
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

397

Manuscript received August 5, 2008.
Manuscript revised August 20, 2008.

Architecture and Algorithms for Distributed Rule Management

and Processing

George Dimitoglou† and Shmuel Rotenstreich††,

†Department of Computer Science, Hood College, Frederick, MD, USA
††Department of Computer Science, The George Washington University, Washington, DC, USA

Summary
Many distributed computing environments are based on the
paradigms of peer-to-peer networks and grid-based computing.
These environments tend to be structurally dynamic but with
volatile resource and service availability. Such environments
have rules, constraints, and guidelines that govern how tasks are
performed. The rules describe how resources, components and
services should be allocated and resemble business rules in
human organizations. Centralized rule processing in such
dynamic environments suffers from scalability and reliability and
issues.. We present the architecture and processing algorithms of
a distributed rule management system. The system allows the
management, distribution and execution of rules in distributed
environments characterized by volatile recourse and service
availability.

Key words:
Distributed computing, rule processing algorithms, rule
management system, P2P, grid environments

1 Introduction

Distributed, networked environments have implicit or
explicit rules and constraints governing how different
computations are performed. These rules describe how
environment resources and services “do business” so they
resemble business rules in human organizations.
Business rules are statements that specify and enforce
logic for constraints, validations and other actions that
constitute and enforce policies.

In computing environments policies can relate to
various operating aspects such as quality of service (QoS),
security and resource utilization. Grid computing and
Peer-to-Peer (P2P) networks are typical environments with
explicit and implicit rules. In grid-based computing
specific rules are enforced with respect to the accessibility,
availability and utilization of resources. In P2P-based
environments, implicit but enforceable rules, such as the
volume of a peer’s file sharing determines the peer’s status
and role in the network. In both of these examples, using
rules enables the consistent and systematic enforcement of
constraints.

In this paper we present a general, distributed rule

management system, applicable to any distributed
environment. Existing rule systems offer centralized
architectures, which don’t scale well and introduce a single
point of failure.

Throughout this work we assume the operating
environments consisting of numerous resources, services,
loosely coupled objects, groups and hierarchies engaging
in different activities. The activities can vary from simple
transactions such as resource discovery and file exchanges
to complex computations such as resource negotiation and
collaborative problem-solving.

The paper is organized in two general thematic parts.
The first part describes the rules, their formulation and
their processing by rule engines. The second part describes
the algorithms and the distribution of the rule engines.

In the next sections we present the related work in the
area of rule processing and describe the general problem.
Then, we present the proposed rule management system,
the rule formulations, types and the core mechanism: the
rule engine. The rest of the paper contains the algorithms
for rule processing and the distributed architecture along
with techniques that mitigate inherent issues to distribution
such as conflict resolution and fault tolerance. We
conclude by summarizing the work and discussing future
work.

2 Related Work

In the past, rules and their enforcement, have been
investigated in the areas of artificial intelligence and
expert systems [25] under the concept of “production
rules” [2, 7, 30]. Grosof et al [12-15, 26] recently extended
this work by taking advantage the declarative nature of
business rules, expressing them using XML and
introduced rule conflict-handling methodologies. Rules
have also been examined in databases as “triggers” and
“event-condition-action” (ECA) rules. Irrespective of their
name, rules played an instrumental role in introducing
reactive behavior in applications and enhancing automated
validation techniques [9]. Their use has propelled the
development of another genre of database systems known
as active databases [6, 8, 10, 22]. Numerous prototypes
(HiPAC [5, 8], POSTGRES [27, 28] Ariel [17], Starburst
[31, 32]) were developed following the active database

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

398

approach and many evolved to full-scale commercial
systems. Today, trigger and production rule functionality
has been extended from databases and expert systems to
business processes, replacing the terms production rules
and triggers with the term business rules. As a result,
business rule management systems have been developed to
"serve" regulations to business processes and activities.
Many of these systems have successfully borrowed
principles from databases (e.g. triggers), expert systems
(e.g. inference algorithms) and workflow systems [3, 4, 23,
29]. Object-oriented (OO) technologies have extended
these systems even further. Most new systems no longer
use triggers or stored procedures, but store rules as
programmable objects translated to executable code that
executes when rules are applied [18, 21]. Several
commercial OO-based business rule systems exist (e.g.
ILOG [20], JRules, JESS, OPS/J, Blaze Advisor [18]).

