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Summary 
Multihoming is currently widely used to provide end-to-end 
fault-tolerance and improved application performance. A node 
having different IP addresses or could be reached under several 
IP addresses is said to be multihomed. Transport layer 
multihoming is a feature that binds a single transport layer 
connection to multiple network addresses at each endpoint. 
Although transport layer multihoming is an old concept, neither 
of the Internet’s current transport protocol workhorses, TCP or 
UDP, support multihoming. However, some transport protocols 
(like SCTP [10] or pTCP [17]) support multihoming, but 
unfortunately they are not designed for high-capacities and large-
latencies networks, they often have performance problems 
transferring large data files over shared long-distance wide area 
networks. In this paper, we address a number of issues/challenges 
in attempting to develop such an end-to-end transport layer 
protocol based on FAST TCP, which can transfer data over the 
high-speed networks through multiple paths concurrently using 
multihoming (i.e., motivate to use FAST TCP as a reliable, 
multihome-aware, SACK-based and delay-based transport layer 
protocol). In our initial efforts, we propose some key design 
scheme for FAST TCP to enable the concurrent utilization of all 
the available paths over the multiple interfaces of a multihomed 
end host, with the goal of improving end-to-end throughput. 
After sketching this design scheme into ns-2 simulations, we 
show that FAST TCP multihoming achieves the desired goals 
under a variety of network conditions. The experimental results 
and survey presented in this research also provide insight on 
design decisions for the future high-speed multihomed transport 
protocols. 
Key words: 
FAST TCP, Bandwidth Aggregation, FAST TCP multihoming, 
Multiple Paths, Transport Protocols 

1. Introduction 

Multihoming [1] is the ability of a host or site to access 
remote destination via more than one upstream connection, 
usually from different providers. The Internet may face a 
problem of physical failure at some specific location for a 
certain time due to any reasons. The user may switch to 
different ISP’s to protect himself against such failure (link 
failures or overloaded links) because servers on the 
Internet today are recognized as being much less reliable. 
This has given rise to the idea of multihoming and a host is 
multihomed if it can be addressed by multiple IP addresses 

[18] as is the case when the host has multiple network 
interfaces. 

Multihoming is a common requirement of many medium 
sized networks, including many businesses and ISP’s, and 
can occur for two main reasons. One reason is for link 
redundancy, allowing a site to retain connectivity when 
one of the links fails. The other main reason is for optimal 
use of links, for example increasing bandwidth, or for 
quality of service (QoS) factors, or with a goal of 
improving end-to-end throughput. 

Wide spread use of multihoming was infeasible during the 
early days of the Internet due to cost constraints; today, 
network interfaces have become commodity items. 
Cheaper network interfaces and cheaper Internet access 
motivate content providers to have simultaneous 
connectivity through multiple ISP’s, and more home users 
are installing wired and wireless connections for added 
flexibility and fault tolerance. Multiple active interfaces 
also suggest the simultaneous existence of multiple paths 
between the multihomed hosts. 

The existing TCP [11] and its different variants (such as 
HSTCP [4], Scalable TCP [2] and FAST TCP [5]) are not 
designed to manipulate multiple addresses in one TCP 
session. When a network outage occurs and the access-line 
associated with the local and remote addresses is down, 
the TCP session itself gets lost. However, some proposals 
have been suggested for TCP multihome options [3] [6] 
but they use multihome options for redundancy purpose 
only. 

In this paper, we focus on FAST TCP for our investigation 
and our goal is to discuss the different issues involved for 
the implementation of FAST TCP multihoming for end-to-
end data transfer through multiple paths concurrently and 
to suggest some practical guidelines for improving the 
end-to-end throughput. The general idea of multihoming 
implementation using FAST TCP in a network to obtain 
better performance and throughput has been explored in a 
number of different research efforts. 

The remainder of this paper is organized as follows: 
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In section 2, we first introduce FAST TCP along with its 
key features. In this section we also motivate FAST TCP 
used for multihoming by illustrating the advantages of 
replacing loss-based approach (i.e., like TCP [11] and 
SCTP [14]) with delay-based approach [5] as the end-to-
end transport layer congestion control mechanism between 
two communicating hosts. In section 3, we discuss the 
various design issues and problems encountered in the 
basic implementation of end-to-end multihoming using 
FAST TCP. Section 4 delineates the proposed design and 
provides an overview of our approach, which is sketched 
in section 5 through simulations. In this section, we 
analyze the behavior of FAST TCP multihoming by using 
a particular network scenario in ns-2 (Network Simulator 
[9]), to prove its efficiency in producing high end-to-end 
throughput in multiple path environments. Finally in 
section 6, we present the conclusions and future work of 
this research. 

2. FAST TCP Overview 

FAST TCP [5] is a modification to the standard TCP [11] 
congestion control algorithm for high-speed long-distance 
connections. FAST TCP is a delay-based congestion 
control algorithm that aims to improve the performance of 
standard TCP. SCTP and TCP both use the packet loss as 
the measure of congestion (i.e., both rely only on packet 
loss to adjust congestion widow). But the FAST TCP uses 
both queuing delay and packet loss as signals of 
congestion, and departs from the loss based congestion 
control schemes [11][14]. FAST TCP uses queueing delay 
for congestion control and its advantage over loss-based 
approach is small at low speed, but decisive at high speed. 

