
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

387

A Malay Language-based Visual Programming Language for Personal
Digital Assistant

Md. Nasir Sulaiman, Sazly Anuar, Zaiton Muda,
Hamidah Ibrahim and Aida Mustapha

University Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia

Summary
Most of the visual programming languages that have been
developed so far do not focus on Personal Digital Assistant
(PDA), due to the limited screen size and resources. This
paper proposes the Malay language-based Visual
Programming Language (MaVi) on PDA. The syntax and
the semantics of MaVi are grammatically designed based
on the visual programming. The hierarchical layout
technique is used to optimize the graph produced, so that it
can suit on limited size of the PDA screen. The grammar
of the developed language is a subset to a Java language,
but it is in a graphical representation. The compilation of
the program will produce a byte code, which can be
executed in any PDAs that has a Java Virtual Machine
(JVM). The testing on different test programming is
carried out to prove that it can be executed on embedded
devices and produces expected output.

Key words:
Embedded devices, Malay language-based Visual Programming
Language (MaVi), Personal Digital Assistant (PDA), Java
Virtual Machine (JVM).

1. Introduction

The research in the field of Visual Programming Language
(VPL) has becoming more prevalent since the past few
years with the increase of computer speed and the graphic
capabilities [1, 2, 3, 4]. Basically, the concept of VPL is
similar to any traditional textual programming languages.
However, instead of following through a line of text, VPL
allows the programmers to structure their codes in a
pictorial display. A VPL programmer creates a program by
connecting a picture or icon using a directed arrow that
will produce a directed graph, which will show the flow of
the program in VPL environment.

The main focus of this paper is to design and implement a
compiler of MaVi that compiles visual programming styles
of programs and translates it into byte code, which can be
executed in any embedded devices that has a JVM. One of
the challenges of this project is to deal with limited screen

space. However, this will not be a limitation problem when
the technique is applied on less restricted platforms.

The remainder of this paper is organised as follows.
Section 2 is a short survey of related works on VPLs and
some VPLs on PDA. Section 3 discusses the proposed
architecture for MaVi. The design of MaVi is explained in
section 4. Section 5 and section 6 are devoted to the
implementation as well as testing and validation,
respectively. Final section concludes the current findings
and discusses some potential future.

2. Related Works

A textual programming language can be learnt only
through extensive training or education through books.
One must have prior programming knowledge to advance
his skills pertaining to textual languages. While such
knowledge would be undoubtedly useful, a VPL does not
assume prior programming knowledge on the part of the
user. Moreover, according to Shu [8], pictorial descriptions
of programs have a number of textual description
advantages. For instance, pictures convey more meaning in
a concise unit of expression. Pictures also help in
understanding and memorizing while making
programming more interesting.

Meyer and Masterson [7] classified three main kinds of
VPL. The imperative language uses Graphical User
Interfaces (GUI) to smooth out the design, coding, and
testing processes. The examples of imperative language
include Visual Basic and Visual C++. The second kind of
language is the true visual language. This type of visual
language only targets at a particular problem area such as
modelling, simulation and process control. The examples
of true visual language include Stella, Arena, and Lab
View. The third kind of language is the true general-
purpose VPL. Programmers might create a program in a
non-textual way. The main example of true general-
purpose VPL is Prograph.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

388

Java Code
Compiler

Source
program
(*.mvp)

Java
source
code

Java
byte
code

The
general-
purpose

VPL

Back-end

Semantic
Analyzer

Code
Generator

Syntax
Analyzer

Front-end

Very few academic researches have been done regarding
the customization and scripting on PDA [1, 5]. For
instance, the PDAGraph is a true visual language for use
on handheld devices. It is a domain-specific language,
specifically aimed at end-users for monitoring and
controlling the wireless devices on PDA. They develop a
VPL because they claim that it promotes code reuse,
integration readiness, easy maintainability, better
organization of the code, and easier trouble shooting.

PDAGraph researchers address a difficulty in developing
Virtual Programming Environment (VPE) for PDA, which
is to deal with extremely limited screen size and space.
They develop a user-friendly, high-level component-based
message flow VPL and environment based on research and
intuition.

Another VPL on PDA is a Hyperflow [9]. Hyperflow,
however, is designed for the use of children on a pen-based
(but not necessarily handheld devices) multimedia
computer system. It is a dataflow-based visual language
but is intended for a range of software development.
Hyperflow was implemented within the PenPoint
Operating System only.

Not much research and development has been done in
mobile computing area especially in light of programming
language design [5]. Since human being has more
capability to interpret an algorithm using visual language
than textual language, a research on developing a VPL on
PDA should be highlighted.

