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Summary 
Many distributed computing environments are based on the 
paradigms of peer-to-peer networks and grid-based computing. 
These environments tend to be structurally dynamic but with 
volatile resource and service availability. Such environments 
have rules, constraints, and guidelines that govern how tasks are 
performed. The rules describe how resources, components and 
services should be allocated and resemble business rules in 
human organizations. Centralized rule processing in such 
dynamic environments suffers from scalability and reliability and 
issues.. We present the architecture and processing algorithms of 
a distributed rule management system. The system allows the 
management, distribution and execution of rules in distributed 
environments characterized by volatile recourse and service 
availability.  
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1 Introduction 

Distributed, networked environments have implicit or 
explicit rules and constraints governing how different 
computations are performed.  These rules describe how 
environment resources and services “do business” so they  
resemble business rules in human organizations.  
Business rules are statements that specify and enforce 
logic for constraints, validations and other actions that 
constitute and enforce policies.  

In computing environments policies can relate to 
various operating aspects such as quality of service (QoS), 
security and resource utilization. Grid computing and 
Peer-to-Peer (P2P) networks are typical environments with 
explicit and implicit rules. In grid-based computing 
specific rules are enforced with respect to the accessibility, 
availability and utilization of resources. In P2P-based 
environments, implicit but enforceable rules, such as the 
volume of a peer’s file sharing determines the peer’s status 
and role in the  network. In both of these examples, using 
rules enables the consistent and systematic enforcement of 
constraints.  

In this paper we present a general, distributed rule 

management system, applicable to any distributed 
environment. Existing rule systems offer centralized 
architectures, which don’t scale well and introduce a single 
point of failure.  

Throughout this work we assume the operating 
environments consisting of numerous resources, services, 
loosely coupled objects, groups and hierarchies engaging 
in different activities. The activities can vary from simple 
transactions such as resource discovery and file exchanges 
to complex computations such as resource negotiation and 
collaborative problem-solving. 

The paper is organized in two general thematic parts. 
The first part describes the rules, their formulation and 
their processing by rule engines. The second part describes 
the algorithms  and the distribution of the rule engines.  

In the next sections we present the related work in the 
area of rule processing and describe the general problem.   
Then, we present the proposed rule management system, 
the rule formulations, types and the core mechanism: the 
rule engine. The rest of the paper contains the algorithms 
for rule processing and the distributed architecture along 
with techniques that mitigate inherent issues to distribution 
such as conflict resolution and fault tolerance. We 
conclude by summarizing the work and discussing future 
work. 

2  Related Work 

In the past, rules and their enforcement, have been 
investigated in the areas of artificial intelligence and 
expert systems [25] under the concept of “production 
rules” [2, 7, 30]. Grosof et al [12-15, 26] recently extended 
this work by taking advantage the declarative nature of 
business rules, expressing them using XML and 
introduced rule conflict-handling methodologies.  Rules 
have also been examined in databases as “triggers” and 
“event-condition-action” (ECA) rules. Irrespective of their 
name, rules played an instrumental role in introducing 
reactive behavior in applications and enhancing automated 
validation techniques [9]. Their use has propelled the 
development of another genre of database systems known 
as active databases [6, 8, 10, 22]. Numerous prototypes 
(HiPAC [5, 8], POSTGRES [27, 28] Ariel [17], Starburst 
[31, 32]) were developed following the active database 
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approach and many evolved to full-scale commercial 
systems. Today, trigger and production rule functionality 
has been extended from databases and expert systems to 
business processes, replacing the terms production rules 
and triggers with the term business rules.  As a result, 
business rule management systems have been developed to 
"serve" regulations to business processes and activities. 
Many of these systems have successfully borrowed 
principles from databases (e.g. triggers), expert systems 
(e.g. inference algorithms) and workflow systems [3, 4, 23, 
29].  Object-oriented (OO) technologies have extended 
these systems even further.  Most new systems no longer 
use triggers or stored procedures, but store rules as 
programmable objects translated to executable code that 
executes when rules are applied [18, 21]. Several 
commercial OO-based business rule systems exist (e.g. 
ILOG [20], JRules, JESS, OPS/J, Blaze Advisor [18]).  