3 Problem Description

Architecturally, centralized rule management systems
often share a common, two-tier structure, comprised of a
rule repository and a software tier providing application
logic for rule management and enforcement. The
majority of repositories are based on a database
management system (DBMS) while other implementations
have followed different software engineering practices (e.g.
functional, procedural, and object-oriented). The ways of
expressing rules have been equally diverse, leading to
numerous proprietary, incompatible formats.

However, centralization is inflexible, has scalability
limitations and introduces a single point of failure.
Another deficiency is the inability of such systems to
handle dynamic changes in the rules and the environment.
Few systems allow rule changes during real-time operation
[3, 4] and many require processing halts to perform rule
updates.

4 The Rule Management System

To address these problems, we developed a distributed rule
management system. In the following sections we present
the rule types, distributed rule engines and the relevant
algorithms for rule enforcement, task processing and
conflict resolution.

4.1 Infrastructure and Environment

In a network environment services and resources
(e.g. CPUs, permanent storage, memory) are widely
available and accessible. To utilize them a necessary
underlying infrastructure must exit to provide basic
network services such as addressing, routing, messaging,
resource discovery (i.e. functionality similar to the Domain
Name System) and task management (i.e. tracking of tasks
processed in the environment). To emulate the
environment, we use Middleware++, a distributed
computing platform [10] which provides this functionality.

In the environment, a task can be a computation, or a
resource or a service request. All tasks are subject to rules.
Sequencing and combining tasks can compose more
complex activities. The proposed rule processing
system is extensible enough to handle complex activities
but for simplicity, we omit task composition and focus
on rule enforcement to simple, atomic tasks.

4.2 Rule Types

Rule types can be classified in two categories
depending on the effects of their enforcement. Rules that
affect task parameters belong to either Stimulus/Response
or Computation Rules. Similarly, rules that affect the task
execution sequence belong to either Structure or
Operational Constraint Rules.

We assume that n ≥ 1 and k ≥ 1 so that
P1 ∧ P2 ∧ ... ∧ Pn

is a conjunction of n predicates and A1 ∧ A2 ∧ ... ∧ Ak is
the set of conjunctions of k actions. Predicates (Pn) and
results (Ak) express values of operands using relational
operators from set S, where S = {>, <, ≠, =, ≤, ≥}.

Definition 1. Stimulus/Response Rules define what
conditions must be met before an activity can legally take
place: RSR: if P1 ∧ P2 ∧... ∧ Pn then A1 ∧ A2 ∧ ... ∧ Ak
If a "WHEN" condition is used, the predicate is temporal:
 RSR': when P1 ∧ P2 ∧... ∧ Pn then A1 ∧ A2 ∧ ... ∧ Ak

Definition 2. Operation Constraint Rules define
constraints that must hold before and/or after an activity;

ROC: if P1 ∧ P2 ∧... ∧ Pn then [Q] A1 ∧ A2 ∧ ... ∧
Ak[S]

Where Q is a pre-condition that states the properties
that must hold whenever the activity is to be performed
and S is a post-condition that states the properties the
activity guarantees will hold when it is completed.
Isolating the right-hand side of the ROC, we observe a
Hoare triple in the form: [Q]Ak[S], expressed as: "if Q is
true before an activity Ak is executed, and the execution of
Ak terminates, then S is true afterwards". It is implied
that the triple does not assert that Ak will terminate.

Definition 3. Structure Constraint Rules specify
constraints on tasks, which must never be violated. These
rules are similar to class and loop invariants in software
engineering. A class invariant refers to an assertion
describing a property, which holds for all instances of a
class. A loop invariant refers to an assertion that must be
satisfied prior to the first execution of a loop, and
preserved at each iteration, so that it will hold on loop
termination. In the context of task and rule processing, a
rule R expresses an invariance property for task Ti, if R is
valid in every state("must always hold") of the
computation during processing of task Ti. The rules can be
described in the general form:

 RSC: it must always hold that P1 ∧ P2 ∧... ∧ Pn
or, with a more the complex construct:

RSC: it must always hold that

399IJCSNS Intl. Journal of Computer Science and Network Security, VOL. No.8, August 2008

if P1 ∧ P2 ∧... ∧ Pn then A1 ∧ A2 ∧ ... ∧ Ak
Definition 4. Computational Rules describe

processing algorithms or equations. This is a widely used
general case of Stimulus/Response Rules, where the
predicates are TRUE and the activity is either an algorithm
execution or a computation:

 RCR: y=f(x)

4.3 Rule Elements

Each rule is expressed in an XML document,
decomposing rule parts into document elements. The only
required elements for expressing the rules are listed in
Table 1. As there is no limit to the number of additional
elements or types, the XML schema (XSD) can be
extended or customized accordingly.

