
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

306

Manuscript received August 5, 2008

Manuscript revised August 20, 2008

Distributed Data Access Control Algorithm
 Using Mining Association Rules

Dr.N.Rajkumar1, Dr.S.N.Sivanandam2, J. Stanly Thomas3

1Professor and Head, Department of CSE, New Horizon College of Engineering, Bangalore, Karnataka, India
2Professor and Head, Department of CSE, PSG College of Technology, Coimbatore, Tamilnadu, India

3Research Scholar, Dept of Computer Applications, Periyar University, Salem, Tamilnadu, India

Abstract
In this paper, we present a new algorithm called Distributed data
access control algorithm using association rules in large database
respectively. The large amounts of data, the high scalability of
distributed systems, and the easy partition and distribution of a
centralized database, it is important to investigate efficient
methods for distributed mining of generalized association rules
[3,4]. This study discloses some interesting relationships between
locally and globally large itemsets [6,7]. The proposed algorithm,
which distributes a data with various databases and participate in
a network using mining association rules. In this paper, efficient
algorithm for mining generalized association rules in distributed
database has been proposed and is based on FDM algorithm.
Concepts of data mining with distribution law can improve the
finite set. Every entry redirected into a FAK to simplify the next
cycle of operation. Hit Count can also measure in a FAK by
means of succeeded value. Time study divided into two phases
according to a nature of data. Former one is frequently accessed
data and the later one is ordinary data set. The FDM algorithm is
combined with partition algorithm to give fast distributed data
access control algorithm called DDACA.
Key words:
Data mining, Association rules, DDACA, FAK

1. Related Works

Apriori based distributed algorithms called fast
distributed mining of association rules (FDM) developed
by Cheung et.al.,[8]. The description of KSA [10] and
FDM algorithm is given below.

Let DB be a database with D transactions. Assume
that there are n sites S1, S2 ….Sn in a distributed system
and the database DB is partitioned over the n sites in to
{DB1, DB2 …DBn} respectively.

The FDM algorithm generates a small set of
candidate sets and local pruning candidate sets in each site
(si) and combines all the locally large item sets in each site
to produce globally large itemsets of whole database DB.
It suggests three optimizations; local pruning, global
pruning, and count polling. Each site generates candidates
using the globally large itemsets of site si from all sites
and assigns a home site for each candidate. The home site
then broadcasts the global supports to all other sites. Thus,

FDM requires far less communication, and local pruning
cuts it down even more.

Key semaphore algorithm [3] is quite delayed
algorithm due to FAK (i.e.) it requests a master database
only if a user request not physically available in a FAK.
Semaphores such as “wait and signal” may create a long
waiting state for chained user request.

2. Proposed Scheme

In the following sections, the problem of mining
generalized association rules in the distributed
environment is presented. The following section
concentrates on the problem description followed by the
novel and efficient algorithm for mining generalized
association rules in the distributed environment.

3. Problem Description

Let DBi (1 ≤ I ≤ n) be a partitioned database located
in n sites S1, S2…Sn with their sizes as DB1,
DB2…………DBn respectively. Let the size of DB and the
partitions DBi be D and Di respectively. Let X, Let X.sup
and Xi supi be the respective support counts of X in DB
and DBi.

It is called X.sup. The global support count and
X.supi is the local support count of X at site si. For a given
minimum support S,X is globally large if X.sup ≥ S X D;
accordingly, X is locally large at site si, if X.supi ≥ Sx Di.
Let L denote all the globally large itemsets in DB and Lk is
used to denote all globally large K-item sets in L. A
special database termed as frequently accessed key (FAK)
supports an instant data access without semaphore controls.

The major highlight of the DDACA is to distribute a
user request to both the FAK as well as the master
database, which has a free status.

