
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

285

Manuscript received August 5, 2008

Manuscript revised August 20, 2008

Performance Optimization for Mobile Agent Message Broadcast
Model Using V-Agent

Faiz Al-Shrouf , Mohd Eshtay and Khaled Abu Humaidan

Applied Science University
Faculty of IT, P.O.Box 11931, Amman-Jordan

Abstract
Mobile agents have motivated the new creation of methodology
for parallel distributed computing systems. In this paper, we
have developed a model based on Master-Slave Design Pattern
of mobile agent systems called Master-V-Slave (MVS) model
throughout a computational agent, namely (V-agent). The
proposed model utilizes V-agent to analyze a new computing
model, namely Message Broadcast Model (MBM) for managing
broadcast messages between a set of master agents carrying out
tasks on a set of clients and corresponding slave agents receiving
and performing tasks within a predefined allocating time on a set
of servers. We analyzed the MBM using Vogel's
Approximation Method (VAM) to optimize and minimize
message time performance distribution architecture.
Furthermore, we implemented a prototyping scenario of MBM
that computes total number of expected delivery messages from
a set of master agents to set of slave agents based on slave time
message response with V-agent. Our proposed model could
potentially exploit Message Delivery/Response Matrix (MDRM)
based on MBM that can be integrated with parallel distributing
computing systems and knowingly analyses approaches in
operations research. This paper elaborates performance
optimization analysis of mobile agents and mathematical
computational agents.

Key Words:
Mobile Software Agents, Message Broadcast Model (MBM),
Master-V-Slave (MVS) model, Message Delivery/Response
Matrix (MDRM), V-Agent.

1. Introduction
 Computational architectural design models for

distributed systems have been categorized into four design
architectures: repository model, client/server model, and
layered model [5]. Data is processed between different
resources that incorporate multiple machines and
numerous computing stages. Drawbacks of design
models include performance, security, and flexibility and
scalability.

 Mobility model [1] [2] is developed as a massive
model to overcome aforementioned models shortcomings.
Several features were proposed to adhere with mobility
agents including: reduce network traffic, their ability to
operate asynchronously and autonomously of the process
they created them, and assist to construct more robust and
fault tolerant systems [8].

Mobile agent patterns [3] are emerging in the design of
Agent Oriented Engineering (AOE), and several of these

patterns were given intuitive meaningful names such as
messenger, notifier, and master-slave pattern. Master-
slave pattern is a common task design model incorporated
in a broad domain of parallel applications. This model is
based on a divides and conquers fashion in which a
master delegates tasks to one or more slaves that in turn
are distributed throughout the system and work in parallel.
Our proposed work is focused to build a new model MVS
that utilizes a computational agent (V-agent),which
carries out computational algorithm for master delivery
messages and slave response time from a proposed
computing MBM1.

This approach of computation is advantageous in that
V-agent can be used as a broker, which computes time
optimization throughout Vogel's Approximation Method
(VAM) [9] and computes total number of messages to be
delivered by master agents working on clients to slave
agents carrying out tasks on servers. This optimization
technique can be exploited, enhancing both the
performance and flexibility of mobile agent systems.

2. Related Work
Several authors have presented several techniques for

performance optimization analysis of mobile agent
systems [6] and mobile agent migration [7]. The
developed computing model, called Mobile Agent Parallel
Processing Computing (MAPPC) Model using a family of
mobile agents. MAPPC uses a Matrix multiplication task
and is divided on row wise basis. Based on a number of
available servers and dimension of block size is assigned
to each mobile agent. The MAPPC model experiments an
implementation where small amount of data (matrix of
size less than 100) is to be processed on remote servers
(less than 3) gives little performance than large matrices
on large number of servers, which gives better
performance.

MAPPC model uses master-slave pattern for mobile
agents in which a slave agent does a given task using CPU
resource of remote server. A slave agent the constructs
the message and embeds the result into it and sends it to
the master agents proxy. The master agent who is waiting
for the result from slave agent receives the message and

1 This research is sponsored by Applied Science University (ASU) and
the Faculty of IT.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008 286

extracts the result and combines all results together. Then
it calculates the turnaround time for the computation
which will be used to analyze performance.

In our approach, we put our effort to analyze the
performance using V-agent optimization model MVS
system. V-agent utilizes MBM between master agents
who send messages to slave agents who respond and
carrying out tasks. Then V-agent calculates the time and
number of messages to be delivered for each slave based
on the time computing mechanism. Furthermore, V-agent
uses VAM approximation that optimizes and minimizes
time allocating between master agents and slave agents.
This will be used to enhance performance optimization.