3. Architecture of the MaVi

The development of the compiler begins with proposing
the architecture, which consists of two parts, the structural
architecture and the functional architecture. Both parts of
architecture are discussed as follows.

3.1 Structural Architecture

Figure 1 shows the structural architecture of the language.
Basically it is implemented as a front-end to a compiler. A
program is created on the language environment through
the PDA’s by drawing a connected structure, in the form of
graph. This graph is also known as a source program or an
input language with an extension of .mvp, which is the file
of data representation.

The front-end of the language consists of three phases,
which are the syntax analysis, semantic analysis, and code
generation. The compilation of program will initially
produce a Java source code with an extension of .java.

Finally, the Java source code is compiled using a Java code
compiler to produce a Java byte code, which is a target
program in this work.

Fig 1 The structural architecture of the language

3.2 Functional Architecture

Functional architecture is an arrangement of functions and
their sub-functions, and interfaces that define the execution
sequencing and conditions for control or data flow. The
functional architecture is depicted in Figure 2. Facing
down arrows represent the flow or the steps of functionality
in the language. The vertical arrow shows the flow of
control, while vertical dash arrow shows the flow of data.

The entries start with “GUI Menu” where a specific
instruction is selected from an existing list that has been
obtained from the “System data” files. To create a program,
“VPL” will be activated. It provides sets of components
and edges that can be edited depending on the type of
action. These actions are controlled by the rules in “System
data” file.

The “Data representation” keeps the data of the program
from “VPL” and sent it to “Code Generator”, which will
generate the Java Source code file. A “Compile to
executable” is the final steps of functionality, which results
in an executable Byte code file.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

389

Compile to
executable

MaVi program

GUI Menu

VPL

System data

Java packages
package mv.*

Data representation

<name>.mvp

Code
generator Source code

<name>.java

Byte code

<name>.class

Fig 2 The functional architecture of the language environment

4. The Design of MaVi

In the first stage of designing the MaVi Environment, the
list of Malay language terms that will be used by the user
in the process of programming is designed. Table 1 shows
the list of Malay language terms translation. Basically, the
terms are representation of the components, which is also a
visual representation of the grammar in MaVi Environment.

Table 1 List of Malay language terms translation in MaVi environment

Malay Terms English
Terms Descriptions

Pembolehuba
h

variable To declare a variable

Objek object To define an object
Ungkapan expression To give an expression
Jika if As a control selection

statement
Pilihan switch As a control selection

statement
Ulang-Bagi for As a control loop

statement
Ulang-Selagi while As a control loop

statement

There are two major parts of a language that have to be
taken into consideration:

• Syntax
• Semantics

A grammar is used to accurately define the syntax of a
language. Extended Backus-Naur Form (EBNF) is a
common way of describing grammars. The grammars of
the language follow the notation of Greedy quantifiers [10].
Basically, the grammar of the language is a subset to a
grammar of Java language version 1.1.

The semantic analyzer performs semantic analysis during
syntax analysis. The term semantic is frequently used to
differentiate the meaning of an instruction from the
language syntax. The semantic analysis in this research is
an analysis of an iconic sentence to determine the
underlying meaning. Actually, it is similar to any
conventional programming languages only that it is
represented in graphical ways.

The semantic checking is only performed on variable
declaration, which involves only the variable component.
For example, to declare an integer variable, user needs to
declare a variable component as an integer and gives a
variable name to that component. An input dialogue box
will help users to declare a variable correctly. Users should
follow the rules in declaring variable to avoid semantic
errors. The component that is used on the language is
shown in Table 2.

Table 2 The component in language based on grammars

Operation Component Action

Begin method
node

 Beginning of
method

End method
node

 End of method

Variable Declaring a
variable name

Object Declaring an
object

Expression Give an
expression

if If control
statement

switch Switch control
statement

for
 For loop

control
statement

while
 While loop

control
statement

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

390

Code generator is the process by which a compiler
converts a syntactically-correct program into a series of
instructions that could be executed by a machine. It is used
to produce programs in some automatic manner, reducing
the need for human programmers to write code manually.
The code generator examines the data representation file at
a time using the ObjectInputStream class from java.io.*
and produces the Java source code when it is compiled.