User request is given to FAK for quick result in case
of frequently accessed data. Every entry redirected in to
FAK simplifies the next cycle of operation.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

307

4. Distributed Data Access Control Algorithm
(DDACA)

In the following section, the proposed distributed
algorithm DDACA is presented in a detailed manner. The
pseudocode for the distributed data access control
algorithm (DDACA) is given below:
Input :
(1) DBi: The database partition at each site with equal size,
say Di:
(2) S: The minimum support threshold; both used at each
site (I=1 …n).
Output:
L: The set of large itemset in DB at all sites.
1. Module ans_set
2. Key: variable;
3. Begin
4. ma1, ma2, macap, fak: array

[1...capacity][1..capacity] of data;
5. r_input, c_input: (1...capacity);
6. large: integer;
7. in: usrin;
8. status: (b/f); {b->busy,f->free}
9. procedure state_watch (pdata: data);
10. begin
11. forall ma [r_input] to capacity
12. begin
13. {find free status among ‘n’ database}
14. if status is ‘f’ then
15. begin
16. ma[r_input].status:=’b’;
17. call ans_search(ma[r_input]);
18. end if;
19. 19. end;
20. end; {state_watch}
21. procedure ans_search (pdata:data);
22. begin
23. forall r_input to capacity
24. begin
25. forall c_input to capacity
26. begin
27. if fak[r_input][c_input]=in : pdata.ma[r_input]=in

then
28. begin
29. {data found in fak}
30. raise found
31. updatecount[r_input][c_input]=

count[r_input][c_input] +1;
32. pdata.ma[r_input].status:=’f’;
33. quit;
34. end if;
35. end for;
36. end for;
37. end; {ans_search}

38. procedure hitcount();
39. begin
40. large:=fak[1]; {basis of hit count}
41. forall r_input=2 to capacity
42. begin
43. if fak[r_input]>large then
44. begin
45. large:=fak[r_input];
46. {focus of large}
47. end if;
48. end;
49. end; {hitcount}
50. end; {key}
51. r_input:=1;
52. c_input:=1;
53. count[r_input][c_input]:=1;
54. end;
55. {ans_set}

5. Description of Distributed Data Access
Control Algorithm

The step-by-step procedure for description of
DDACA algorithm is given below:

1. Getting user input in deciphered format.
2. Monitor ‘n’ number of databases for free status.
3. Input Key is transferred to database, which has

“free” status in a searching process.
4. Change the status of the database to “busy” state

to protect.
5. It transfers simultaneously an Input key to “FAK”

for searching.
6. If an input key is frequently used, then the entry

may exists in FAK and FAK process before the
master database. Because, FAK is comparatively
smaller than master database.

7. If the searching process is successfully completed
then update “Hit Count” value by 1 using the
procedure ans_search.

8. After releasing of data from master database,
change status to “free” for next key using the
procedure state_watch.

9. Calculate the greater “Hit count” of a cycle using
the procedure hit count.

6. Classics of Distributed Database System

Distributed database systems are capable of handling both
local and global transactions. The system resolves all local
database requests, access to data at other sites, and any
requests it may receive from other sites. The system masks

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

308

differences in the various local systems by providing a
common network wide view of the data.
Through appropriate translation mechanisms, requests
expressed on the common view can be translated to the
local system view being accessed. In addition to network

and data distribution characteristics, the major issues in a
Distributed Database Management System (DDBMS) are
query processing (including transaction processing),
concurrency control, and recovery.

Fig 1: FAK hit count system

Even when a portion of a system (i.e., a local site) is
down, the system remains available. With replicated data,
the failure of one site allows access to the replicated copy
of the data from another site[10]. The remaining sites
continue to function. The greater accessibility enhances
the reliability of the system. A query involving data from
several sites can be subdivided into sub-queries and the
parts evaluated in parallel.

Data distribution in DDBMs with redundant copies

can be used to increase system availability and reliability
[11]. If data can be obtained from a site other than the one
that has failed, then availability improves, and as the
system can still run, reliability does too.

7. FAK hit count system
Fig 1 shows FAK hit count system, which consists of

different databases. Parallel user request getting in the
format of deciphered entity. Control transfers to a database
participate in a network according to a status it has.

Once database intakes a user request status code
automatically changed to “Busy”. And database locked for
other user request. To overcome the delay problem in
KSA, user request given to FAK database as well as
master database simultaneously.

