
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

32

Manuscript received September 5, 2008.
Manuscript revised September 20, 2008.

Design and Implementation of a Fast VOQ Scheduler for a Switch
Fabric

A.H.Darvishan†, H.Yeganeh††, F.Sarabchi †††

Iran Telecommunication Research Center Tehran, Iran.

Abstract— The technical manufacturing, which is based on
Switch Fabric and VOQ (Virtual Output Queuing), is used in
speedy routers, which are used in core network. For configuring of
Switch Fabric having speedy scheduler with high Throughput is
required. The most promising algorithm is iSLIP which is an
iterative algorithm that provides high efficiency for best-effort
traffic. In this paper the way of designing and implementing of
Prioritized iSLIP algorithm on FPGA are described. Because of
the simplicity of this algorithm in implementing and needlessly of
this algorithm to high rate switches (Tera bps), this algorithm is a
proper method for Scheduling.

Keywords— Router, Switch Fabric, iSLIP, VOQ

I. INTRODUCTION
Over the past few years, it has been very difficult to

accommodate explosively growing internet traffic demands
by means of legacy routers. The networking industry was
caught off-guard by this enormous rate of growth and has
been unable to meet the increased demand for bandwidth.
This is quite apparent to users connect to the internet at busy
times of the day. In an attempt to keep up with demand,
service providers are installing new links and upgrading
switching and routing equipment. But it is now becoming
apparent that the vendors of switches and routers are unable
to meet current bandwidth demands, particularly at the core
of the Internet, and are falling further and further behind. It is
widely believed that this problem will be solved when more
traffic is carried by high bandwidth ATM networks.

In the very simplest switch fabrics, all of the cells waiting
at each input are stored in a single FIFO queue. When a cell
reaches the head of its FIFO queue, it is considered by the
centralized scheduler. For input-queued switches to be
efficient, we must overcome the limitations of Head of Line
(HOL) blocking [11], [13]. Many techniques have been
suggested to reduce HOL blocking, although most are highly
sensitive to traffic arrival patterns and perform no better than
regular FIFO queuing for burst traffic. But HOL blocking
can be eliminated entirely by using a simple buffering
strategy at each input port, which is called “Virtual Output
Queuing” (VOQ); each input maintains a separate FIFO
queue for each
output [7].

When VOQ is used, the switch requires a scheduling

algorithm that examines the contents of the N*2 (N is
number of input-output) input-queues at the beginning of
each cell time, deciding which ones will be served. It is
shown [12] that a switch that uses VOQ can theoretically
achieve 100% throughput for uniform or non-uniform
arrival patterns. Unfortunately, these scheduling algorithms
have typically been slow, inefficient to implement [1], [2],
[3] and [4]. The most promising algorithm is iSLIP [8] which
is an iterative algorithm that provides high efficiency for
best-effort traffic. One of the profits of this algorithm is
simplicity of implementation in hardware [5], [6]. iSLIP
achieves fairness using independent round-robin arbiters at
each input and output. But with simple round-robin arbiters,
many outputs may try and connect to the same input each
cell time.

In this paper, we survey Prioritized iSLIP algorithm and
its implementing on FPGA. The outline of this paper is as
follows: firstly the system architecture of routers is described
in section 2, and iSLIP algorithm is introduced in section 3.
Then, we propose the process of implementing this
algorithm on FPGA and show simulation results on section 4
and 5.

II. SYSTEM ARCHITECTURE

In fig 1 different parts of a router are shown. Line
Interfaces provide a physical connection between data links
and equipment. The Network Processor analyses the IP
Header and by this way it can have a control on errors,
packet routing and classification. The Switch Fabric
switches the packets between inputs and outputs. In the
other word after some processing on packet in line Interface
and network processor and it determines the output line for
sending the packet, this part performs the switching process
[9].

The hardware’s implementation of crossbar switches is
simple and these switches can support high rate data
transferring (for example Tera bps), so using the crossbar
switch is a standard model for designing Switch Fabric.In
fig. 2 the internal structure of a Switch Fabric is presented.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

33

Fig 1: Router Architecture [9]

Switch Fabric has the below parts:

 CSIX Part includes a standard connector which
connects the Switch Fabric to Network Processor and it
implements the CSIX protocol. This standard defines the
way in which the cells are transferred and also the flow
control’s information.