3. Motivation

Communication is the base mechanism for coordination
and collaboration in mobile agent systems. However
current mobile agent systems are not based on the
message content, but they focus on three message
components message transport, delivery and response,
and time allocating, implying difficulties in activity
coordination and performance.

Towards this end, several authors are working to
enhance message performance mechanism [4]
demonstrates an approach for mobile agent
communication which can improve performance content
filtering system and can unify several message system in a
single one.

Our approach addresses message performance
optimization through coordination in mobile agent
systems using different techniques and mathematical
model founded earlier in operations research techniques,
such as VAM technique. This approach proved advanced
solutions to some basic mathematical models in
optimization and reliability system measurements.
However, such approaches can be used to improve
performance optimization in mobility message delivery,
response, and time allocation.

4. Overview Of Mvs Design Model
Master slave pattern [3] is parallel computing

application in which master agents working on clients
creates slave agents dispatch to remote servers. Slave
agents visit specified server to perform the required task.
Master agents connect with slave agents using master
agents proxy and sends messages in a broadcast paradigm.
A user, who wants to perform the task, submits the task to
master agents then divide the task into subtask and assign
it to individual slave agent. Fig 1, shows the block
architecture of master slave task pattern message
connection.

t

Figure 1. Architecture of Master Slave Task Pattern Message
Collaboration

In our system, MVS master slave pattern works with a

V-agent in which three types of gents are implemented.
They differ mainly in the different roles they can cover
and/or they can offer computations. Fig 2, demonstrates
MVS design model. Roles of core agents are given as
follows:

A. Master Agents

These are task handlers in the system. They are created
on set of clients. The user uses Java Execution
Environment (JEE) platform consists of Tahiti server and
Java runtime of Aglet development Kit. After the user
instantiates interface, it creates slave agents, reads the
database for the list of servers, and check the availability
of servers it sends the slave agents to those servers.

B. V-Agent

This is our core agent, it instantiates connection
between master agents and slave agents, it records
message response time from slave agents to delivery
master agents messages, it computes total message
delivered by each master agent to set of slave agents, and
computes total number of received messages by slave
agents from set of master agents.

The mediator V-agent acts as a broker to utilizes master
and slave agents parameters concerning: message delivery
time, message response time, total number of master
delivery messages, and total number of slave response
messages to build a Message Broadcast Model (MBM)
which will be used to optimize and minimize the time
between master agents and slave agents, and to better
distribute total number of delivery messages by each
master agent to slave agents.

Remote host

Slave agent with
task

Message
Broadcast
Handler

Result

Message delivery

Message response

Message
Time
milliseconds

Master
agent
client

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008 287

C. Slave Agents
These are mobile agents which migrates and

functioning on servers. They response to master
messages, at remote site slave agents receives multiple
messages for given tasks and sends results to master
agents by embedding it into message handler. Each
message registered with the handler, V-agent is
responsible to record its time it received by the slave, and
the corresponding slave which sends the message and
return the result to the master agent.

Figure 2. MVS Architectural Design Model

5. Message Broadcast Model (MBM)
To address our work for establishing MBM, consider

set of clients Ck, involves set of master agents Mk, where
Ck={C1m1, C2m2,………., Ckmk}, furthermore, consider a
set of servers Sn are distributed across network involves a
set of created slave agents, Sn ={S1s1, S2s2, …….,Snsn}.
Suppose MDmi is the total number of messages to be
delivered from the master agent (mi) to slave agents
carrying out some tasks on server side, and suppose MRsj
is the total number of response messages that a slave
agent (sj) responds from all master agents in it's broadcast
queue.

VAM optimization proposed that total messages that to
be delivered by all masters are equal to total response
messages in broadcast messaging queue by slave agents,
in other words:

∑∑
==

=
n

j
sj

k

i
mi MRMD

11

Now, suppose that tmisj is the estimated response time
of a slave agent (sj) performing a task on a behalf of a
master agent (mi) and λmisj is number of messages
delivered by a master agent (mi) to a slave agent (sj).

Based on these assumptions, we suppose the Message
Broadcast Model (MBM) that is based on the Message
Delivery/Response Matrix (MDRM) between master
agents and slave agents as shown in Fig 3.

 S1s1 S2s2 …… …….. Snsn MD
C1m1 tm1s1

λm1s1

 tm2s2

λm1s2

……. ……. tm1sn

λm1sn

MDm1

C2m2 tm2s1

λm2s1

 tm2s2

λm2s2

……. ……. tm2sn

λm2sn

MDm2

.

.
.
.

.

.
……. ……. .

.
.
.

.

.
.
.

.

.
…… ……. .

.
.
.