2.1 FAST TCP Congestion Control Algorithms 

FAST TCP window calculate mechanism is divided into 
three sections: slow start (SS), multiplicative increase (MI), 
and exponential convergence (EC). SS is essentially 
identical to the standard slow start in TCP Reno; the only 
difference being that FAST exits SS when the number of 
packets queued in the network exceeds a threshold gamma 
rather than using packet loss. MI is used to rapidly move a 
FAST connection close to equilibrium whenever it falls 
below equilibrium. FAST TCP implements a safeguard 
mechanism in both MI and EC, where a window is 
increased or decreased on alternative RTTs. In EC, the 
window moves half-way between the current value and the 
target in each update interval so it is exponentially 
increasing, with a negative exponent so the window 
converges to the target, with time measured in multiples of 
10 ms.  

FAST TCP updates the window based on the following 
algorithm: 

⎭
⎬
⎫

⎩
⎨
⎧ ++−← )),()(()1(,2min qdelayww

RTT
baseRTTwww αγγ    (1) 

Where ]1,0(∈γ , baseRTT is the minimum RTT observed 
so far, and qdelay is the end-to-end (average) queuing 
delay. The constant α is the number of packets each flow 
attempts to maintain in the network buffer(s) at 
equilibrium. 

2.2 Related Work and Motivation for FAST TCP 
multihoming implementation 

This section describes some prior work that exploit 
transport layer multihoming (i.e., implements a transport 
layer solution to aggregate bandwidth across multiple end-
to-end paths) and differentiates our work from this earlier 
research by motivating the FAST TCP used for end-to-end 
multihoming.  

SCTP is a transport protocol that introduces support for 
simultaneous data transfer over multiple paths in 
multihomed hosts. SCTP is relatively new; it has not yet 
been widely deployed in the Internet despite its many 
advantages over standard TCP and UDP, though the 
research on extending SCTP to support concurrent 
multipath transfer using transport layer multihoming to 
increase the association bandwidth is still in progress [10]. 
We used FAST TCP for our reference multihoming 
implementation and investigation, because FAST TCP has 
a great advantage over other transport layer protocols (e.g., 
SCTP [14] and TCP [11]), it uses queueing delay, rather 
than loss probability as the main measure of congestion, 
and it is intended to solve the transport layer protocols 
limitation in high-bandwidth large-delay environments. 

The loss-based transport protocols (i.e., SCTP and TCP) 
detect congestion only after a packet has been dropped at 
the gateway (i.e., use packet loss as the measure of 
congestion), which means the source will not know the 
situation in the gateway until congestion occurs. Another 
problem with concurrent multipath transfer using SCTP 
[10] is that, it is more sensitive to receiver buffer (rbuf) 
constraints [16], and this rbuf-blocking problem causes 
significant throughput degradation when multiple paths are 
used concurrently. In [13], we demonstrate the weakness 
of SCTP-CMT rbuf constraints and, we then identify that 
rbuf-blocking problem in SCTP multihoming is mostly 
due to its loss-based nature for detecting network 
congestion. We have also shown that FAST TCP 
consistently outperforms SCTP in terms of throughput, 
stability with zero packet loss at the bottleneck under a 
similar network conditions, because FAST TCP 
anticipates the onset of congestion by monitoring the 
difference between the rates it is expecting to see and the 
rate it is actually realizing. FAST TCP strategy is to adjust 
the source’s sending rate in an attempt to keep a small 
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number of packets buffered in the routers along the path 
such that it never exceeds the delay-bandwidth product of 
the connection plus the number of buffers at the bottleneck. 
This technique gives FAST TCP the ability to anticipate 
congestion, and adjust its transmission rate accordingly in 
such a way that there are little or no losses. Therefore, we 
motivate delay-based approach (i.e., FAST TCP) as a 
congestion control mechanism used for implementing the 
end-to-end transport layer multihoming for parallel data 
transfer (in high-speed long-distance networks) rather than 
other loss-based congestion control protocols. 

3. FAST TCP Multihoming Implementation 
Issues 

In this section, we address several open questions and 
issues concerning the end-to-end multihoming 
implementation using FAST TCP. We will also suggest 
the solutions of some issues that have been explored in a 
number of different research efforts. 

Some issues for the implementation of FAST TCP 
multihoming are as follows: 

• How the use of FAST TCP multihoming for 
multiple paths increases aggregate throughput? 

• How to determine the number of paths used that 
is necessary to maximize throughput while 
avoiding network congestion? 

• Scheduling of traffic on multiple paths. 
• Congestion Control: separate or shared? 
• How to use receiver’s advertised window (rwnd) 

at the sender for multiple paths: shared buffer or 
individual buffer for each path? 

• How the sequence space shares among flows on 
different paths that occur within an association? 

• Loss detection and recovery. 
• Packet reordering introduced by the sender over 

multiple paths. 
• Reverse path for acknowledgements. 

Now, we address some of these issues in details. 