 IPP (Input Part Processor) and VOQ constitute the
input part of the switch and it includes the requirement
functionality for implementing the VOQ in order to
prevent HOL Blocking problem, manage the buffers and
support the flow control’s process.[10]

 Output of the switch includes OPP (Output Port
Processor) and OQ (Output Queue). In this part the cells
are stored in CoS Queues. OPP part schedules the cells
and sends them to Network Processor through CSIX by
using WRR algorithm and Strict Priority. OPP is
responsible for managing OQs and supporting the
Information of flow control. The FCB (Flow Control
Broadcast) block provides the information about OQs for
all IPPs. If an OQ is occupied, related VOQs pause
sending cells to OQ, after emptying the OQ, sending the
cells is resumed. It must be said that Crossbar Section is
common among Network Processors.

Fig 2: Switch Fabric Architecture

III. P-ISLIP ALGORITHM [8]

 Many applications use multiple classes of traffic with
different priority levels. The basic iSLIP algorithm can be

extended to include requests at multiple priority levels with
only a small performance and complexity penalty, which is
called the Prioritized iSLIP algorithm.

In Prioritized iSLIP each input now maintains a separate
FIFO for each priority level and for each output. This means
that for an N×N switch with P priority levels, each input
maintains P×N FIFOs. This algorithm has three steps which
are described in below:

1- Request: Input selects the highest priority nonempty
queue for output. The input sends the priority level of
this queue to the output

2- Grant: An output accepts the request, which has the
most priority, from an input in form of Round-Robin.

3- Accept: If an input receives any grants, it determines
the highest level grant. The input then chooses one
output among only those that have requested at this
level, and then the above steps are repeated.

Implementation of the P-iSLIP algorithm is more complex
than the basic algorithm, but can still be fabricated from the
same number of arbiters.

IV. IMPLEMENTING P-ISLIP ALGORITHM

The Scheduler bock diagram is shown in fig.3. In each
matrix the rows present the inputs and the columns present
the outputs. Rij represents the priority of input i for
connecting to output j which it will be select one of the
priority levels between 1 to P. If there is no request from
input i for output j, the value zero is assigned in matrix. Each
column of the Request matrix is related to the Grant in output
part, so each output can accept the related input. It must be
noticed that in result vector of each Grant block, only one
array (accepted input) is upper than zero (this value
represents the requesting priority) and the other arrays are
zero.

The Grant matrix represents that each output accepts
which input. In each column of this matrix only one array is
upper than zero and the others are zero. For establishing a
connection between inputs and outputs, each column of this
matrix is connected to related Accept block. In output matrix
of these blocks, only one array is more than zero and the
other arrays are zero. If in Accept matrix Aij is 1, then the
other arrays in row i and column j will be 0. Also in Request
matrix the array in row i and column j will be 0 and the steps
of the algorithm will be repeated. The number of repetition
depends on the time that is necessary for performing the
algorithm and also the length of the cells. (When a cell is
sending, the algorithm must be implemented and the
connection must be identified).

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

34

Fig 3: Internal structure of scheduler block

based on P-iSLIP algorithm

According to the explanation of the algorithm, you will
find that the second and the third steps are similar, but they
perform on different information. So the internal structures
of the Grant and Accept blocks are similar. The internal
structure of these blocks, when there are four priorities for
requests, is based on the fig 4.

Fig 4: Internal structure of Grant and Accept

If we assume there are four priorities in designing the
Scheduler, so there will be four pointers, each pointer is
related to one priority level and it includes the highest
priority of selected input. Implementation of these pointers is
based on Latch with TriState output. The inputs of Arbiter
are explained in below:

 Reset: Which is used for resetting the pointers (It is
used when the system is operated for the first time or is

restarted).

 Load: In each execution of P-iSLIP algorithm, it is
calculated with Load signal then it will be put in related
pointer (The pointer with the most priority).

 Priority List: Each list includes N*2 bits (N is number
of input-output), each two bits represents the priority
level in selected request.

 Input List: This list includes N bits. Each bit is related
to one input (in Grant block) or one output (in Accept
block). When the related input has no request or the
related output doesn’t give any Grant to related input, the
zero value is assigned. It must be noticed that in this
algorithm two matrixes are defined. One matrix
represents the number of priorities and the other
represents the existence of the requests.