Ckmk tmks1

λmks1

 tmks1

λmks1

 tmksn

λmksn

MDmk

MR MRs1

MRs2 ……. ……. MRsn

Figure 3. Message Delivery/Response Matrix (MDRM)

Now, we can formulate the MBM model that follows a

Linear Programming model [9] with a set of equations:

• Determine the objective function that should
be minimized to achieve optimization.

• Set out model constraints.
• Values of the model should be non negative.

Now, we set out MBM model corresponding to MDRM
as follows:

The objective function, constraints, and non negativity

condition are given by equation (1), equation (2), equation
(3), and equation (4) respectively as follows:

∑∑
= =

=
k

i

n

j
ijmisjtt

1 1

)min(λ (1)

Subject to (constraints)

kiMDmi

n

j
misj ,.....,2,1

1

==∑
=

λ (2)

njMRsj

k

i
misj ,.......,2,1

1

==∑
=

λ (3)

 and
jandiallFormisj 0≥λ (4)

In the subsequent sections, we will demonstrate how to

optimize the objective function using a standard approach

Master
agent

Client

Master
agent

V-
agent

MBM

Slave
agent

Server

Slave
agent

Server
Client

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008 288

in operations research techniques called VAM. This will
demonstrate a pervasive role of V-agent coding using
VAM. The performance is measured between master
agents and slave agents according to V-agent results.

6. MBM Solving Using V-Agent
In our research, mobile agent performance optimization

for message distribution across set of slaves, V-agent
utilizes VAM which facilitates an optimal solution or
good initial solution. VAM is applied on MDRM and is
based on the following basic rules.

• Find Penalty Time (PT) between two
successive time values in each row and
column.

• Choose the larges PT among rows and
columns.

• Fill the cell with master message delivery and
slave message response.

• Repeat the process until all cells have been
filled.

• Calculate the optimal time using equation (1).
The process for obtaining optimal solution using VAM

gives an initial solution to MDRM. This measures the
performance between master agents and slave agents
coordination mechanism as to be given in the subsequent
sections with an implementation scenario.

7. Implementation Scenario
To demonstrate how V-agent works, we present a

MDRM which utilizes results from master agents to slave
agents coordination tasks in message broadcast handler,
as given in Fig. 4. Suppose a set of three master agents
{m1, m2, m3} with set of total message to be delivered
{400, 600, 1000} to set of three slave agents {s1, s2, s3}
with total message response {300, 900, 800} respectively.
The allocated time for slave message response for one
message in milliseconds is summarized in MDRM as
below:

 S1 S2 S3 MD
m1 31

λm1s1

21

λm1s2

42

λm1s3

400

m2 20

λm2s1

21

λm2s2

30

λm2s3

1000

m3 23

λmks1

20

λmks1

15

λmks3

600

MR 300

900 800 2000

Figure 4. MDRM Implementation Scenario

Now, we want to solve MDRM to find the optimal
solution for the distribution of total master agent's
messages to be delivered to slave agents based on slave
messages response and for each response message time,
number of messages to be assigned from each master
agent to slave agents. This can be done by find values of
{ λm1s1, λm1s2, ……., λmks3 } using V-agent.

V-agent starts the process by computing PT among
rows and columns leads to choosing the largest PT, if
more than one PT values are equal then V-agent would
take any PT. Hence the first PT is 15 in the third column.
Looking for the smallest allocated time in this column
(15). V-agent coordinates the distribution of messages
between (m3, s3). So it optimizes the total messages to be
delivered by m3, which is 600 and s3 capability to
responding is 800. so V-agent will assign the total
number of messages to s3 and dispose itself from the
queue.

The process is iterative in such case V-agent starts to
compute another PT among rows and columns leading to
choose the third column with PT is 12. V-agent would
choose the smallest allocated time in that column (30),
and it optimizes the total messages between (m2, s3).
Therefore, V-agent will assign the remaining messages to
s3 and s3 will dispose itself from the queue.

V-agent will continue iterates the process until it
computes the optimized MDRM given in Fig. 5

 S1 S2 S3 MD

m1 31

21

400

42

400

m2 20

300

21

500

30

200

1000

m3 23

20

15

600

600

MR 300

900 800 2000

Figure 5. Optimized MDRM

The performance optimized time (minimized time) is
computed by V-agent according to equation (1) of MBM
model as follows:

t= 39900 milliseconds

Analysis of performance optimized time between
master agents and slave agents is given in Fig. 6 shows
that best time allocated would be when m2 coordinates
messages with three salve agents s1,s2, and s3, when the

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008 289

master agent m1 coordinate messages with the second
slave agent s2, and the master agent m3 coordination with
the third slave s3.

tim
e

s1

no
 o

f m
es

sa
ge

s

tim
e

s2

no
 o

f m
es

sa
ge

s

tim
e

s3

no
 o

f m
es

sa
ge

s

m1

m2

m30

100

200

300

400

500

600
m1

m2

m3

Figure 6. Performance Optimization Analysis between Master and Slave
Agents Message Coordination

The analysis scenario discussed in previous section can
be given in Fig. 7. A sample screenshot shows V-agent
optimization for MDRM .