Table 1.Elements of an XML rule document

Element Description
ruleID Composite value, in the form:

<RuleEngineID>.<Rule Number>.

rule_type (see section 4.2)

rule_task_type Category of tasks a rule is applicable to.

priority Rule execution priority. Integer between
1-4 . Value of 1 indicates highest priority.

LHS, RHS Identifies the conjunction conditions of
the n predicates (P) and the conjunction of
the k results (A) respectively.

status Current rule state. See Fig. 1 for possible
states.

creationdate,
effect-date,
expiry-date,
lifetime

Timestamp-elements

Rules may be in any of the following states:

formulated (new), activated (active), enforceable
(enforced) or deactivated (dormant). Formulation occurs
when a “higher power” (i.e. user) creates new rules.

Fig. 1 Rule life cycle state transition diagram.

New rules can then be activated. An activated rule
may become enforced, i.e. applied to tasks, or become
deactivated (inactive, retired, expired) or dormant. A
dormant rule can be re-activated at any time. The rule

execution life-cycle can be represented (Fig. 1) as a state
transition diagram with the four possible states: new,
active, inactive and enforced. The first three states are final
while the last is not. Rule execution is deterministic and
can be expressed as a deterministic finite automaton, R by
the 5-tuple: R= (Q, Σ, q0, F, δ) where Q is a finite set of
states, Σ is a finite set of input events e with Σ={activate,
trigger, execute, deactivate} and q0 (new) being the start
state. F is the set of final states and a subset of Q with
F={new, active, dormant}; δ is the transition function from
Q x Σ to Q so that δ (q, e) is a state for each state q and
input event e.

In human organizations, rules may have different
degrees of enforcement ranging from strict to very relaxed
or even ignored. Discretionary rule enforcement
complicates rule management beyond the scope of this
work. We assume all rule enforcement to be strict.

4.4 System Architecture

The basic elements of the system architecture are the
rule processing engine and the rule repository.

4.4.1 Rule Engine

The Business Rule Engine (BRE) processes tasks and
enforces rules, provides rule maintenance facilities and
communicates with other rule engines. Collaboration
between rule engines is necessary when different resources
(e.g. CPUs) collaborate, each with their own rule engines
and rules.

Figure 2: BRE Architecture and Processing Diagram

The core of the BRE is a processing engine that
contains the logic, a rule repository for rule storage, a first-
in-first-out (FIFO) queue to manage incoming tasks and a
set of graphical user interfaces for rule management
(editing) and real-time monitoring (Fig. 2).

4.4.2 Rule Repository

The rule repository stores the XML rules. We have
experimented with both an external database management
system and a data structure (hash table) for the
implementation of the repository. In the former

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

400

implementation, a record stores a rule with each XML
element occupying a separate record field. All rule
engine functionality is facilitated via SQL commands. In
the data structure approach, rules are stored in a hash table
with each rule and the resulting hash structure
implemented as a Java object.

During the development and further experimentation
of the prototype, we favored the data structure
implementation. It has offered us a lightweight and
portable, repository without the overhead of a database and
relieved the rule engine of the generation of SQL queries.
Implementing rules as objects provided the ability to
invoke methods that directly access rules and their
parameters.

4.5 Rule Computation and Processing

With the rule engines and repositories in place, the
environment can process task and enforce rules. In the
next sections we describe the task processing algorithms
and the conflict resolution algorithms to address resource
sharing conflicts that are likely to appear in a distributed
environment.

4.5.1 Task Processing

Each rule engine is instantiated object that accepts
tasks in XML format and processes them in a FIFO order.
When tasks arrive at a rule engine, the task type is
identified and applicable rules are retrieved from the rule
repository generating a rule candidate set.

Applicable rules, are all the rules with a matching
task type. While each rule is designed to constrain or
regulate a specific task, each rule also includes a
rule_task_type element to specify the kind of tasks it is
applicable to. Rules in the candidate set are examined
for possible conflicts. Conflicts are resolved using a
conflict resolution mechanism described in the next
section. Rules are enforced via method invocation
according to rule predicates (conditions) and modifying
task parameters according to rule results (actions). Upon
completion, the now rule-enforced task is released for
execution.