3.1 Congestion Control and Flow Control Issues 

The important issue that we want to address for end-to-end 
transfer of data through multiple paths using FAST TCP 
multihoming is its congestion control and flow control 
mechanisms. Congestion control is a critical issue for 
FAST TCP multihoming implementation as it tries to 
utilize the network resources more aggressively. Since the 
key obstacle for achieving the aggregate bandwidth for 
FAST TCP multihoming through multiple paths 
concurrently is that each of the individual paths can have 
vastly differing characteristics in terms of bandwidth and 
delay (round-trip time). If we ignore the factors for 

implementing the propose system, the bandwidth achieved 
through multiple paths can be significantly lower than the 
maximum possible. As different sub-flows (paths) take 
different network paths, so each path needs to have its own 
congestion control. 

FAST TCP multihoming for multiple paths strives to keep 
all paths independent from each other. Suppose we had 
used only one global congestion window for the entire 
flow. The packet losses on any one of the paths will cause 
the global congestion window to be halved, thus affecting 
the all sub-flows (paths). If one sub-flow happens to go 
across a heavily congested path, it can keep the global 
congestion window small, and the other sub-flows will not 
be able to utilize the available bandwidth on other good 
paths. In certain situations, this can cause the throughput 
of the whole flow to be even lower than that of a single-
path FAST TCP flow on a single good path. This fact was 
studied in [12]. Thus all the paths should share the same 
send/receive buffer as well as in this proposed system. 
Packets are assigned sequence numbers in the same way as 
in FAST TCP. But how the sequence space shares among 
these multiple paths? We will discuss this issue in    
section 4. Each path does its congestion control and 
maintains a congestion window independently as in simple 
FAST TCP [5]; i.e., congestion window changes 
independently as the sub-flow adapts to the network state 
and each sub-flow uses equation-based control with 
queueing delay (according to Eq. (1)), and multiplicative 
decrease with packet loss (when a packet loss is detected, 
FAST TCP halves its window and enters loss recovery). 

3.2 Receiver’s Advertised Window (rwnd) at the 
Sender for Multiple Paths 

A transport layer receiver maintains receiver buffer space 
for containing data for two reasons: (i) to handle out-of-
sequence data, and (ii) to receive data at a rate higher than 
that of the receiving application’s consumption. In TCP, a 
receiver advertises currently available rbuf space through 
window advertisements (normally by ACKs) to a data 
sender. This value is the advertised receive window. A 
sender computes a peer-receiver window (rwnd) to deduce 
how much more data can be buffered at the receiver. 

Now the issue is that how to use rwnd at the sender for 
multiple paths concurrently? It should be clear that each 
sub-flow (path) should have its own retransmission timer 
since each has its own round trip time (RTT) and of course 
has its own congestion window per destination. They 
represent the state of different network paths from a sender 
to each destination address. A sender has no reason to 
maintain separate rbufs or peer-rwnds per path since a 
receiver can consume data only in-sequence, irrespective 
of the destination address they are sent to. Thus a FAST 
TCP multihoming for multiple paths receiver should 
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maintain a single rbuf which is shared across all sub-flows 
in an association. In this way a sender divides the global 
advertised window among all its sub-flows (paths) 
proportional to their congestion window sizes and this will 
always yield better throughput. On the other hand if the 
advertised window is divided among sub-flows (paths) on 
the multihomed receiver side, this buffer sharing degrades 
overall throughput. 

When multiple paths being used for simultaneous transfer 
of data have different delay and/or bandwidth 
characteristics between source and destination, additional 
packet reordering is observed at the receiver. In other 
words significant packet reordering can be introduced in 
the flow by a multiple path data transfer sender, which in 
turn can cause rbuf-blocking problems [13]. 

3.3 Sequence Space among the Multiple Paths and 
Reverse Path for ACKs 

As we have discussed in the previous section that all sub-
flows share the same send/receive buffer and each path has 
its own congestion control. Also, each sub-flow estimates 
its own round trip time, it needs to remember which 
packets it has sent and match each received ACK with one 
of the these packets. Thus each sub-flow also maintains 
the sequence numbers of the packets sent from this path 
but not acknowledged yet. This sequence space may or 
may not be shared among all the paths. 

Since ACKs are cumulative, so sharing of sequence space 
across paths can help a multihomed sender for receiving 
ACK information on either of the return paths. Thus a 
shared sequence space for end-to-end transfer of data 
through multiple paths can effectively use both (if two 
paths are used) return paths for communicating ACK 
information to the sender. But at the same time the 
disadvantage of using different reverse paths for ACKs 
can make our system more complex, because the 
multihomed receiver has to maintain additional states 
about which ACK going through which paths. Moreover 
using several reverse paths will introduce ACK reordering, 
which in turn will affect the sender’s behavior (e.g., 
increasing the burstiness of the sender).  

4. FAST TCP Multihoming Proposed Design 

In this section, we present some key design elements for 
FAST TCP multihoming implementation through 
multipath data transfer concurrently. It is important to 
propose the design scheme in such a way that it will 
provide the same semantics to applications as simple 
FAST TCP– it will preserve the properties such as 
reliability, fairness, stability and responsiveness. FAST 
TCP multihomed sender host sends data through multiple 

paths concurrently, so it has to decide how to schedule 
packets across the multiple paths and how to manage 
congestion control for each path (sub-flow). 