Figure 7. V-Agent Optimization for MDRM

8. Coding V-Agent
In our model, there are mainly three agents working to

perform performance optimization: Master agent, Slave
agent and V-Agent.

V-Agent is the main agent and it is developed using
Java programming language and consists of two main
classes (Cell class and VAgent class).

The primary function of V-Agent is to optimize MDRM
in addition to the total time needed to send the messages
between master agents and slave agents using VAM.

Our agent takes as an input the MDRM(Message
Delivery/Response Matrix) which is represented as a
matrix of cells, each cell of the matrix is of type
Cell(Cell.java) and consists of (Time and Allocation). At
the beginning the matrix will be filled in by cells contain
the time only.

public class Cell {
 // Attribute of Cell
 private int time=0;
 private int allocation=0;
 //Default Constructor
 public Cell(){
 setTime(0);
 allocate(0);
}
 // initialize constructor
public Cell(int time,int allocate){
 setTime(time);
 allocate(allocate);
}
 // set methods
public void setTime(int time){
 this.time=time;
}
public void allocate(int amount){
 allocation+=amount;
}
 // get methods
public int getTime(){
 return time;
}
public int getAllocation(){
 return allocation;
}
 // the value of the cell
public int cellValue(){
 return time*allocation;
 }
}

 The processing of the matrix using the methods of
VAgent class (VAgent.java), the MDRM will contain
each cell with its allocated messages according to VAM.
optimized MDRM.parts of V-Agent.java is given as
follows:
 // this method will setup the MDRM
 public void setupVogel(){
 fillDemand();
 fillSupply();

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008 290

 fillTimeMatrix();
 } // this carries out the optimized MDRM
 public void process(){
 Target goal;
 int amount=0;
 while(sumOfDemands>0){
 goal = iterate();

if(demand[goal.getCol()]>=supply[goal.getRow()]){
times[goal.getRow()][goal.getCol()].allocate(supply[goal.
getRow()]);
 demand[goal.getCol()]-=supply[goal.getRow()];
 amount=supply[goal.getRow()];
 supply[goal.getRow()]=0;
 }

else{ times[goal.getRow()][goal.getCol()].allocate(dem
and[goal.getCol()]);

supply[goal.getRow()]=demand[goal.getCol()];
 amount=demand[goal.getCol()];
 demand[goal.getCol()]=0;
 }
 sumOfDemands-=amount;
 }
 }

This method represents one iteration of VAM on the
matrix and it will return the targeted cell each time

 private Target iterate(){
 final int constant = 999;
 int min,next_min;
 int diff;
 int max_diff=-1;
 int c=0,row=0,col=0;
 //iterate through the rows.
 for(int i=0;i<noOfClients;i++){
 //Rows
 if(supply[i]>0){
 min=constant;
 next_min=constant;
 for(int j=0;j<noOfMasters;j++)
 //cols
 if(demand[j]>0){
 if(times[i][j].getTime()<min){
 next_min=min;
 min=times[i][j].getTime();
 c=j;
 }
 else if(times[i][j].getTime()<next_min)
 next_min=times[i][j].getTime();
 }
 diff = next_min-min;
 if(diff>max_diff){
 max_diff=diff;

 row=i;
 col=c;
 }
 }
 }
 //iterate through the columns
 for(int i=0;i<noOfMasters;i++){
 //cols
 if(demand[i]>0){
 min=constant;
 next_min=constant;

 for(int j=0;j<noOfClients;j++)
 //rows
 if(supply[j]>0){
 if(times[j][i].getTime()<min){
 next_min=min;
 min=times[j][i].getTime();
 c=j;
 }
 else if(times[j][i].getTime()<next_min)
 next_min=times[j][i].getTime();
 }
 diff = next_min-min;
 if(diff>max_diff){
 max_diff=diff;
 row=c;
 col=i;
 }
 }
 }
 return new Target(row,col);
 }
//this method will return the optimized total time
according to VAM
 public double calculateTime(){
 int time=0;
 for(int i=0;i<noOfClients;i++)
 for(int j=0;j<noOfMasters;j++)
 time+=times[i][j].cellValue();
 return time;
 }

9. Conclusions and Future Directions

In this paper, we have developed a new computational
model for mobile agents, namely the Message Broadcast
Model (MBM). This model is based on a set of master
agents working on client side and deliver messages to a
set of slave agents carrying out tasks and working on
server side. To solve this model, we explore a broker
agent, called V-agent that utilizes VAM for time
performance optimization between master agents and
slave agents message coordination. V-agent uses
Message Response/Delivery Response Matrix (MDRM)
and carries out an iterative process to do optimization.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008 291

Furthermore, analysis of time performance optimization
has been reported.