A rule-processing algorithm (Fig. 3) is used to match,
retrieve, resolve conflicts and apply business rules to
incoming tasks. In method RETRIEVERULES the initial
matching of the task_type element of an incoming task is
performed against the contents of the rule repository. The
resulting collection of all applicable rules constitutes the
candidate set. The candidate set may contain rule conflicts,
which have to be resolved before rule enforcement.
Method CATEGORIZERULES performs the first step of
conflict resolution by identifying and separating the
Structure Constraint rules from the candidate set, forming
a subset of candidate set rules identified as "scr". The
RESOLVECONFLICTS method receives both the candidate
and scr sets. The method proceeds to apply a pre-defined
conflict resolution technique, which in turn produces a
conflict-free rule execution sequence. The last step

(APPLYRULES) of the algorithm applies (enforces) the
rules on the task.

Fig. 3: Algorithm and methods for task processing and rule enforcement

During this processing sequence and after the creation

of the candidate set all activities are treated as a single
atomic operation to preserve the integrity of the operation
and the state of the rule engine.

4.5.2 Dynamically Prioritized Conflict Resolution

Each rule engine contains conflict resolution logic
capable of ensuring rule enforcement integrity. When the
candidate set is generated, it may contain conflicting rules.

Conflict falls under two general categories. In the first
category, conflicts affect the sequence of rule execution
(Sequence Conflicts). Such conflicts could manifest
between two applicable rules, with one accepting a task
and the other rejecting it. In the second category,
conflicts that result in non-deterministic task parameter
modifications are classified as Parameter Conflicts. An
example of a Parameter Conflict appears when two or
more rules modify the same task parameter but compute its
value using different formulas and produce different
results.

A dynamically prioritized conflict resolution
algorithm resolves conflicts before rule enforcement. The
algorithm is dynamic because it is applied over a
dynamically generated set of applicable rules for a specific
task rather than being indiscriminately applied to all rules
residing in a repository. The objective of the algorithm is

401IJCSNS Intl. Journal of Computer Science and Network Security, VOL. No.8, August 2008

to create a rule enforcement sequence and remove any
conflicting rules. These objectives are accomplished by
using the following sequence of strategies:
(a) Logical Precedence. It works by placing rules that

should logically be executed first at the top of the rule
enforcement sequence. These rules prevail over any
conflict with other rules and their role is to evaluate
whether a task should be further processed or not. In
some cases, by terminating task processing, they
provide an additional crude resolution mechanism by
preempting any further conflict resolution
consideration.

(b) Priority-based Rule Ordering. It works by sorting
the rules based on their priority. In addition, it
eliminates duplicate rules and guarantees that any rule
can only be applied once to a specific task, thus
preventing repetitive enforcement and loops.

(c) Temporal Ordering. It is the last conflict resolution
tactic and the least utilized. It resolves conflicts by
promoting rules with the latest creation date. Although
an arbitrary mechanism, it assumes that more recently
defined rules reflect the most up-to-date snapshot of
the environment’s regulations.
During the execution of these conflict resolution

strategies, additional conflicts may emerge. For instance,
Logical Precedence may place two conflicting rules at the
top of the enforcement sequence. When this occurs, the
conflict resolution mechanism attempts to resolve these
conflicts by repeatedly applying the entire conflict
resolution strategy.

Due to their nature, Structure Constraint Rules (SCR)
must be applied first. For instance, a SCR that mandates
that “task Ti must execute after task Tj” indicates the
specific rule must be enforced independently of any other
rule type that may be modifying parameters of either task.
Therefore, SCR rules are identified and removed from the
candidate set, creating a temporary separate rule pool. If a
Sequence Conflict exists with one of the conflicting rules
not in this SCR pool, the non-SCR is automatically
discarded as the SCR always prevails. If both rules are
part of the SCR pool, the conflict is resolved by comparing
their priority. If the priority criterion also fails to provide a
resolution, the rule with the latest creation date value
prevails. The rationale behind this arbitrary temporal
ordering resolution assumes that older rules may be "stale"
and less reflective of the latest set of constraints.

Next, the SCR pool and the rules in the candidate
set are examined for Parameter Conflicts. If two rules
affect one or more common parameters when enforced, the
rules are conflicting. Again, the same conflict resolution
sequence as before is used, first applying Priority-Based
Rule Ordering and if this criterion also fails, proceed with
the most recent creation date.