In the previous sections, we have discussed that the key 
obstruction for achieving the aggregate bandwidth through 
multiple paths concurrently is that each of the individual 
paths can have immensely different characteristics in 
terms of bandwidth and delay (round-trip time). If we 
ignore these factors for implementing the propose system, 
the bandwidth achieved through multiple paths can be 
considerably lower than maximum possible. As different 
paths have different delay and/or bandwidth characteristics, 
so each path needs to have its own window control 
mechanism, like a simple FAST TCP. This means each 
path needs its own estimation module [5] (like FAST 
TCP) to estimate round-trip time (RTT) and remember 
which packets it has sent and match each received ACK 
with one of there packets.  

Each path maintains a congestion window as in simple 
FAST TCP and this congestion window changes 
independently as the path adapts to the network state (i.e., 
under normal network conditions, FAST TCP periodically 
updates the congestion window based on the average RTT 
and average queuing delay provided by the estimation 
component, according to Eq. (1)). 

In our current design, we use a single sequence space 
(used for congestion control and loss detection, and 
recovery) across an association’s multiple paths. The 
multihomed sender maintains a set of per path virtual 
queues and spreads the packets across all available paths 
immediately the congestion window allows it. 
Retransmissions are prompted only when a number of 
SACKs (generally 3-duplicate acknowledgements) report 
the missing data packets from the same virtual queue. 

In our current prototype, the FAST TCP multihomed 
receiver maintains and controls a single rbuf, which is 
shared across all sub-flows (paths) in an association. In 
this way the FAST TCP multihomed sender divides the 
global advertised window among all its sub-flows (paths) 
proportional to their congestion window sizes. We identify 
through extensive simulations that for N (sub-flows) paths 
the FAST TCP multihomed receiver roughly needs the 
maximum buffer size to be 
( )Nαααα ++++ ......3213  packets (not a strong 

conclusion), with each path injecting α packets 
(corresponding to their links capacities) into the network 
towards its destination, where alpha (α) is the minimum 
number of packets, each path aims to maintain in the 
network queue. Ideally, if the link capacity of a path is C 
packets/ms then we set alpha to equal to 2C so that the 
source generates 2ms of queueing delay for that path. In 
practice C is not known, so we set alpha to a value that 
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works well for a range of capacities expected. With alpha 
tuning enabled (i.e., tcp_fast_at_sec [8] not 0), this alpha 
value is ignored and an automatic alpha estimation is used. 
With alpha tuning, the maximum throughput achieved is 
detected, and the alpha value is set according to whether it 
is a low, medium or high speed environment. For example, 
if α1 =100 packets and α2 = 150 packets are fixed for the 
two paths (path1 and path2) respectively, then FAST TCP 
multihoming would not effectively aggregate the 
bandwidth available on two independent paths and reach 
equilibrium if the receiver buffer size is much less than 
3(α1+ α2) or 3(100+150) = 750 packets or (750KB).  

FAST TCP is a delay-based congestion control algorithm. 
It departs from the loss-based congestion control schemes 
[4], [15] and [14], but it reacts primarily to queuing delay 
with the ability to anticipate congestion, and adjust its 
transmission rate accordingly to inform the source that the 
network will be congested. Since on the reception of an 
acknowledgement, FAST TCP updates its congestion 
window based on the queuing delay i.e., 

baseRTT-avgRTTqdelay =  according to Eq. (1). It 
means, we must maintain a steady stream of ACKs (with 
selective acknowledgement) from new transmissions in 
order to obtain unambiguous RTT measurements. This is 
generally possible only when all ACKs return over the 
same path to which they were originally sent. Thus in our 
design, although the data packets are sent through multiple 
paths concurrently, all SACKs return over the same path to 
which they were originally sent. But despite its many 
desirable properties, FAST TCP multihoming would have 
throughput problems if network congestion builds up in 
the reverse direction on the destination host to source host. 
This occurs because FAST TCP uses the round-trip time to 
sense congestion, which includes reverse path congestion. 
Thus in our future work, we will effort for its solution and 
will include one-way congestion measurement, so that 
FAST TCP multihoming only reacts to forward path 
congestion. 

5. Applicability of FAST TCP for 
Multihoming Implementation 

In this section, we investigate the applicability of FAST 
TCP for end-to-end multihoming implementation. For this, 
we used ns-2 [9] network simulator as the basis for our 
investigation. We used FAST TCP simulator module for 
ns-2 [8], version 1.1 (SACK introduced). This fast-tcp-ns2-
v1_1c patch was developed at the University of 
Melbourne's Centre for Ultra-Broadband Information 
Networks (CUBIN) and was written by Tony Cui with 
advice from Lachlan Andrew and others. For our 
multihoming implementation using FAST TCP, we  

 
modified this ns-2 module [8] by sketching all the key 
design elements that we have discussed in the previous 
sections. We describe the setup of our experimental 
evaluation of FAST TCP multihoming performance in 
terms of application throughput during file transfers 
through multiple paths concurrently. 

5.1 Experimental Setup and Network Topology 

In this section, we discuss the simulation parameters and 
assumptions, network topology and evaluation metrics 
used. We did not implement the initial negotiation phase 
of a FAST TCP multihoming connection, as we believe 
this is not the limiting factor of end to end performance 
and we are more interested in the performance aspect of 
FAST TCP multihoming. Fig. 1 illustrates the network 
topology used in our experiments. 