For this paper, an ObjectOutputStream class from java.io.*
is used to produce the data representation in the Java object
format. An ObjectOutputStream writes primitive data types
and graphs of Java objects to an OutputStream. The objects
can only be reconstituted using an ObjectInputStream.
Figure 3 shows an example of data representation format
in text for each component.

class: kelas1 //class file name
path: My Documents\mv\ //class file path
file: My Documents\mv\kelas1.java //class file path
 //and name
attribute: int attribute1=12; //class attribute if any
method: main //method name
public static void main (String[] args) //class declaration and
 //parameters
START //<begin_method_node>
VarNode_<memory address>-SET //variable data
 //representation
END-LitNode: <value>
END-VarNode:<dataType> <varName>
ObjNode_<memory address>-SET //object data
ObjNode_<memory address>-CALL //representation
END-ObjNode: <varName>
END-LitNode: <exp > //expression data
 //representation
IfNode_<memory address>-CONDITION //if data
IfNode_<memory address>-TRUE //representation
IfNode_<memory address>-FALSE
END-IfNode
SwitchNode_<memory address>-0 //switch data
SwitchNode_<memory address>-1 //representation
SwitchNode_<memory address>-2
…
…
END-SwitchNode
ForNode_<memory address>-INIT //for data
ForNode_<memory address>-LOOP //representation
ForNode_<memory address>-ITERATION
ForNode_<memory address>-DO
END-ForNode
WhileNode_<memory address>-INIT //while data
WhileNode_<memory address>-DO //representation
END-WhileNode
END //<end_method_node>

Fig 3 Data representation format

5. Implementations of the Compiler

The Java programming language is used in implementing
the language. It is used due to its portability, its rich set of

libraries, and its pervasive appearance in most academic
research institutes around the world [6]. Moreover, it also
benefits in cross platform support and ease of use, as
evidenced by the growing transition from C++ to Java. It is
also a general purpose programming language with a
number of features that make the language well suited for
use on embedded devices.

The language organizes the design and implementation
into a set of Java Packages that are separated by function.
A package is a way of grouping and naming a collection of
related classes so that they can serve as a library of classes.
It groups related classes, interfaces and sub packages and
can be used in any program without having to place all
those classes in the same directory.

5.1 User Interface

The user interface (UI) is everything designed into an
information device with which human beings interact.
Basically, it is a program that controls the display for the
users. Figure 4 shows the main page with a project named
projek1. As noted, lajur is the attribute for the kira_lajur
class while main is a method in the kira_lajur class. Figure
5 is the programming environment where user uses the
visual expressions in the process of programming.

Fig 4 The main page

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

391

Fig 5 The MaVi Environment UI

5.2 Component Implementation

MaVi Environment represents the syntax called a
component as a symbol. Figure 6(a) shows the variable
syntax in MaVi Environment. The label of Pembolehubah
component can be edited to change the data type and name
of the variable. An input dialogue box will appear when
user needs to change the content of selected variable.
Figure 6(b) shows the input dialogue box that gives the
instruction for users to define the new variable.

Fig 6 (a) The Pembolehubah component and (b) shows an input dialogue

box to edit the Pembolehubah component.

The syntax of Objek component is visualized in Figure 7(a).
The content of an Objek component can also be edited to
change the name of the object. Figure 7(b) shows an input
dialogue box, giving an instruction for user to edit the
component.

Fig 7 (a) The Objek component and (b) shows an input dialogue box to
edit the Objek component.

Ungkapan syntax is implemented based on the design and
it is similar with an expression in Java. The content of the
Ungkapan component can also be edited. Figure 8(a)
shows the example of Ungkapan component, while Figure
8(b) shows an input dialogue box that will appear for
editing the Ungkapan component.

Next is Pilihan component, which is the representation of
switch control statement in Java. It can have one or more
cases, depending on the user defined. Users need to edit
the number of cases in Pilihan component by inserting the
new information in the input dialogue box. Figure 9(a)
visualizes the Pilihan component in MaVi Environment,
while Figure 9(b) shows the input dialogue box that will
appear when user needs to edit the component.

Fig 8 (a) The Ungkapan component and (b) shows an input dialogue box
to edit the Ungkapan component.

(a)

(b)

(a)

(b)

(a)

(b)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

392

Fig 9(a) The Pilihan component

Fig 9 (b) An input dialogue box to edit the Pilihan component

The label of the Jika component cannot be edited since the
component follows the syntax of the if control statement.
Similar goes to Ulang-Bagi and Ulang-Selagi components.
These statements cannot be edited because they are reserve
words and the syntax is already fixed. The visualization of
the Jika, Ulang-Bagi and Ulang-Selagi components in
MaVi Environment are shown in Figure 10.