The same conflict resolution sequence takes place for
any of the remaining conflicting rules in the candidate set.
When all conflicts are resolved, the rules are sorted in both
the SCR pool and the candidate set by descending Priority

order. The combination of these two rule-sets represents
the enforcement sequence. The conflict resolution
mechanism then releases control and the rules are enforced.

5 Distributed Rule Engines

Thus far, the architecture of a standalone rule engine
has been described. In distributed environments there
may be numerous rule engines, each serving a resource or
service hierarchy, or an ad hoc collection of components
(e.g. a cluster of CPUs, an array of storage devices).
Therefore, applicable rules for a task may be scattered in
multiple repositories and collaboration among rule engines
becomes necessary.

There is no restriction on the number or location of
rule engines. Engines scattered throughout an environment
may contain complementary rule sets. With multiple rule
engines, issuing a task is followed by a search for all rules
applicable to that task. The search starts from a single rule
engine and continues by searching peer engines for
additional applicable rules. Engine selection is based on
either proximity or a Least Utilization Factor (LUF)
algorithm. Proximity is determined by topology and
relationship. By topology, two nodes residing within the
same network partition (i.e. same subnet) are considered
"closer" than nodes residing in two different subnets. By
relationship, two objects that are members of the same
resource or service group unit are “closer” than non-
member objects.

The LUF algorithm requires the polling of multiple
engines and exchange of messages to retrieve the FIFO
queue size from each engine and determine the smallest
task-processing load. Unfortunately, the LUF incurs
communication costs and may provide unreliable
measurements as it retrieves rule engine load information
for a specific point in time, which may quickly change and
become inaccurate. However, the LUF algorithm is useful
and supports the notion of distributing the processing load
among various rule engines. When the Proximity
technique is used, a congested rule engine may become
even more congested simply because it is "closer" to a
group of very active objects. Using the LUF technique, the
processing load is distributed to other, less busy engines.

5.1 Distributed Rule Processing Algorithm

A typical issue in distributed environments is
resource discovery, and in this case, rule engine discovery.
Upon instantiation, each rule engine registers its contact
information with a discovery service running in the
environment [10]. At the same time, each engine retrieves
contact information about other engines already registered
and stores that information in an internal list.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

402

Fig. 4: Algorithm segments for peer discovery and query propagation

The contents of this list are updated at regular
intervals, serving as mini-registries to generate queries for
peer engines when distributed rule searches are initiated.
In turn, contacted peer engines generate new connections
according to their own mini-registries. As a result,
discovery of other engines is a byproduct of the search
process.

Using the mini-registries is advantageous in terms
performance and fault tolerance. The performance
improvement is realized by avoiding the processing
overhead incurred from the interaction with the Resource
Discovery Service (e.g. network communication, issuing
remote service requests, handling responses). Fault
tolerance is attained by not depending on the availability
of the Resource Discovery service to complete the
distributed searches.

The algorithm in Figure 4 describes the additional
algorithm segments for obtaining other peers and
propagating queries.

When a task is sent for rule processing (Figure 5), it
arrives to a single rule engine (BRE0), which plays the
role of the search initiator and rule collector. BRE0 first
searches within its own rule repository and then checks for
the availability of relevant rule types in peer engines
(BREn). Peer engines forward search queries to their peers
and so on, until a time-to-live (TTL) variable is met. The
TTL variable ensures query termination by preventing
searches of infinite depth. Hoping from one engine to the
next, allows peer engines to generate new connections to
their peers, making the discovery of further engines a
byproduct of the search process.

After peer engines have been queried, results are
returned to BRE0 for rule enforcement. Enforcement
follows the PROCESSTASK algorithm described in section
4.5.1. The only difference with the stand-alone engine
processing is the contents of the candidate set, which now
include applicable rules retrieved from remote engines.

Fi
gure 5: Rule search in a P2P environment with n BREs.

If a rule already exists in the candidate set, the
incoming rule is discarded to improve performance by
limiting the number of rules to be processed. Once the
population of the candidate set is completed the dynamic
conflict resolution mechanism goes in effect.

6 Nested Rules & Extraneous Conditions

It is possible that rules may need to be nested, improving
on their power of enforcement. While nested rules may
provide a better “packaged” solution, they increase
processing complexity and the risk of causing non-
terminating conditions such as endless loops during
enforcement. The proposed system supports nested rules
and provides a mechanism to avoid extraneous conditions.