Two multihomed hosts, a sender host (S) having local 
addresses S1, S2 and a destination host (D) having local 
addresses D1, D2 are connected by two independent paths. 
We used two types of links in our simulations to show the 
FAST TCP multihoming behavior: (i) two paths 

11 DS ↔ and 22 DS ↔ are connected as duplex links of 
20Mbps with a one-way propagation delay of 60ms. Thus 
the roundtrip propagation delay on both paths is 120ms 
and both paths have exactly the same characteristics (i.e., 
delay, bandwidth), and this scenario is described in 
(section 5.2.1), (ii) two paths 11 DS ↔ and 22 DS ↔ are 
connected as duplex links having end-to-end available 
bandwidths 30Mbps and 10Mbps with a one-way 
propagation delay of 40ms and 80ms, respectively. Thus 
the roundtrip propagation delays on both paths are 80ms 
and 160ms, respectively and this scenario is described in 
(section 5.2.2). 

Scenario 1:

Scenario 2:

Path1: Bandwidth = 20Mbps, Propagation delay = 60ms

Path2: Bandwidth = 20Mbps, Propagation delay = 60ms 

Path1: Bandwidth = 30Mbps, Propagation delay = 40ms

Path2: Bandwidth = 10Mbps, Propagation delay = 80ms 

Fig. 1.  Simulation topology used for FAST TCP multihoming evaluation

Path1  

Path

S

S2 

D

S1 

D2 

D1 

Dual-homed
sender host

Dual-homed 
receiver host 
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We simulated the end-to-end paths from the multihomed 
host (S) to the destination (D) through our custom 
bandwidth, queuing delay, aggregate congestion window 
evolution and loss modules added to the link object in ns-2. 
Multihomed sender host (S) sends data to destinations D1 
and D2 concurrently, as the bandwidth becomes available 
on corresponding paths, i.e., as corresponding congestion 
windows allow. In all of our experiments, alpha (α) was 
set to 100 for each path and packet size was set to 1000 
bytes. We transferred an infinitely large file using FTP 
from S to D for 30 seconds with the maximum receiver 
buffer size of 600 packets (or 600KB) and drop-tail 
queuing.  

5.2 Simulation Results and Analysis   

We now present our experimental results and following 
experimental scenarios were investigated: 
• FAST TCP multihomed hosts with same path 

characteristics (i.e., bandwidth and delay): Scenario 1  
• FAST TCP multihomed hosts with different path 

bandwidth and delay: Scenario 2  
All the two scenarios are based on the simulation topology 
shown in Fig. 1. 

Before we look at the FAST TCP multihoming     
scenarios (1, 2) in detail, we first wanted to see how 
simple FAST TCP (FAST TCP without multihoming 
options) congestion control mechanisms handle and update 
the (single congestion window for two paths) window 
when applied to multiple path environments. For this 
purpose, we conducted a simple simulation also based on 
the topology shown in Fig. 1, in which both paths 
( DDS S 11 ↔↔↔ and DDS S 22 ↔↔↔ ) from the 
source host (S) to the destination host (D) are used at the 
same time and each host has a single local address. Both 
data packets and acknowledgements of the same FAST 
TCP connection are scattered over both paths (i.e., path1 
and path2) having different path characteristics. Both paths 
(path1 and path2) are connected as duplex links having 
end-to-end available bandwidths 30Mbps and 10Mbps 
respectively. 

Fig. 2 shows the throughput achieved by the FAST TCP in 
the first few seconds of the connection life over the two 
paths having 60ms propagation delay (i.e., 120ms round-
trip time) for each path. Similarly, Fig. 3 shows the 
throughput achieved by the FAST TCP over the two paths, 
when path1 and path2 have 40ms and 80ms propagation 
delays (similar to scenario 2) respectively. 

The results in Fig. 2 show that the achieved aggregate 
bandwidth of FAST TCP over two equal propagation 
delays paths is 20Mbps, which is theoretically twice the 
bandwidth of path2 (smaller bandwidth path of the two 
paths). This achieved aggregate bandwidth is much 

   
smaller than the expected aggregate bandwidth of two 
paths (i.e., path1 (30Mbps) + path2 (10Mbps)). Similarly, 
the results in Fig. 3 show that the achieved aggregate 
bandwidth of FAST TCP over two different propagation 
delays paths is smaller than that of a single-path FAST 
TCP flow on a single good path. 

To explain these surprising results (Fig. 2 and Fig. 3), we 
remind the reader that FAST TCP updates its congestion 
window based on the queueing delay and the average 
queueing delay is estimated as 

baseRTT-avgRTTqdelay = , where baseRTT is the 
propagation delay and avgRTT comes from exponentially                         

 
Fig. 2.  Throughput achieved by simple FAST TCP over the two paths 
when both paths (path1 and path2) have the same 60ms propagation delay.
 