Fig 10 The Jika, Ulang-Bagi, and Ulang-Selagi components

5.3 Edges Implementation

Each component must be connected using an edge, which
is like an arrow that will show the flow of the program.
There are two types of edges that are implemented in
MaVi Environment, which are the Penuding or the pointer
edge and Aliran or the flow edge as explained in previous
chapter. The use of pointer and flow edges is visualized in
the example of a program in Figure 11.

The only way to differentiate the pointer and flow edges is
from the source and the target of the edge connection. The
source and target element of flow edge is the middle point
of the component, which means it connects the first
component at every level from the start to the end of a
program. While the source and target element of pointer
edge are the attachment areas, which means they connect
the component at every level, to complete the semantics of
the statement.

Fig 11 A program that shows the use of pointer and flow edges

5.4 Error Handler

Users have to follow the rules in creating a program in
MaVi Environment. The rules are based from the
grammars as explained in section 4. The error handler
handles the errors that are found while creating a program.
For example, when the components were wrongly
connected by the edge, it will not be connected. Another
example, if user does not give the exact detailed of the
component value, an error message will appear and order
the user to correct it.

5.5 Graph Optimization in MaVi Environment

Users can optimize the graph layout in MaVi Environment
at any time just by selecting the Atur Graf in Atur menu.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

393

Build
(Code generator)

Source
program

Compilation
(Java Compiler)(*.java)

Target
program

(*.mvp) (*.class)

The graph optimization is based and followed from the
early work of Sugiyama et. al [11]. This is one of the
important issues since a minimal change to the graph
drawing affects the entire graph layout. In addition, the
vertical and horizontal toolbars are also used to ensure that
users able to see the entire object since the small screen
size limits the number of objects that can be displayed on
the screen. Figure 12(a) shows an example of program in
MaVi Environment created by user, while Figure 12(b)
shows the similar program but after the user uses the
layout optimization.

5.6 Build and Compile

The project that users create will be compiled using the
MaVi Environment compiler to build the Java source code.
The compilation can be done by selecting the Bina menu
on the Projek menu bar. Once the users select the Bina
menu, a message box as Figure 13 will appear. User needs
to click the Bina button which will compile the project. A
success compilation will produce Java source code, which
will be located at the same directory with the project file.

(a)

(b)
Fig 12 (a) A program created by user and (b) shows the similar program

but with the layout optimization

Fig 13 A message box for compilation

The next step is the compilation of the Java source code
using the Java compiler, which is embedded into the MaVi
Environment. For this step, user needs to select the Kompil
menu on the Projek menu bar and the successful
compilation will produce Java byte code. The process of
build and compile is shown in Figure 14.

Fig 14 The process of building and compiling a program

6. Testing and Validating

Testing is a necessary part of program creation to find any
errors existed in the code. The aim of testing the language
is basically to prove that it can execute and produce
expected output. For this reason, a black box testing
method is used.

For most programs, it is practically impossible to prove
that the program is correct on all inputs. Therefore, in
order to test, a collection of test program is created using
the components on the language. These test programs act
as inputs. The process of building and compiling the test
programs are the internal details and are not taken into
consideration as in black box. If the output produced as
expected from various inputs, this will indicate that the
program works correctly, thus validates the objective of
this paper. Figure 15 shows the program that is created for
this test program.

As depicted in figure 15, only two components were used,
Objek and Ungkapan. A label System.out on Objek
component is an object in Java that requests a compiler to
display an output on console. The call_port is connected
with an Ungkapan get_port, which means that the value of

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

394

Ungkapan is called by System.out object. Figure 15(b)
shows the data representation of the test program.

The building of the test program produced the output as
shown in Figure 16. The compilation of the output has
successfully produced a Java byte code. Therefore, the
correctness of Objek and Ungkapan components in MaVi
Environment is validated thus proves that it can be
executed and produce expected output.

 (b)

 (a)

Fig 15 (a) Example of test program and (b) shows its data representation

Fig 16 Java code produced from test program

The second test program is to prove that MaVi
Environment can produce output using the Jika component.
The aim is to validate the correctness of Jika and
Pembolehubah components.

Figure 17(a) shows the program that is created for this test
program. As can be seen, a program is constructed to give
a selection result between true or false statement, based on
the given condition. The given value for the variable is int
gred=55, and the condition of the statement is gred>=60.
Figure 17(b) shows its data representation.

The building of this program produced the output as shown
in Figure 18. The compilation of the output has
successfully produced a Java byte code. Therefore, the
correctness of Jika and Pembolehubah components in
MaVi Environment is proved thus shows that it can be
executed and able to produce expected output.