6.1 Nested Rules

During rule formulation, a rule G may be nested,
referring to one or more rules. When this occurs the rule
types are formulated as follows.
A Stimulus-Response rule may be a nested rule and refer to
one or more G1..k rules or refer to the conjunction of G1..k
rules with Ak other actions, formed as:

RSR: if P1 ∧ P2 ∧ ... ∧ Pn then A1 ∧ G1 ∧ ... ∧ Gk ∧ Ak
where Pn are the predicates, Ak are the resulting actions
and G1..k nested rules.

An Operation Constraint Rule may behave as a
nested rule if it has G1..k rules both in conjunction with
the activities (Ak) and the pre and post-conditions (Q, S):

ROC: if P1 ∧ P2 ∧... ∧ Pn then
 [Q G2] A1 ∧ G1 ∧ Α2 ∧..∧ Ak [S G3]
Similarly, a Structure Constraint Rule may become a

nested rule if it has G1..k nested rules in conjunction with
the activities (Ak):

RSC: if P1 ∧ P2 ∧... ∧ Pn accept | reject
 A1 ∧ G1 ∧ Α2 ∧..∧ Gk ∧ Ak

Finally, Computation Rules (RCR: y=f(x)) may also
be nested if they contain mathematical recursive
definitions within the f(x) component. Since Computation
Rules are user-defined functions, it is impossible to
provide a universal nested rule formalism. Therefore, we
accept axiomatically that such rule can be generated.

403IJCSNS Intl. Journal of Computer Science and Network Security, VOL. No.8, August 2008

These nested rule formalisms indicate that if a rule
with nested rules is properly stated, then it is valid. To
enforce such rule, all the nested rules are fetched in the
candidate set and processing continues as previously
described. A similar case may also appear in distributed
searches with multiple engines having local rules
referencing rules on remote engines. When nested rules
are permitted in a distributed setting, processing
termination is a concern since rules may trigger each other
indefinitely, causing infinite loops.

In a single rule engine, nested rules are managed with
intelligent user interfaces that forbid new rules to be
entered if a loop is detected. With multiple rule engines,
there is no single interface to detect loops. When rule
engines process rules with references to remote engines,
the remote engine is queried and matching rules are
fetched and processed as if they were local rules. This
does not guarantee that remote rules do not contain nested
rules (local and remote) causing a cascading effect of
loops between rules and remote engines. Unlike the case
of single, standalone rule engine repositories where loops
may be detected and avoided as early as rule definition, the
case of multiple, distributed rule engines is much more
complex. There is no accurate up-to-date global view of all
rule-sets and attempting to detect potential looping
references cross multiple engines is computationally
expensive.

Determining in advance whether the rules are
guaranteed to terminate is an undecidable problem,
although conservative algorithms do exist and generate
warnings indicating the possibility of infinite looping.
This problem is addressed by enforcing a strict, rule
execution depth limit. The depth limit guarantees that if a
sequence of rules is repeated, a certain number of times
then rule processing is terminated and results up to that
point are returned for processing.

6.1.1 Optimistic Fault Tolerance

Grid and P2P environments are comprised of units
that often become unavailable for a certain time periods or,
they completely disappear. This condition may arise
between collaborating rule engines and it is addressed by
implementing basic fault tolerance mechanism. After
task enforcement, non-local rules are integrated and kept
in the rule engine that initiated and enforced the rules.
This integration of non-local rules serves as an optimistic
fault tolerance mechanism and a performance enhancing
technique for environments with static rule-sets. In case of
a remote engine failure, access to the local copy of the
remote engine’s rules provides a degree of fault tolerance.
In addition, retrieval performance may increase by treating
the local instance of the remote rules as a cached copy.
For environments with dynamic rule-sets (rule-sets that
continually get updated), rule engines can be configured to
ignore any local rule-sets and always attempt to retrieve
the latest rules.

Overall, the use and participation in the distributed
rule engine environment is optional and can be changed

during real-time operations. The ability to decline
participation is advantageous for environments that wish to
impose strict enforcement of very specific rule-sets. On the
other hand, environments with multiple collaborating
engines, operating with broader rule-sets and looser rule
enforcement requirements, can take advantage of the
scalability benefits offered by the P2P-based processing.

7 Conclusion and Future Work

We have presented the architecture, components and
functionality of a distributed system for rule representation
and computation.