The outputs of the blocks are:

 Select Input: It includes N bits. Each bit is related to
one input (in Grant block) or one output (in Accept block).
It must be noticed just one bit is 1 and the other bits are 0.
For each output only one Grant input is defined and in a
similar way, for each input only one Accept output is
defined.
Now the manner of working the circuit which is shown in

fig 4 is explained. In the first step the highest priority of
available requests is calculated (by the GetMaxPriority
block). This maximum will activate the pointer of this
priority level by a decoder. If no requests exist (Input List
completely null); the Arbitration block set the “isThere”
signal to 1 and this lets the existing value of the pointer not to
change by activation of the Load signal. It should be noted
that the pointers have TriState output and they are connected
to each other directly by these outputs. By activation of the
related pointer and based on its value, the Arbitration block,
select on of the inputs from the list (Requests or Grants) by
using the P-iSLIP algorithm, and put it in its output. On the
one hand this output will connect to a decoder and the
decoder's output will be used for connecting to other
Scheduler blocks (This decoder is used for simplifying of
implementation other blocks) and on the other hand, the
value of Arbitration output will be added with one and it will
be saved in the activated pointer by the arrival of Load signal
from Controller Block. It should be noted that for the
execution of the next P-iSLIP, the value of the pointer
should be updated by the number after the accepted input.

The function of the GetMaxPriority is to find maximum
priority in the list of the arrived requests. By finding this
maximum, the cases which have the maximum priority will
be selected from the list of input requests and will be set in
the output of this block. This output will go to the Arbitration
block, and a request will be accepted or granted.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

35

Implementation of this block is shown in figure 5, which is
used to find maximum priority in a list includes N number
with 2 bits (because we have 4 priorities in this example).
This numbers can choose on of the {00, 01, 10, 11} digits.
The proposed Circuit specifies whether there are any 10 or
11 between these numbers by computing OR function over
the entire of the most significant bits of these N numbers.
Actually if the result is 1, then it means N includes one of
these numbers (01 or 11). Thereupon the most significant bit
of output (MaxPriority) set to 1. If the OR result is zero, then
it means there are only 00 or 01 in this list, hence the most
significant bit of the MaxPriority set to 0. Anyway, it's
noticed that the output of OR function is the equal to the
most significant bit of the MaxPriority output. But the least
significant bit has more ambiguity. For obtaining the least
significant bit MaxPriority, computes OR function over the
entire of the least significant bits of N numbers (Temp1).
Therefore we can find if the list includes 00 or 10, the result
of OR function will be 0, and if the list includes 01 or 11, the
result of OR function will be 1. The ambiguity which is
mentioned occurs when 00, 01, and 10 are in the list. In this
case the output of proposed circuit is 11, which is wrong
prediction. Hence, if we want to specify the least significant
bit of MaxPriority we must perfect the circuit. Therefore, we
utilize Temp0, Temp1, and Temp 2.

Moreover, the GetMaxPriority block has another task in
the proposed system, which is used for distinguishing the
existence of requests. In this case the input of
GetMaxPriority block is an N-bits string that presents
existence or non-existence of a request. If in this string a bit
is zero, it means that for that number (An input that should be
granted or an output that should be accepted) there is not any
request. If so,

Fig 5: GetMaxPriority Implementation

in PriorityList in the same position, 00 should be set as the
priority; hence it won't include in the maximum priority
calculation. This Restriction should be applied from

previous levels because this will lead to the elimination of a
level of gates in implementation.

After calculating the maximum priority, the requests whit
a maximum priority should be answered. Actually, output of
this block is an N- bit number that each bit indicates the state
of related request. So Arbitration block's input is requests
with maximum priority. Circuit of this part of the
GetMaxPriority block is shown in figure 6. It should be
noted that this process repeats for each array of MaxPriority
list (i=0… N-1). XOR gates compare PriorityList arrays with
MaxPriority arrays. AND gate is used for applying existence
or nonexistence of input requests.