3  Problem Description 

Architecturally, centralized rule management systems 
often share a common, two-tier structure, comprised of a 
rule repository and a software tier providing application 
logic for rule management and enforcement.  The 
majority of repositories are based on a database 
management system (DBMS) while other implementations 
have followed different software engineering practices (e.g. 
functional, procedural, and object-oriented). The ways of 
expressing rules have been equally diverse, leading to 
numerous proprietary, incompatible formats. 

However, centralization is inflexible, has scalability 
limitations and introduces a single point of failure. 
Another deficiency is the inability of such systems to 
handle dynamic changes in the rules and the environment. 
Few systems allow rule changes during real-time operation 
[3, 4] and many require processing halts to perform rule 
updates.  

4  The Rule Management System 

To address these problems, we developed a distributed rule 
management system. In the following sections we present 
the rule types, distributed rule engines and the relevant 
algorithms for rule enforcement, task processing and  
conflict resolution. 

4.1  Infrastructure and Environment 

In a network environment services and resources  
(e.g. CPUs, permanent storage, memory) are widely 
available and accessible. To utilize them a necessary 
underlying infrastructure must exit to provide basic 
network services such as addressing, routing, messaging, 
resource discovery (i.e. functionality similar to the Domain 
Name System) and task management (i.e. tracking of tasks  
processed in the environment). To emulate the 
environment, we use Middleware++, a distributed 
computing platform [10] which provides this functionality. 

In the environment, a task can be a computation, or a 
resource or a service request. All tasks are subject to rules. 
Sequencing and combining tasks can compose more 
complex activities.  The proposed  rule processing 
system is extensible enough to handle complex activities 
but  for simplicity, we omit task composition and focus 
on rule  enforcement to simple, atomic tasks. 

4.2  Rule Types 

Rule types can be classified in two categories 
depending on the effects of their enforcement. Rules that 
affect task parameters belong to either Stimulus/Response 
or Computation Rules. Similarly, rules that affect the task 
execution sequence belong to either Structure or 
Operational Constraint Rules. 

We assume that n ≥ 1 and k ≥ 1 so that  
P1 ∧ P2 ∧ ... ∧ Pn  

is a conjunction of n predicates and A1 ∧ A2 ∧ ... ∧ Ak is 
the set of conjunctions of k actions.  Predicates (Pn) and 
results (Ak) express values of operands using relational 
operators from set S, where S = {>, <, ≠, =, ≤, ≥}.  

Definition 1. Stimulus/Response Rules define what 
conditions must be met before an activity can legally take 
place: RSR:  if P1 ∧ P2 ∧... ∧ Pn then A1 ∧ A2 ∧ ... ∧ Ak 
If a "WHEN" condition is used, the predicate is temporal: 
 RSR':  when P1 ∧ P2 ∧... ∧ Pn then A1 ∧ A2 ∧ ... ∧ Ak   

Definition 2. Operation Constraint Rules define 
constraints that must hold before and/or after an activity; 

ROC: if P1 ∧ P2 ∧... ∧ Pn then  [Q] A1 ∧ A2 ∧ ... ∧ 
Ak[S] 

Where Q is a pre-condition that states the properties 
that must hold whenever the activity is to be performed 
and S is a post-condition that states the properties the 
activity guarantees will hold when it is completed.  
Isolating the right-hand side of the ROC, we observe a 
Hoare triple  in the form: [Q]Ak[S], expressed as: "if Q is 
true before an activity Ak is executed, and the execution of 
Ak terminates, then S is true afterwards".  It is implied 
that the triple does not assert that Ak will terminate. 