Probability of FAK is higher to win a searching
process in case requested data is frequently accessed. On
the other hand, if it is not a frequently accessed data then
the probability of master database is high.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

309

If FAK wins a searching process hit count value
updated by 1. If master database wins then FAK receives a
user request with key value from a master database and
starts a hit count account with initial deposit of 1. Interrupt
signal named “FOUND” passed from a database that wins
a searching process to lost database. Simple check of
greater hit count can raise the frequent user entry and its
rights.

8. Generation of Synthetic Data and Real-life
Dataset

The databases used in the experiments are synthetic
data as well as real-life datasets. This is confirmed by the
Table 3 and 5, which shows the relative execution time as

we increase the number of input records from 100 sets to
100000 sets, for four different levels of datasets.

The entities consist of user_no, user_name,
user_group, basic_pay, user_rights, user_count, DA, HRA,
CCA, emp_category and marital_status. There were
100,000 sets in the data. Our experiments were performed
on an IBM Sun Solaris system with firewall and 512
RDRAM, 80GB RAID swappable system.

9. Difference between KSA and DDACA
System

The below Table 2 shows the difference between

key semaphore algorithm (KSA) and distributed data acess
control algorithm (DDACA).

Table 2: Difference between KSA and DDACA

Phase I
The different datasets and time study of KSA and
DDACA based on the “Frequently Accessed Key (FAK)”
system is shown in Table 3 and it can be transferred in to
the bar chart representation of Fig 4. All the inputs are
naturally exists in “FAK” subsystem.
The comparative time study shows DDACA follows
stronger FAK system then the KSA.

Data Sets KSA DDACA
100 sets 2.38 ms 0.56 ms

1000 sets 2.7 ms 1.21 ms
10000 sets 3.51 ms 1.35 ms

100000 sets 5.72 ms 1.37 ms
Table 3: Phase I. Time study based on FAK

Data Sets KSA DDACA
100 sets 5.20 ms 1.76 ms

1000 sets 5.31 ms 1.92 ms
10000 sets 6.24 ms 2.16 ms

100000 sets 7.12 ms 2.22 ms
Table 5: Phase II.Time study based on distribute database

Phase II
 The different datasets and time study based on

the Distributed Database system is shown in Table 5 and it
can be transferred in to the bar chart representation of
Figure 6. In this analysis, we found lot of deviation
between KSA and DDACA. Because KSA is quite
delayed algorithm due to FAK (i.e.) it requests a master
database only if a user request is not physically available
in a FAK.

Master database only intakes if it is not in a busy state. Till
busy state is cleared user request must wait in a queue.
This algorithm checks only the local database for busy
state. However, in our approach it checks all the databases
participate in a network.

Key semaphore algorithm Distributed data access control algorithm

Semaphores such as “wait and signal” may create a
long waiting state for chained user request.

User request distributed to different free databases
only, therefore no chance for deadlock or long wait.

Higher priority node may dominate a signal always.
(Long wait for lower priority systems)

Instead of priority system, group function used to
intake set of inputs in parallel fashion.

Parallel input may disturb an entire algorithm Well suited for parallel algorithm.

It takes more time to process a single input. Because
every request can attack a master database only.

Strictly omit the delay factor in KSA by means
distributed database with FAK system

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

310

5.72

3.51
2.72.38

1.371.351.21
0.56

0

1

2

3

4

5

6

7

100 Sets 1000 Sets 10000 Sets 100000 Sets

Number of Entities

Ti
m

e
(m

s)
KSA DDACA

Fig 4: Time study based on FAK

7.12
6.24

5.315.29

1.76 1.92 2.16 2.22

0
1
2
3
4
5
6
7
8

100 Sets 1000 Sets 10000 Sets 100000 Sets

Number of Entities

Ti
m

e
(m

s)

KSA DDACA

Fig 6: Time study based on distributed database

10. Performance Evaluation

The performance study has been divided into two
phases to compute DDACA with KSA. As in phase I, and
Phase II the experimental results show that the inputs are
naturally exists in the ‘FAK’ Subsystem. The program was
the only major job running on the machine throughout all
the experiments to achieve a fair environment for
comparison. The execution time of DDACA follows
stronger FAK system than the KSA. The performance of
DDACA and KSA in a large database is also compared. In
KSA, checks only the local database for busy state. But in
our approach, it checks all the databases participate in a
network.

