 23 = 21 13
19 07
⎡ ⎤
⎢ ⎥⎣ ⎦

                                    

 
α = h(p)m r f(p)n  = h(p)3 r f(p)5  

    = 
3 5

1 5 13 9 1 9
7 3 10 13 8 0
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

mod 23 = 08 05
0 07
⎡ ⎤
⎢ ⎥⎣ ⎦

 

β = f(p)m  H(M) h(p)n  = f(p)3 H(M) h(p)5  

   = 
3 5

1 9 1 3 1 5
8 0 8 3 7 3
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

mod  23 =  0 14
2 12
⎡ ⎤
⎢ ⎥⎣ ⎦

 

v1 = h(p)m H(M)h(p)n  = h(p)3 H(M)h(p)5  

    = 
3 5

1 5 1 3 1 5
7 3 8 3 7 3
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

mod 23 = 5 15
13 12
⎡ ⎤
⎢ ⎥⎣ ⎦

 

Then   Alice  sends   (u, s, α, β, v1 )   as 
her signature 
Verification: 
After  receiving  the  signature of  Alice, Bob 
will do the following. i.e  he computes 
v2 = α y-1 β  

     = 08 05
0 07
⎡ ⎤
⎢ ⎥⎣ ⎦

11 12
12 15
⎡ ⎤
⎢ ⎥⎣ ⎦

0 14
2 12
⎡ ⎤
⎢ ⎥⎣ ⎦

mod 23= 20 7
3 21

⎡ ⎤
⎢ ⎥⎣ ⎦

 

And   Verifies  that 

u-1v1 =
16 13
11 07
⎡ ⎤
⎢ ⎥⎣ ⎦

5 15
13 12
⎡ ⎤
⎢ ⎥⎣ ⎦

 mod 23 = 19 05
08 19
⎡ ⎤
⎢ ⎥⎣ ⎦

   

s-1 v2 = 02 16
11 06
⎡ ⎤
⎢ ⎥⎣ ⎦

20 7
3 21

⎡ ⎤
⎢ ⎥⎣ ⎦

mod 23 = 19 05
08 19
⎡ ⎤
⎢ ⎥⎣ ⎦

 

        i.e.,   u-1v1 = s-1 v2  
Bob accepts Alice’s  signature  as  a  Valid 
signature , otherwise he will reject  the same. 
 
7.  Conclusions 
     In this paper, we presented a new signature scheme 
based on general non-commutative division semiring. The 
key idea behind our scheme lies that we take polynomials 
over the given non-commutative algebraic system as the 
underlying work structure for constructing signature 
scheme.  The security of the proposed scheme is based on 
the intractability of Polynomial Symmetrical 
Decomposition Problem over the given non-commutative 
division semirings. 
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