Definition 3. Structure Constraint Rules specify 
constraints on tasks, which must never be violated. These  
rules are similar to class and loop invariants in software 
engineering. A class invariant refers to an assertion 
describing a property, which holds for all instances of a 
class. A loop invariant refers to an assertion that must be 
satisfied prior to the first execution of a loop, and 
preserved at each iteration, so that it will hold on loop 
termination. In the context of task and rule processing, a 
rule R expresses an invariance property for task Ti, if R is 
valid in every state("must always hold") of the 
computation during processing of task Ti. The rules can be 
described in the general form: 

 RSC: it must always hold that P1 ∧ P2 ∧... ∧ Pn 
or, with a more the complex construct: 

RSC: it must always hold that 
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if  P1 ∧ P2 ∧... ∧ Pn then A1 ∧ A2 ∧ ... ∧ Ak 
Definition 4. Computational Rules describe 

processing algorithms or equations. This is a widely used 
general case of Stimulus/Response Rules, where the 
predicates are TRUE and the activity is either an algorithm 
execution or a computation:  

 RCR:  y=f(x) 

4.3  Rule Elements 

Each rule is expressed in an XML document, 
decomposing rule parts into document elements. The only 
required elements for expressing the rules are listed in 
Table 1. As there is no limit to the number of additional 
elements or types, the XML schema (XSD) can be 
extended or customized accordingly. 

Table 1.Elements of an XML rule document 

Element Description 
ruleID Composite value, in the form: 

<RuleEngineID>.<Rule Number>. 

rule_type (see section 4.2) 

rule_task_type Category of tasks a rule is applicable to.  

priority Rule execution priority. Integer between 
1-4 . Value of 1 indicates highest priority.

LHS, RHS Identifies the conjunction conditions of 
the n predicates (P) and the conjunction of 
the k results (A) respectively. 

status Current rule state. See Fig. 1 for possible 
states. 

creationdate, 
effect-date, 
expiry-date, 
lifetime 

Timestamp-elements 

 
Rules may be in any of the following states: 

formulated (new), activated (active), enforceable 
(enforced) or deactivated (dormant).  Formulation occurs 
when a “higher power” (i.e. user) creates new rules.  

Fig. 1  Rule life cycle state transition diagram. 

New rules can then be activated.  An activated rule 
may become enforced, i.e. applied to tasks, or become 
deactivated (inactive, retired, expired) or dormant. A 
dormant rule can be re-activated at any time. The rule 

execution life-cycle can be represented (Fig. 1) as a state 
transition diagram with the four possible states: new, 
active, inactive and enforced. The first three states are final 
while the last is not.  Rule execution is deterministic and 
can be expressed as a deterministic finite automaton, R by 
the 5-tuple: R= (Q, Σ, q0, F, δ) where Q is a finite set of 
states, Σ is a finite set of input events e with Σ={activate, 
trigger, execute, deactivate} and q0 (new) being the start 
state.  F is the set of final states and a subset of Q with 
F={new, active, dormant}; δ is the transition function from 
Q x Σ to Q so that δ (q, e) is a state for each state q and 
input event e.   

In human organizations, rules may have different 
degrees of enforcement ranging from strict to very relaxed 
or even ignored. Discretionary rule enforcement 
complicates rule management beyond the scope of this 
work. We assume all rule enforcement to be strict. 

4.4  System Architecture 

The basic elements of the system architecture are the 
rule processing engine and the rule repository. 

4.4.1  Rule Engine 

The Business Rule Engine (BRE) processes tasks and 
enforces rules, provides rule maintenance facilities and 
communicates with other rule engines. Collaboration 
between rule engines is necessary when different resources 
(e.g. CPUs) collaborate, each with their own rule engines 
and rules. 

 

Figure 2: BRE Architecture and Processing Diagram 

The core of the BRE is a processing engine that 
contains the logic, a rule repository for rule storage, a first-
in-first-out (FIFO) queue to manage incoming tasks and a 
set of graphical user interfaces for rule management 
(editing) and real-time monitoring (Fig. 2). 

4.4.2  Rule Repository 

The rule repository stores the XML rules. We have 
experimented with both an external database management 
system and a data structure (hash table) for the 
implementation of the repository. In the former 
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implementation, a record stores a rule with each XML 
element occupying a separate record field.  All rule 
engine functionality is facilitated via SQL commands.  In 
the data structure approach, rules are stored in a hash table 
with each rule and the resulting hash structure 
implemented as a Java object.  