But, in our approach master database takes an input
set simultaneously with FAK, therefore no delay in this
approach. On the other hand, in KSA after failure message

received from FAK it requests for searching process to
master database.

11. Conclusion

In this paper, we introduced the distributed data access
control algorithm for mining association rules. It is
possible to mine globally valid results from distributed
data without revealing information that compromises the
individual sources. The major highlight of this algorithm
is to distribute a user request to both the frequently
accessed key as well as the master database which has a
free station, the algorithm has been implemented on an
experimental basis and its performance study shows that
DDACA is superior over key semaphore algorithm.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

311

References
[1] Jiawei Han, Micheline Kamber, “Data mining Concepts

and Techniques”, Harcourt India Private Limited ISBN: 81-
7867-023-2.

[2] R.Epstein and M.R.Stonebraker, “Analysis of Distributed
Database Processing Strategies”, Proceedings of the
International Conference on VLDB, 1988.

[3] R.Bagrodia,“ProcessSynchronization:Designand
Performance Evaluation of Distributed Algorithms”,IEEE
Trans.on Software Engineering, Sep-1989.

[4] Jiawei Han, Yandong CAI and Nick Cercone,”Data Driven
Discovery of Quantitative Rules in Relational Database”,
IEEE transactions on Knowledge and data Engineering,
Vol.5, No.1, pp.29-40, February 1993.

[5] Heikki Mannila, Hannu Toivonen, and A.Inkeri
Verkamo,”Efficient algorithms for discovering association
rules”, In KDD-94: AAAI Workshop on Knowledge
Discovery in Databases, pages 181-192, Seattle,
Washington, July 1994.

[6] Rakesh Agrawal and Ramakrishnan Srikant,” Fast
Algorithms for mining Association Rules”, In Proc. of the
20th Int’l Conference on very large databases, Santiago,
Chile, pp487-499, September 1994.

[7] A.Savasere, E.Omoecinski, and S.Navathe,”An efficient
algorithm for mining association rules in large databases”,
In Proc. of Proc. of the VLDB Conference, Zurich,
Switzerland, September 1995.

[8] Y. Fu and J. Han, V. Ng, A. Fu, and Y. Fu, “A Fast
Distributed Algorithm for Mining Association Rules,”
Proc.of Int’l Conf. Parallel and Distributed Information
Systems, PP. 31-44, Dec 1996.

[9] R. Agrawal and J.C. Shafer, “Parallel Mining of
Association Rules: Design, Implementation, and
Experience,”IEEE Trans. Knowledge and Data Engg, vol.8,
pp. 962-969, 1996.

[10] Lamport. L., R.Shostak and M.Pease,”Time, Clocks, and
the Ordering of events in a distributed System”
Communications of the ACM, vol.21, no. 7(July): pp.558-
565.1997.

[11] R.Bayardo,”Efficient Mining Long Patterns from
Database”, Proc.ACM Special Interest Group on
Management of Data (SIGMOD), June 1998.

Dr.N Rajkumar obtained his
Bachelor’s degree in Computer
Science and Engineering from
Madurai Kamaraj University in
1991 and His Masters in
Engg .the same stream in the
1995 from Jadavpur University.
Kolkata. He has completed his
Masters in Business
Administration from IGNOU in
the year 2003. His doctorate is in

the field of Data Mining, which he completed in 2005
from PSG College of Technology, Coimbatore. He is
currently the Head of the Department of Computer
Science and Engineering at New Horizon College of
Engineeering, Bangalore, Karnataka. He has served in the
field of education for over 17 years at various Technical
Institutions. He has been instrumental in the conduct of 30
Short- Term Courses and has also attended 20 courses
conducted by other Institutions and Organizations. He has
authored 2 books for the benefit of the Student
Community in Networking and Computer Servicing. He
has published as many as 30 papers, 3 in International
Journals, 17 International Conferences and others at the
National level in his area of expertise namely Data Mining,
Networking and Parallel Computing respectively. He has
guided 100-Project scholar’s to-date.