Fig 6: Input with Maximum Priority

After specifying request with highest priority and the
value of the pointer, the Arbitration block selects the request
with maximum priority based on the P-iSLIP algorithm and
sends it to the output. If there are no requests, “isThere”
output set to 1. It causes the Load input which comes from
Controller block don’t change the state of pointers.

In figure 7 the VHDL simulation result of proposed
system is shown for various values. In the first example,
value of the pointer is zero and it means that the port number
zero has the maximum priority. As in the list of requests, this
port is applicant, so, based on P-iSLIP it will be selected. In
the second example the pointer's value points to port number
2 but as the port 4 is selected in the list, this port is assigned
to the output. In the next example, port 6 has maximum
priority but based on the rotating system in P-iSLIP port 2
will be selected. In the next example, there is no request and
so the “isThere” output will be activated, therefore the value
of the pointers doesn’t change by activation of the load
signal. In this case, the value of output will be valueless. At
the end in the last example, the port 5 is pointed but port 7
will be selected.

Fig 7: Simulation of Arbitration Block

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

36

V. SIMULATION AND CONCLUSION
Aforesaid plan has been used in the MPLS switch/router

project in Iran Telecommunication Research Center and the
proposed system is simulated and verified by VHDL. Figure
8 shows the percentages of connections are established as a
function of algorithm iteration. In this simulation the
algorithm is evaluated by 10000 random request matrixes
and for different number of ports (N=8, 16, 32) and different
priority level (2 and 4) the number of established
connections is calculated for each iteration.

Fig 8: Simulation Results

As it's seen, by increasing the number of priority levels
and the number of ports the efficiency of the algorithm will
be improved but more hardware resources and execution
time will be needed. Also by increasing the number of
iteration, connection which is established is increased, but
from one point it tangents to the maximum available
connection, so from this point increasing the iteration
number will not be effective. On the other hand, it’s seen that
increment of priority level is afforded earlier saturation of
connection percentage.

In the synthesis is made for 16×16 switch with 8 times
algorithm iteration, the delay of scheduler will be about 60ns
that is suitable in construction of a rapid router.

REFERENCES
[1] Anderson, T.; Owicki, S.; Saxe, J.; and Thacker, C. “High speed

switch scheduling for local area networks,” ACM Trans. on Computer
Systems. Nov 1993 pp. 319-352.

[2] Karol, M.; Eng, K.; Obara, H. “Improving the performance of
input-queued ATM packet switches,” Proc. of IEEE INFOCOM ‘92,
pp.110-115.

[3] Obara, H. “Optimum architecture for input-queueing ATM switches,”
IEE Electronics Letters, pp.555-557, 28th March 1991.

[4] Obara, H.; Hamazumi, Y. “Parallel contention resolution control for
input-queueing ATM switches,” IEE Electronics Letters, Vol.28,
No.9, pp.838-839, 23rd April 1992.

[5] N. McKeown; P. Varaiya; and Walrand, Jen; “Scheduling Cells in
an Input-Queued Switch,” IEE Electronics Letters, Dec 9th 1993,
pp.2174-5.

[6] McKeown, Nick; “Scheduling Cells in Input-Queued Cell Switches,”
PhD. Thesis, University of California, Berkeley, 1995.

[7] N. McKeown, M. Izzard, “High Performance Switching”,
[8] N. McKeown, “The iSLIP Scheduling Algorithm for Input-Queued

Switches”, IEEE/ACM Transactions on Networking, 7(2):188-201,
April 1999.

[9] Dr.Kamran Sayrafian , ZAGROS Networks Corp. “Owerview of
Switch Fabric Architecture”

[10] P. Gupta and N. McKeown, "Design and Implementation of Fast
Crossbar Scheduler," Hot Interconnects VI, Stanford University, Aug
1998.

[11] M.Karol, M. Hiluchyj,and S.Morgan, “Input Versus Output Queueing
on a Space Division Switch”, IEEE Trans. on Comm., vol. 35, no.12,
pp. 1260-1267, 1987.

[12] N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100%
throughput in an input-queued switch,” in Proc. IEEE INFOCOM ‘96,
San Francisco, CA, pp. 296–302.

[13] M. Karol, M. Hluchyj, “Queuing in High-performance Packet
switching,” IEEE J. Select. Area Commun., vol. 6, pp. 1587-1597,
December 1988.