During the development and further experimentation 
of the prototype, we favored the data structure 
implementation. It has offered us a lightweight and 
portable, repository without the overhead of a database and 
relieved the rule engine of the generation of SQL queries. 
Implementing rules as objects provided the ability to 
invoke methods that directly access rules and their 
parameters. 

4.5  Rule Computation and Processing 

With the rule engines and repositories in place, the 
environment can process task and enforce rules. In the 
next sections we describe the task processing algorithms 
and the conflict resolution algorithms to address resource 
sharing conflicts that are likely to appear in a distributed 
environment. 

4.5.1  Task Processing 

Each rule engine is instantiated object that accepts 
tasks in XML format and processes them in a FIFO order.  
When tasks arrive at a rule engine, the task type is 
identified and applicable rules are retrieved from the rule 
repository generating a rule candidate set.  

Applicable rules, are all the rules with a matching 
task type. While each rule is designed to constrain or 
regulate a specific task, each rule also includes a 
rule_task_type element to specify the kind of tasks it is 
applicable to.  Rules in the candidate set are examined 
for possible conflicts. Conflicts are resolved using a 
conflict resolution mechanism described in the next 
section. Rules are enforced via method invocation 
according to rule predicates (conditions) and modifying 
task parameters according to rule results (actions).  Upon 
completion, the now rule-enforced task is released for 
execution.   

A rule-processing algorithm (Fig. 3) is used to match, 
retrieve, resolve conflicts and apply business rules to 
incoming tasks. In method RETRIEVERULES the initial 
matching of the task_type element of an incoming task is 
performed against the contents of the rule repository. The 
resulting collection of all applicable rules constitutes the 
candidate set. The candidate set may contain rule conflicts, 
which have to be resolved before rule enforcement.  
Method CATEGORIZERULES performs the first step of 
conflict resolution by identifying and separating the 
Structure Constraint rules from the candidate set, forming 
a subset of candidate set rules identified as "scr".  The 
RESOLVECONFLICTS method receives both the candidate 
and scr sets. The method proceeds to apply a pre-defined 
conflict resolution technique, which in turn produces a 
conflict-free rule execution sequence. The last step 

(APPLYRULES) of the algorithm applies (enforces) the 
rules on the task.  

 

Fig. 3: Algorithm and methods for task processing and rule enforcement 

 
During this processing sequence and after the creation 

of the candidate set all activities are treated as a single 
atomic operation to preserve the integrity of the operation 
and the state of the rule engine.   

4.5.2  Dynamically Prioritized Conflict Resolution 

Each rule engine contains conflict resolution logic 
capable of ensuring rule enforcement integrity. When the  
candidate set is generated, it may contain conflicting rules.  

Conflict falls under two general categories. In the first 
category, conflicts affect the sequence of rule execution 
(Sequence Conflicts). Such conflicts could manifest 
between two applicable rules, with one accepting a task 
and the other rejecting it.  In the second category, 
conflicts that result in non-deterministic task parameter 
modifications are classified as Parameter Conflicts. An 
example of a Parameter Conflict appears when two or 
more rules modify the same task parameter but compute its 
value using different formulas and produce different 
results.  

A dynamically prioritized conflict resolution 
algorithm resolves conflicts before rule enforcement. The 
algorithm is dynamic because it is applied over a 
dynamically generated set of applicable rules for a specific 
task rather than being indiscriminately applied to all rules 
residing in a repository. The objective of the algorithm is 
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to create a rule enforcement sequence and remove any 
conflicting rules. These objectives are accomplished by 
using the following sequence of strategies: 
(a) Logical Precedence.  It works by placing rules that 

should logically be executed first at the top of the rule 
enforcement sequence.  These rules prevail over any 
conflict with other rules and their role is to evaluate 
whether a task should be further processed or not. In 
some cases, by terminating task processing, they 
provide an additional crude resolution mechanism by 
preempting any further conflict resolution 
consideration.  

(b) Priority-based Rule Ordering.  It works by sorting  
the rules based on their priority. In addition, it 
eliminates duplicate rules and guarantees that any rule 
can only be applied once to a specific task, thus 
preventing repetitive enforcement and loops.    