 

 
Fig. 3.  Throughput achieved by simple FAST TCP over the two paths 
when path1 and path2 have 40ms and 80ms propagation delays, 
respectively.
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averaging instantaneous RTT samples, as (for Fig. 2) both 
paths have the same 60ms propagation delay, resulting in 
qdelay to zero and FAST TCP performs multiplicative 
increase and grows exponentially at a rate α (100) until it 
reaches to (2 * bandwidth of path2). Also at the same time, 
FAST TCP uses a single global congestion window for the 
entire flow (two paths) that basically causes the path1 not 
be able to utilize its available bandwidth. Same case is 
with the Fig. 3 result, as both paths have different 
propagation delays, the acknowledgements coming from 
path1 (having 80ms RTT) and path2 (having 160ms RTT) 
causing a large queuing delays for updating the FAST 
TCP’s single global congestion window. As queueing 
delay is the dominant congestion signal for FAST TCP to 
adjust its window, thus it forces the FAST TCP to 
decrease its window to unnecessarily small values.  

The problems that arise due to bandwidth differences 
and/or due to delay differences over the multiple paths 
data transfer can be solved by performing the independent 
congestion control mechanism for each path separately 
(i.e., each path maintains a congestion window as in 
simple FAST TCP). 

Now we move on to the above two cases and look at these 
two scenarios (1, 2) in detail, comparing not only the 
throughput behavior by implementing the proposed 
multihoming design scheme into FAST TCP, but also the 
queue behavior inside the network, by examining 
trajectories of throughputs, windows, instantaneous queue 
and link utilization. In particular, we wanted to see how 
well FAST TCP multihoming handles congestion control 
mechanisms and packet reordering in presence of multiple 
paths. 

 

5.2.1 Scenario 1 
In the first scenario, we conducted simple simulation to 
investigate how much FAST TCP multihoming improves 
throughput using multiple independent paths under certain 
conditions. Although this simulation scenario does not 
justify some effects seen in the Internet and other real 
networks such as network induced reordering and delay. 
However, for an idealize case, we selected a simple 
topology to avoid influence of these effects, and to present 
the best possible performance expected by an application 
that strips data over multiple paths concurrently. The 
bandwidths were chosen to be high enough because FAST 
TCP can sustain high throughput for extended periods of 
time in high-speed long-distance networks using standard 
packet size. 

Fig. 4 shows the sequence number plots of the sent packets 
verses the time at which they were sent. Y-axis represents 
the sequence number plot and X-Axis shows the time 
when it was transmitted. Fig. 4 has a single curve, which 
shows the FAST TCP multihomed sender host’s sequence 
number plots of the sent packets through both paths. 

The plots show the way multihomed sender normally 
sends packets, when no loss is involved. It is possible to 
see that FAST TCP multihomed sender sends data up to 
the congestion window size value (as corresponding 
cwnds for each path allow) and then waits for ACKs to put 
more data onto the network by updating its congestion 
window based on the queuing delay according to Eq. (1). 

Similarly, Fig. 5 shows congestion window evolution over 
time for the whole association. The plots in Fig. 5 show 
the FAST TCP multihomed sender’s observed cwnd 
evolution for each destination for this association, and 
compare the calculated aggregate cwnd evolution (sum of 

                        (a)                                                                                (b)                                                                                (c) 
 

                     Fig. 4  Simulation scenario 1: FAST TCP multihoming Sequence Number Plot (a close-up look at the first 3 seconds of the simulation) 
                     (a) for path1 ( 11 DS ↔ ), (b) for path2 ( 22 DS ↔ ) and (c) for both destinations ( 21 D  ,D ). 
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both paths (path1+path2)) with the expected aggregate 
cwnd evolution (the expected aggregate cwnd is the sum 
of the cwnd growth of two independent FAST TCP runs). 
We observed that FAST TCP multihomed sender’s 
aggregate cwnd growth came close to the expected 
aggregate cwnd growth. This observable fact shows that 
the performance gains of parallel transfer through multiple 
paths can be fully achieved by using a sharing sequence 
space among flows on different paths that occurs within a 
single association. 

We presented the throughput results in Fig. 6. The curves 
in Fig. 6 compare expected aggregate throughput (the 

expected aggregate throughput is the sum of the 
throughputs of two independent FAST TCP runs) with the 
aggregate throughput actually achieved by the FAST TCP 
multihomed sender when using both paths (path1 and 
path2) for end-to-end data transfer concurrently. We 
observed that FAST TCP multihoming achieved the 
aggregate throughput near the ideal performance (i.e., 
expected aggregate bandwidth). So this is exactly what we 
expected to see from the simulation: the throughput 
climbed nearly to 40Mbps by implementing the proposed 
multihoming design scheme into FAST TCP. 

In fact this is because, a FAST TCP multihomed sender 

                                                  (a)                                                                                                                        (b) 
 

                   Fig. 6  Simulation scenario 1: (a)  End-to-end throughput achieved by FAST TCP multihoming through multiple paths (two paths) data   
                    transfer concurrently under equal path delays (path1 = 60ms, path2 = 60ms) (b) A close-up look at the first 3 seconds of the simulation. 

                                                 (a)                                                                                                                        (b) 
 

                      Fig. 5  Simulation scenario 1: (a) Evolution of the different Congestion Windows (FAST TCP multihoming) (b) A close-up look 
                      at the first 3 seconds of the simulation. 
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during the association, simultaneously opens up  a separate 
congestion window for the each path, so that it is nearly 
close to the expected aggregate throughput. 