We will comment some future direction trends based on
MBM as follows:

• Explore new approaches of time performance

optimization using advanced approaches such as
stepping stones (sinuous path) and coefficient of
multipliers.

• Compare results of different approaches to V-
agent approach.

• Build advanced design pattern Optimization
Patterns for mobile agents based on MVS
architecture and master slave design pattern.

• Develop a generic model that can be generalized
in advance with mobile agent design patterns
such as coordination patterns, and mobile agent
task design patterns.

However, Optimization patterns are the next step

towards the communication and improvement that we
should developed to support mobility concepts, thus
providing more support for the development of distributed
information system applications that may benefit from
code mobility.

We will extend this work by formalizing optimization

mobility patterns. These patterns, and more significantly
the skeletons, will be extended to ensure the reliability
and fault tolerance of the mobile computations.

10. Acknowledgment
We would like to owe thanks to Applied Science

University (ASU), Faculty of Information Technology
and the department of Computer Science, Jordan for
supporting this research.

References
[1] A.Banerjee, S. Bandyopadyay. "Paradigms for Reliable

Communication Protocols in Mobile Agent Based Systems".
In Proceeding 31st Annual Hawaii International
Conference on System Science. Vol. 7, 1998.

[2] D.Chess, C.Harrison, and A. Kershenbaurn. "Mobile
Agents: are They a Good Idea?" IBM Research Division,
T.J. Waston Research Center, New York, March,1995,URL:
www.cs.dartmouth.edu/?agent/papers/chapter.ps.z

[3] L. Danny. M Oshima, "Programming and Deploying Java
Mobile Agents with Aglets". Addison Wesley Inc. USA,
1998.

[4] G. Cabri, L. Ferrari, L. Leonard. "Towards The Use of
Mobile Agent Based Systems". Enabling Technologies
Infrastructure for Collaborative Enterprises. 13th IEEE
International Workshop, 2004, pages:27-32

[5] I Sommerville "Software Engineering". 7th edition, Person
Education Limited, USA, 2004

[6] K.B. Mandwake, G.A.Patl. "Performance Analysis of
Parallel Server Versus Parallel Mobile Agent Model".

Proceeding of World Academy of Science Engineering and
Technology. PWASET Volume 28, 2008, pages: 374-377.

[7] K. Yasser, A.Hesham, N. Elmahdi, S. Allola, H. Ahmad.
"Optimizing Mobile Agents Migration Based on Decision
Tree Learnin". Proceedings of World Academy of Science
Engineering and Technology. PWASET Volume 22, 2007,
pages: 564-570.

[8] P. Braun, W. Rossak."Mobile Agents: Basic Concepts,
Mobility Models and the Tracy Toolkit". Centre for
Intelligent & Multi-Agent Systems, Morgan Kaufmann
publishers, Australia, 2004.

[9] S. Frederick, H. Lieberman. "Introduction to Operations
Research" 8th edition, McGraw-Hill Education, USA, 2005.

Biographies

Faiz Al-Shrouf received his Bsc
from KSA University in Computer
Science, Msc in Mathematical
Statistics from Yarmouk University,
and ph.D in Software Engineering
from University Science of Malaysia.
He is currently working as an
Assistant Professor at Faculty of IT at
Applied Science University/Jordan.

His main research interests: Agent Oriented Engineering,
Mobile Agents, Software Design Patterns, and M-
Commerce.

Mohammed Eshtay received his Bsc
and Msc from University of
Jordan/Amman in Computer Science,
he has 8+ years of experience in
Academic and Industrial Fields, and he
is currently working as a lecturer in
Applied Science University.

He is doing research in Agent Oriented Engineering,
Object Oriented Languages, Web semantic, and
Component Based Software Development.

Khaled Abu-Humaidan was born in
1976. He received his Bsc degree in
Computer Science from Applied
Science University / Jordan and Msc
degree in computer Science from Free
University of Brussels / Belgium. He
is currently working as a lecturer at

Applied Science University Faculty of IT. His main
research interests: Software Engineering, Software testing
and validation, Agent Oriented Engineering