(c) Temporal Ordering. It is the last conflict resolution 
tactic and the least utilized. It resolves conflicts by 
promoting rules with the latest creation date. Although 
an arbitrary mechanism, it assumes that more recently 
defined rules reflect the most up-to-date snapshot of 
the environment’s regulations. 
During the execution of these conflict resolution 

strategies, additional conflicts may emerge. For instance, 
Logical Precedence may place two conflicting rules at the 
top of the enforcement sequence. When this occurs, the 
conflict resolution mechanism attempts to resolve these 
conflicts by repeatedly applying the entire conflict 
resolution strategy. 

Due to their nature, Structure Constraint Rules (SCR) 
must be applied first. For instance, a SCR that mandates 
that “task Ti must execute after task Tj” indicates the 
specific rule must be enforced independently of any other 
rule type that may be modifying parameters of either task. 
Therefore, SCR rules are identified and removed from the 
candidate set, creating a temporary separate rule pool. If a 
Sequence Conflict exists with one of the conflicting rules 
not in this SCR pool, the non-SCR is automatically 
discarded as the SCR always prevails.  If both rules are 
part of the SCR pool, the conflict is resolved by comparing 
their priority. If the priority criterion also fails to provide a 
resolution, the rule with the latest creation date value 
prevails. The rationale behind this arbitrary temporal 
ordering resolution assumes that older rules may be "stale" 
and less reflective of the latest set of constraints. 

Next, the SCR pool and the  rules in the candidate 
set are examined for Parameter Conflicts. If two rules 
affect one or more common parameters when enforced, the 
rules are conflicting. Again, the same conflict resolution 
sequence as before is used, first applying Priority-Based 
Rule Ordering and if this criterion also fails, proceed with 
the most recent creation date.  

The same conflict resolution sequence takes place for 
any of the remaining conflicting rules in the candidate set. 
When all conflicts are resolved, the rules are sorted in both 
the SCR pool and the candidate set by descending Priority 

order.  The combination of these two rule-sets represents 
the enforcement sequence. The conflict resolution 
mechanism then releases control and the rules are enforced. 

5  Distributed Rule Engines 

Thus far, the architecture of a standalone rule engine 
has been described.  In distributed environments there 
may be numerous rule engines, each serving a resource or 
service hierarchy, or an ad hoc collection of components 
(e.g. a cluster of CPUs, an array of storage devices). 
Therefore, applicable rules for a task may be scattered in 
multiple repositories and collaboration among rule engines 
becomes necessary. 

There is no restriction on the number or location of 
rule engines. Engines scattered throughout an environment 
may contain complementary rule sets. With multiple rule 
engines, issuing a task is followed by a search for all rules 
applicable to that task. The search starts from a single rule 
engine and continues by searching peer engines for 
additional applicable rules. Engine selection is based on 
either proximity or a Least Utilization Factor (LUF) 
algorithm.  Proximity is determined by topology and 
relationship. By topology, two nodes residing within the 
same network partition (i.e. same subnet) are considered 
"closer" than nodes residing in two different subnets. By 
relationship, two objects that are members of the same 
resource or service group unit are “closer” than non-
member objects.  

The LUF algorithm requires the polling of multiple 
engines and exchange of messages to retrieve the FIFO 
queue size from each engine and determine the smallest 
task-processing load. Unfortunately, the LUF incurs 
communication costs and may provide unreliable 
measurements as it retrieves rule engine load information 
for a specific point in time, which may quickly change and 
become inaccurate. However, the LUF algorithm is useful 
and supports the notion of distributing the processing load 
among various rule engines. When the Proximity 
technique is used, a congested rule engine may become 
even more congested simply because it is "closer" to a 
group of very active objects. Using the LUF technique, the 
processing load is distributed to other, less busy engines. 

5.1  Distributed Rule Processing Algorithm 

A typical issue in distributed environments is 
resource discovery, and in this case, rule engine discovery.  
Upon instantiation, each rule engine registers its contact 
information with a discovery service running in the 
environment [10]. At the same time, each engine retrieves 
contact information about other engines already registered 
and stores that information in an internal list.   
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Fig. 4: Algorithm segments for peer discovery and query propagation 

The contents of this list are updated at regular 
intervals, serving as mini-registries to generate queries for 
peer engines when distributed rule searches are initiated. 
In turn, contacted peer engines generate new connections 
according to their own mini-registries. As a result, 
discovery of other engines is a byproduct of the search 
process.   