The objective of our work was to provide a
comprehensive distributed rule processing system that
reconciles the shortcomings of existing monolithic,
centralized systems. The described system and
implementation provides a viable replacement, using
multiple, distributed, lightweight rule engines that can
operate concurrently, avoid bottlenecks and single points
of failure.

We have presented the architecture, components and
functionality of this system and described its
implementation. We expressed rules using standard XML
constructs with a minimal, but very general, predefined
range of syntax and semantics. We proceeded by
developing the concept of lightweight rule engines able to
accept tasks, apply relevant rules, resolve conflicts, modify
tasks and return them for distribution and execution. We
extended the use of the single rule engine to a network of
multiple loosely connected collaborating engines allowing
rule sharing. The presented solution has the usual many
advantages of a distributed system over centralized
solutions and typical problems to overcome when
distributing the system (e.g. rule conflicts) are addressed.

Overall, by borrowing operating principles from P2P
networks, we developed a general, distributed rule
processing architecture that can be applied to any
environment with similar computation and distribution
requirements.

For the future, we plan on taking a two-step
approach. First, we will use the proposed system to
exercise the implementation using a particular case study.
Second, we will undertake performance analysis studies to
determine the processing efficiency and cost overheads of
the typical operation and the conflict resolution
mechanisms.

References
[1] A. Aiken, J. Widom, and J. M. Hellerstein, "Behavior of

database production rules: Termination, confluence, and
observable determinism," in Proc. of the ACM SIGMOD
Intl. Conference on Management of Data, June 1992.

[2] L. Brownston, R. Farrell, E. Kant, and N. Martin,
Programming Expert Systems in OPS5; An Introduction to
Rule-Based Programming. Reading, MA: Addison-Wesley,
1985.

[3] F. Casati, S. Ceri, B. Pernici, and G. Pozzi, "Deriving
active rules for workflow environment," 7th Intl.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.8, August 2008

404

Conference on Database and Expert Systems Applications,
Lecture Notes in Computer Science: Springer-Verlag, 1996,
pp. 94-110.

[4] S. Ceri, P. Grefen, and G. Sanchez, "WIDE-A Distributed
Architecture for Workflow Management," in RIDE97-7th
Intl. Workshop on Research Issues in Data Engineering,
Birmingham, UK, 1997.

[5] S. Chakravarthy, "A research project in active, time
constraint database management," Xerox Advanced
Information Technology, Cambridge, MA, Technical
Report XAIT-89-02, 1989.

[6] S. Chakravarthy, "Rule Management and Evaluation; An
Active DBMS Perspective," ACM-SIGMOD Record, vol.
18, pp. 20-28, 1989.

[7] R. Davis, "Interactive Transfer of Expertise: Acquisition of
New Inference Rules," Artificial Intelligence, vol. 12, pp.
121-157, 1979.

[8] U. Dayal, B. Blaustein, A. Buchmann, et al, "The HiPAC
Project: Combining Active Databases and Timing
Constraints," SIGMOD Record, vol. 17(1), pp. 51-70, 1988.

[9] U. Dayal, E. Hanson, N., and J. Widom, "Active Database
Systems," in Modern Database Systems: The Object Model,
Interoperability, and Beyond, W. Kim, Ed. Reading,
Massachusetts: Addison-Wesley, 1994.

[10] Dimitoglou, G., Moore, P., Rotetenstreich, S. (2003)
“Middleware for Large Distributed Systems and
Organizations,” Proc. of the Intl. Symposium on
Information and Communication Technologies, Trinity
College, Dublin, Ireland, Sept. 24-26, pp. 553-559.

[11] K. R. Dittrich, S. Gatziu, and A. Geppert, "The Active
Database Management System Manifesto: A Rulebase of
ADBMS features," in Proc. of the 2nd Intl. Workshop on
Rules in Database Systems, vol. 985: Springer, 1995, pp. 3-
20.

[12] J. Greer, G. McCalla, V. Kumar, J. Collins, and P. Meagher,
"Facilitating Collaborative Learning in Distributed
Organizations," in Computer Support for Collaborative
Learning 97. Toronto, Ontario, 1997.

[13] B. N. Grosof, "Business Rules for Electronic Commerce:
Interoperability and Conflict Handling," IBM, Project
Overview Talk Slides 1999.

[14] B. N. Grosof, "Compiling Prioritized Default Rules into
Ordinary Logic Programs," IBM, Research Report RC
20836 (92273), 1999.