These results (Fig. 4 – Fig. 6) verify that FAST TCP 
multihoming for end-to-end data transfer through multiple 
paths concurrently can effectively aggregate the bandwidth 
available on all the paths (i.e., two paths). From this 
experiment, some other information was also gathered that 
higher throughput can be achieved when congestion 
control is performed for each path separately. 
5.2.2 Scenario 2 
The exact same setup (Fig. 1) was used for this scenario 
except that the both paths have the different characteristics 
(i.e., bandwidth and delay) as previously described in 
(section 5.1). In this second test, we tried to evaluate how 
FAST TCP multihomed hosts determined congestion 
window based on congestion information (queueing delay 
and packet loss) and reacted to packet reordering1 due to 
different path characteristics for end-to-end data transfer 
through multiple paths concurrently. Thus for this scenario, 
we increased the delay of link 22 DS ↔ from 60ms to 
80ms and bandwidth of link 11 DS ↔ from 20Mbps to 
30Mbps, and we decreased the delay of link 

11 DS ↔ from 60ms to 40ms and bandwidth of link 
22 DS ↔ from 20Mbps to 10Mbps; as a result one path 

from S to D now has a total delay 40ms greater and a total 
bandwidth 20Mbps smaller than the other (Fig. 1). The 
packet loss was set to 0%. 

                                                           
1 The packets sent through multiple paths (having different traffic-load 
distribution) simultaneously to destination using end-to-end multihoming, 
the packets are highly likely to arrive in the order they were initially sent 
(preventing rbuf from blocking [13]). 

Fig. 7 corresponds to the sequence number progressions of 
an experiment performed following this scenario. Through 
extensive simulations, we observed that unequal delay on 
the two paths do not impact the relative performance of 
FAST TCP multihoming. Fig. 7 – Fig. 9, demonstrate this 
consistent behavior with different end-to-end link 
capacities and unequal path delays of 40ms on path1, and 
80ms on path2. 

We also examined that these outcomes are consistent with 
the results obtained from scenario 1 (Fig. 4 – Fig. 6), 
which have equal delays of 60ms on both paths. 
Specifically, as the bandwidth ratio between multiple paths 
increases in the network, stability becomes worse for the 
loss-based protocols, produces more out-of-sequence 
packets at the receiver, causing lots of retransmissions and 
blocking the rbuf, which impair the whole association 
throughput. But we observed that the performance of 
FAST TCP multihoming under a single sequence space 
within a transport layer association did not degrade in any 
significant way for any evaluation criterion and its 
sketched design scheme for parallel data transfer through 
multiple paths using end-to-end multihoming remain quite 
stable and insensitive to the path characteristics changes. 

6. Conclusion and Future Work 

In this research work, we have addressed a number of 
issues in attempting to develop such a transport layer 
protocol based on FAST TCP, which can transfer data 
parallel through multiple paths using end-to-end 
multihoming. We have also proposed a design scheme for 
multihoming implementation using FAST TCP by taking 
advantage of its delay-based features with the goal of 
improving end-to-end throughput. 

                          (a)                                                                                (b)                                                                                (c) 
 

                           Fig. 7  Simulation scenario 2: FAST TCP multihoming Sequence Number Plot (a close-up look at the first 30 seconds of the simulation) 
                           (a) for path1 ( 11 DS ↔ ), (b) for path2 ( 22 DS ↔ ) and (c) for both destinations ( 21 D  ,D ). 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008 
 

113

 

 
 

In this study, two scenarios were sketched to illustrate the 
concept and to evaluate the proposed design scheme of 
FAST TCP multihoming on two high-speed networks (ns-
2), and through these simulations we have shown that 
FAST TCP multihoming achieves bandwidth aggregation 
efficiently under a variety of network conditions. 

We conclude that FAST TCP is better suited as a transport 
layer protocol for parallel data transfer through multiple 
paths using end-to-end multihoming because of its several 
distinct features not present in current TCP and SCTP. 
Since data transfer through multiple paths is becoming an 
increasingly popular topic of research and mechanism for 

using extra network links, so we also conclude that the 
issues considered in this research provide insight on design 
decisions for future multihomed transport protocols. The 
results of our initial efforts are encouraging but there are 
several avenues for future work. 

 In this paper, we focus on evaluation of proposed design 
scheme through analysis and simulation, however, much 
remains to be done to make it a practical scheme for 
implementation in the networks, thus we will first modify 
or re-design the FAST TCP algorithms [9] for the ns-2 to 
perform the simulation work by evaluating these design 
decisions. 

                                                  (a)                                                                                                                        (b)  
 

           Fig. 9  Simulation scenario 2: (a) End-to-end throughput achieved by FAST TCP multihoming under different link capacities (path1 = 30Mbps,  
path2 = 10Mbps) and unequal path delays (path1 = 40ms, path2 = 80ms). (b) A close-up look at the first 3 seconds of the simulation.

                                                (a)                                                                                                                         (b) 
 

               Fig. 8  Simulation scenario 2: (a)  Evolution of the different Congestion Windows (FAST TCP multihoming) (b) A close-up look 
at the first 3 seconds of the simulation.