Using the mini-registries is advantageous in terms 
performance and fault tolerance. The performance 
improvement is realized by avoiding the processing 
overhead incurred from the interaction with the Resource 
Discovery Service (e.g. network communication, issuing 
remote service requests, handling responses).  Fault 
tolerance is attained by not depending on the availability 
of the Resource Discovery service to complete the 
distributed searches. 

The algorithm in Figure 4 describes the additional 
algorithm segments for obtaining other peers and 
propagating queries. 

When a task is sent for rule processing (Figure 5), it 
arrives to a single rule engine (BRE0), which plays the 
role of the search initiator and rule collector. BRE0 first 
searches within its own rule repository and then checks for 
the availability of relevant rule types in peer engines 
(BREn). Peer engines forward search queries to their peers 
and so on, until a time-to-live (TTL) variable is met. The 
TTL variable ensures query termination by preventing 
searches of infinite depth. Hoping from one engine to the 
next, allows peer engines to generate new connections to 
their peers, making the discovery of further engines a 
byproduct of the search process.  

After peer engines have been queried, results are 
returned to BRE0 for rule enforcement.  Enforcement 
follows the PROCESSTASK algorithm described in section 
4.5.1. The only difference with the stand-alone engine 
processing is the contents of the candidate set, which now  
include applicable rules retrieved from remote engines. 

Fi
gure 5:  Rule search in a P2P environment with n BREs. 

If a rule already exists in the candidate set, the 
incoming rule is discarded to improve performance by 
limiting the number of rules to be processed.  Once the 
population of the candidate set is completed the dynamic 
conflict resolution mechanism goes in effect. 

6  Nested Rules & Extraneous Conditions 

It is possible that rules may need to be nested, improving 
on their power of enforcement. While nested rules may  
provide a better “packaged” solution, they increase  
processing complexity and the risk of causing non-
terminating conditions such as endless loops during  
enforcement. The proposed system supports nested rules 
and provides a mechanism to avoid extraneous conditions. 

6.1   Nested Rules 

During rule formulation, a rule G may be nested, 
referring to one or more rules. When this occurs the rule 
types are formulated as follows. 
A Stimulus-Response rule may be a nested rule and refer to 
one or more G1..k rules or refer to the conjunction of G1..k 
rules with Ak other actions, formed as: 

RSR: if P1 ∧ P2 ∧ ... ∧ Pn then A1 ∧ G1 ∧ ... ∧ Gk ∧ Ak 
where Pn are the predicates, Ak are the resulting actions 
and G1..k nested rules.  

An Operation Constraint Rule may behave as a 
nested rule if it has  G1..k rules both in conjunction with 
the activities (Ak) and the pre and post-conditions (Q, S): 

ROC: if P1 ∧ P2 ∧... ∧ Pn then  
 [Q G2] A1  ∧ G1  ∧ Α2   ∧..∧ Ak [S G3] 
Similarly, a Structure Constraint Rule may become a 

nested rule if it has G1..k  nested rules in conjunction with 
the activities (Ak): 

RSC: if P1 ∧ P2 ∧... ∧ Pn accept | reject  
 A1 ∧ G1 ∧  Α2  ∧..∧ Gk  ∧ Ak 

Finally, Computation Rules (RCR: y=f(x)) may also 
be nested if they contain mathematical recursive 
definitions within the f(x) component. Since Computation 
Rules are user-defined functions, it is impossible to 
provide a universal nested rule formalism. Therefore, we 
accept axiomatically that such rule can be generated. 
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These nested rule formalisms indicate that if a rule 
with nested rules is properly stated, then it is valid. To 
enforce such rule, all the nested rules are fetched in the 
candidate set and processing continues as previously 
described.  A similar case may also appear in distributed 
searches with multiple engines having local rules 
referencing rules on remote engines.  When nested rules 
are permitted in a distributed setting, processing 
termination is a concern since rules may trigger each other 
indefinitely, causing infinite loops.  