[15] B. N. Grosof, "Contracts, Policies, and Prioritized Rules in
XML Agent Communication," presented at 18th Meeting
of FIPA, UMBC Technology Center, Baltimore, MD, 2000.

[16] B. N. Grosof, Y. Lambrou, and H. Y. Chan, "A Declarative
Approach to Business Rules in Contracts: Courteous Logic
Programs in XML," presented at 1st ACM Conference on
Electronic Commerce (EC99), Denver, CO, USA, 1999.

[17] E. N. Hanson, "Rule condition testing and action execution
in Ariel," in Proc. of the ACM SIGMOD Intl. Conference
on Management of Data, May1992.

[18] HNC Software Inc., "Developing Real World Java
Applications with Blaze Advisor," San Jose, CA, USA,
Technical White Paper 2001.

[19] C. A. R. Hoare, "An Axiomatic Basis for Computer
Programming," Communications of the ACM, vol. 12, pp.
576-580, 1969.

[20] ILOG Business Rules Team, "Business Rules: Powering
Business and E-Business," Paris, France, White Paper 2001.

[21] D. R. McCarthy and U. Dayal, "The Architecture of an
Active Database Management System," in Proc. of the
1989 ACM SIGMOD Intl. Conference on Management of
Data, 1089, pp. 215-224.

[22] B. Meyer, Object-oriented software construction, 2nd. ed.
Upper Saddle River, N.J.: Prentice Hall PTR, 1997.

[23] J. A. Miller, S. A.P, K. K. J., and W. X., "CORBA-based
run-time architectures for workflow management
systems.," Journal of Database Management, July 1996.

[24] A. Poetzsch-Heffter, "Deriving Partial Correctness Logics
From Evolving Algebras," in 13th World Computer
Congress, vol. I: Technology/Foundations, B. P. a. I.
Simon, Ed.: Elsevier, Amsterdam, the Netherlands, 1994,
pp. 434--439.

[25] D. Roach and H. Berghel, "The physiology of PROLOG
expert system inference engine," presented at Proc. of the
1990 ACM SIGSMALL/PC Symposium on Small Systems,
Crystal City, VA, 1990.

[26] L. Rouvellou, L. DeGenaro, H. Chan, K. Rasmus, B. N.
Grosof, and B. McGee, "Combining Different Business
Rules Technologies: A Rationalization," presented at
OOPSLA 2000 Workshop on Best Practices in Business
Rule Design and Implementation, Minneapolis, MN, USA,
2000.

[27] M. Stonebraker, "The POSTGRES next generation
database management system," Communications of the
ACM, vol. 34, pp. 78-92, 1991.

[28] M. Stonebraker, A. Jhingaran, J. Goh, and S. Potamianos,
"On rules, procedures, caching and views in database
systems," in Proc. of the ACM SIGMOD Intl. Conference
on Management of Data, May 1990.

[29] X. Wang, "Implementation and evaluation of CORBA-
Based Centralized Workflow Schedulers," in Computer
Science. Atlanta: University of Georgia, 1995.

[30] D. H. D. Warren and L. M. Pereira, "PROLOG: The
Language and its Implementation Compared to LISP,"
SIGPLAN Notices, vol. 12(8), 1977.

[31] J. Widom, R. J. Cochrane, and B. G. Lindsay,
"Implementing set-oriented production rules as an
extension to Starbust," in Proc. of the Seventeenth Intl.
Conference on Very Large Databases, 1991.

[32] J. Widom and S. J. Finkelstein, "Set-oriented production
rules in relational database systems," in Proc. of the ACM
SIGMOD Intl. Conference on Management of Data, May
1990.

George Dimitoglou received a Ph.D.

in Computer Science with concentration
in Parallel and Distributed Computing
from the School of Engineering &
Applied Science of The George
Washington University; Before joining
the faculty at Hood College he spent
over a decade working in the industry
and government with a last post at
NASA’s Goddard Space Flight Center.
He is a member of the ACM, IEEE and
the Mathematical Association of
America.

Shmuel Rotenstreich received a Ph.D, and a M.S in Computer
Science from the University of California, San Diego and a
B.Sc in Mathematics, from Tel Aviv University. He is an
associate professor of computer science at the School of
Engineering & Applied Science of The George Washington
University. In the last several years his work has been focused in
the area of computational aspects of large organizations. This
includes large P2P systems, military systems and sensor systems.
He also works on large scale emergency response problems
and better resource discovery methods.