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008 
 
114 

Acknowledgments 

The authors would like to express their deep gratitude to 
Ishtiaq A. Choudhry, whose continuous criticism helped to 
shape up the idea, and the special thanks go to Masanori 
Kanazawa for the ongoing moral support. This research 
was supported by the Directorate of Research Extension 
and Advisory Services U.E.T., Lahore-Pakistan. 
 
References 
[1] M. Ohta, “The Architecture of End to End Multihoming,” 

Internet-draft, IETF (Nov 2002), draft-ohta-e2e-
multihoming-03.txt.  

[2] Tom Kelly, “Scalable TCP: Improving performance in 
highspeed wide area networks,” Submitted for publication, 
http://www-lce.eng. cam.ac.uk/~ctk21/scalable/, December 
2002. 

[3] A. Matsumoto, M. Kozuka, K. Fujikawa, Y. Okabe, “TCP 
Multi-Home Options,” Internet-draft, IETF (Oct 2003), 
draft-arifumi-tcp-mh-00.txt.  (work in progress). 

[4] Sally Floyd, “HighSpeed TCP for large congestion 
windows”. Internet draft draft-floyd-tcp-highspeed-02.txt, 
work in progress, http://www.icir.org/floyd/hstcp.html, 
February 2003. 

[5] C. Jin, D. Wei, and S. H. Low, FAST TCP: motivation, 
architecture, algorithms, performance, Tech. Rep. 
CaltechCSTR: 2003.010, Caltech, Pasadena CA, 2003, 
http://netlab.caltech.edu/FAST. 

[6] M. J. Arshad and M. S. Mian, “Simulation and Visualization 
of Transmission Control Protocol’s (TCP) Flow-Control and 
Multi-Home Options,” in Proceedings of IEEE IBCAST, 
Islamabad, Pakistan, 8th - 11th January, 2007. 

[7] Van Jacobson. Congestion Avoidance and Control. InACM 
SIGCOMM, 1988. 

[8] T. Cui and L. Andrew, "FAST TCP simulator module for 
ns-2, version 1.1", 
http://www.cubinlab.ee.mu.oz.au/ns2fasttcp. 

[9] VINT Project, Network Simulator ns-2, 
http://www.isi.edu/nsnam/ns/. 

[10] J. R. Iyengar, K. C. Shah, P. D. Amer, and R. Stewart, 
“Concurrent multipath transfer using SCTP multihoming,” 
in Proc. SPECTS, San Jose, CA, July 2004. 

[11] M. Allman, V. Paxson, and W.Stevens,”TCP Congestion 
Control,” RFC2581, IETF, April 1999, 
http://www.ietf.org/rfc/rfc2581.txt. 

[12] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and R. 
Wang, “A transport layer approach for improving end-to-
end performance and robustness using redundant paths,” in 
Proc. USENIX Annual Technical Conference, Boston, MA, 
June 2004, pp. 99–112. 

 
 
 
 
 
 
 
 
 

[13] M. J. Arshad and M. S. Mian, “Experimental Study of 
FAST TCP compared to SCTP:”, Submitted for publication 
2008. 

[14] R. Stewart et al. Stream control transmission protocol. IETF 
RFC 2960, Oct. 2000. 

[15] Kevin Fall and Sally Floyd, “Simulations–based 
comparisons of Tahoe, Reno and SACK TCP,” ACM 
Computer Communication Review, vol.26, no. 3, pp. 5–21, 
July 1996. 

[16] J. Iyengar, P. Amer, and R. Stewart. Receive Buffer 
Blocking In Concurrent Multipath Transport. In IEEE 
GLOBECOM, St. Louis, Missouri, November 2005. 

[17] H. Hsieh and R. Sivakumar. ptcp: An end-to-end transport 
layer protocol for striped connections. In Proceedings of 
IEEE ICNP, 2002. 

[18] R. Braden. Requirements for Internet Hosts – 
Communication Layers. RFC1122, IETF, October 1989. 

 
 
 

M. Junaid Arshad    received his Master 
degree in Computer Science in 2000. 
Since 2001, he has been an Assistant 
Professor in the Department of Computer 
Science and Engineering, U.E.T., Lahore-
Pakistan. His master thesis received the 
outstanding thesis award of the faculty of 
Computer Science, in 2000. He is 
currently a PhD student in the Department 

of Computer Science and Engineering, at University of 
Engineering & Technology, Lahore-Pakistan. His research 
interests include Internet protocols, multihomed networks 
focusing on performance, security and mobility issues, 
congestion control and wireless networks.  
 
 
 

M. Saleem Mian    received the B.E. 
degree in 1972 and M.E. degree in 1979 in 
Electrical Engineering from University of 
Engineering & Technology Lahore, 
Pakistan and PhD degree in Electrical 
Engineering from University of 
Manchester U.K. in 1998. Since 1992, he 
has been a Professor in the Department of 
Electrical Engineering, U.E.T., Lahore-

Pakistan and currently working as a Chairman in this department. 
His research interests include video streaming, multihomed 
networks focusing on performance, security and mobility issues, 
digital image processing and wireless networks. Publications of M. 
Saleem Mian can be found in http://www.uet.edu.pk.  
 
 
 
 
 
 
 
 
 