 (b)

 (a)

Fig 17 (a) Example program using if and (b) shows its data representation

The third test program is to prove that MaVi Environment
can produce output using the Pilihan component. The aim
is to validate the correctness of Pilihan component. Figure

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

395

19(a) shows the program that was created for this test
program while Figure 19(b) shows the data representation
of the program. The building of the program produced the
output as shown in Figure 20. The compilation of the
output has successfully produced a Java byte code.
Therefore, the correctness of Pilihan component in MaVi
Environment is confirmed and proves that it can be
executed and produce expected output.

Fig 18 Java code produced from program of Figure 17

 (a)

Fig 19 (a) Example program
using switch and (b) shows its
data representation

 (b)

The final test program is to prove that MaVi Environment
can produce output using the Ulang-Bagi component. The

aim is to validate the correctness of Ulang-Bagi component.
Figure 21(a) shows the program that was created for this
test program while Figure 21(b) shows its data
representation.
The building of the program produced the output as shown
in Figure 22. The compilation of the output has
successfully produced a Java byte code. Therefore, the
correctness of Ulang-Bagi component in MaVi
Environment is valid and it can be executed and produces
expected output.

Fig 20 Java code produced from the program of Figure 19

 (a)

 (b)

Fig 21 (a) Example program using for and (b) shows its data
representation

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

396

Fig 22 Java code produced from program of Figure 21

7. Conclusion

MaVi requires more attention to become successfully
acceptable by all users. Many promising directions exist
for extending the work performed in this paper. The
following list includes some of the more interesting ones:

 More features can be added into it. Other components

such as array, function, do-while statement can be
added so it can be a complete environment of visual
representation for programming language.

 Further evaluation is needed to make the language
more widely accepted.

Finally, future works should be made for optimizing the
code that will speed up the execution time. This is due to
the reason that most PDA has very limited memory size
and speed. There are many techniques of code optimization,
which can be embedded such as global and local
optimization.

References

[1] Kollet, Y. and Smedley, T.J. Message-Flow
Programming in PdaGraph. In Proceedings of the
2004 IEEE Symposium on Visual Language and
Human Centric Computing (VLHCC ’04). 2004,
pages 229-232.

[2] Burnett, M. Software Engineering for Visual
Programming Languages. Handbook of Software
Engineering and Knowledge Engineering. World
Scientific Publishing Company. 2001, Vol. 2.

[3] Lourens, T. TiViPE – Tino’s Visual Programming
Environment. In Proceeding of the 28th Annual
International Computer Software and Application
Conference (COMPSAC ’04). 2004, pages 10-15.

[4] Masterson, T. F. and Meyer, R. M. SIVIL: A True
Visual Programming Language for Students.
Journal of Computing Sc. in Colleges. 2001, 16(4),
74-86.

[5] Dwyer, K.D. and Smedley, T.J. A Mobile, Visual
Scripting Environment for Monitoring and
Controlling Wireless Devices. IEEE International
Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob '05).
2005, Vol. 4, pages 151-158.

[6] Gauvin, S. and Smedley, T.J. Vivid: A Framework
for Creating Visual Programming Languages. In
proceedings on 12th International Conference on
Intelligent and Adaptive Systems and Software
Engineering, San Francisco. 2003.

[7] Meyer, R.M. and Masterson, T. Towards a Better
Visual Programming Language: Critiquing
Prograph’s Control Structures. Journal of
Computing Sc. in Colleges. 2000, 15(5):181-193.

[8] Shu, N.C. Visual Programming: Perspectives and
approaches. IBM Systems J., 1989, 28(4):525-547.

[9] Kimura, T.D. Hyperflow: A Uniform Visual
Language for Different Levels of Programming. In
Proceedings of the 1993 ACM Conference on
Computer Science Indianapolis, USA, 1993.

[10] Bennett, J.P. Introduction to Compiling Techniques:
A First Course Using ANSI C, LEX and YACC,
International Edition, McGraw-Hill Education
(Asia). 2003, pages 291-314.

[11] Sugiyama, K., Tagawa, S., and Toda, M. Methods
for Visual Understanding of Hierarchical System
Structures. IEEE Transactions on Systems, Man and
Cybernetics, 1981, 11(2):109-125.

Md. Nasir Sulaiman is an
Associate Professor in
Department of Computer Science,
Faculty of Computer Science and
Information Technology,
Universiti Putra Malaysia. He
obtained Ph. D. in Neural
Network Simulation from

Loughborough University, U.K. in 1994. His research
interests include intelligent computing, intelligent agents,
and data mining.