In a single rule engine, nested rules are managed with 
intelligent user interfaces that forbid new rules to be 
entered if a loop is detected.  With multiple rule engines, 
there is no single interface to detect loops. When rule 
engines process rules with references to remote engines, 
the remote engine is queried and matching rules are 
fetched and processed as if they were local rules.  This 
does not guarantee that remote rules do not contain nested 
rules (local and remote) causing a cascading effect of  
loops between rules and remote engines.  Unlike the case 
of single, standalone rule engine repositories where loops 
may be detected and avoided as early as rule definition, the 
case of multiple, distributed rule engines is much more 
complex. There is no accurate up-to-date global view of all 
rule-sets and attempting to detect potential looping 
references cross multiple engines is computationally 
expensive. 

Determining in advance whether the rules are 
guaranteed to terminate is an undecidable problem, 
although conservative algorithms do exist  and generate 
warnings indicating the possibility of infinite looping.  
This problem is addressed by enforcing a strict, rule 
execution depth limit. The depth limit guarantees that if a 
sequence of rules is repeated, a certain number of times 
then rule processing is terminated and results up to that 
point are returned for processing. 

6.1.1   Optimistic Fault Tolerance 

Grid and P2P environments are comprised of units 
that often become unavailable for a certain time periods or, 
they completely disappear. This condition may arise 
between collaborating rule engines and it is addressed by 
implementing basic fault tolerance mechanism.  After 
task enforcement, non-local rules are integrated and kept 
in the rule engine that initiated and enforced the rules.  
This integration of non-local rules serves as an optimistic 
fault tolerance mechanism and a performance enhancing 
technique for environments with static rule-sets. In case of 
a remote engine failure, access to the local copy of the 
remote engine’s rules provides a degree of fault tolerance. 
In addition, retrieval performance may increase by treating 
the local instance of the remote rules as a cached copy.  
For environments with dynamic rule-sets (rule-sets that 
continually get updated), rule engines can be configured to 
ignore any local rule-sets and always attempt to retrieve 
the latest rules. 

Overall, the use and participation in the distributed 
rule engine environment is optional and can be changed 

during real-time operations. The ability to decline 
participation is advantageous for environments that wish to 
impose strict enforcement of very specific rule-sets. On the 
other hand, environments with multiple collaborating 
engines, operating with broader rule-sets and looser rule 
enforcement requirements, can take advantage of the 
scalability benefits offered by the P2P-based processing. 

7  Conclusion and Future Work 

We have presented the architecture, components and 
functionality of a distributed system for rule representation 
and computation. 

The objective of our work was to provide a 
comprehensive distributed rule processing system that 
reconciles the shortcomings of existing monolithic, 
centralized systems. The described system and 
implementation provides a viable replacement, using 
multiple, distributed, lightweight rule engines that can 
operate concurrently, avoid bottlenecks and single points 
of failure. 

We have presented the architecture, components and 
functionality of this system and described its 
implementation. We expressed rules using standard XML 
constructs with a minimal, but very general, predefined 
range of syntax and semantics.  We proceeded by 
developing the concept of lightweight rule engines able to 
accept tasks, apply relevant rules, resolve conflicts, modify 
tasks and return them for distribution and execution.  We 
extended the use of the single rule engine to a network of 
multiple loosely connected collaborating engines allowing 
rule sharing.  The presented solution has the usual many 
advantages of a distributed system over centralized 
solutions and typical problems to overcome when 
distributing the system (e.g. rule conflicts) are addressed. 

Overall, by borrowing operating principles from P2P 
networks, we developed a general, distributed rule 
processing architecture that can be applied to any 
environment with similar computation and distribution 
requirements. 

For the future,  we plan on taking a two-step 
approach. First, we will use the proposed system to 
exercise the implementation  using a particular case study. 
Second, we will undertake performance analysis studies to 
determine the processing efficiency and cost overheads of 
the typical operation and the conflict resolution 
mechanisms. 
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