
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

104

Manuscript received September 5, 2008.
Manuscript revised September 20, 2008.

Issues of Multihoming Implementation Using FAST TCP: A
Simulation Based Analysis

M. Junaid Arshad† and M. Saleem Mian††

†Department of Computer Science and Engineering, U.E.T., Lahore-Pakistan
††Department of Electrical Engineering, U.E.T., Lahore-Pakistan

Summary
Multihoming is currently widely used to provide end-to-end
fault-tolerance and improved application performance. A node
having different IP addresses or could be reached under several
IP addresses is said to be multihomed. Transport layer
multihoming is a feature that binds a single transport layer
connection to multiple network addresses at each endpoint.
Although transport layer multihoming is an old concept, neither
of the Internet’s current transport protocol workhorses, TCP or
UDP, support multihoming. However, some transport protocols
(like SCTP [10] or pTCP [17]) support multihoming, but
unfortunately they are not designed for high-capacities and large-
latencies networks, they often have performance problems
transferring large data files over shared long-distance wide area
networks. In this paper, we address a number of issues/challenges
in attempting to develop such an end-to-end transport layer
protocol based on FAST TCP, which can transfer data over the
high-speed networks through multiple paths concurrently using
multihoming (i.e., motivate to use FAST TCP as a reliable,
multihome-aware, SACK-based and delay-based transport layer
protocol). In our initial efforts, we propose some key design
scheme for FAST TCP to enable the concurrent utilization of all
the available paths over the multiple interfaces of a multihomed
end host, with the goal of improving end-to-end throughput.
After sketching this design scheme into ns-2 simulations, we
show that FAST TCP multihoming achieves the desired goals
under a variety of network conditions. The experimental results
and survey presented in this research also provide insight on
design decisions for the future high-speed multihomed transport
protocols.
Key words:
FAST TCP, Bandwidth Aggregation, FAST TCP multihoming,
Multiple Paths, Transport Protocols

1. Introduction

Multihoming [1] is the ability of a host or site to access
remote destination via more than one upstream connection,
usually from different providers. The Internet may face a
problem of physical failure at some specific location for a
certain time due to any reasons. The user may switch to
different ISP’s to protect himself against such failure (link
failures or overloaded links) because servers on the
Internet today are recognized as being much less reliable.
This has given rise to the idea of multihoming and a host is
multihomed if it can be addressed by multiple IP addresses

[18] as is the case when the host has multiple network
interfaces.

Multihoming is a common requirement of many medium
sized networks, including many businesses and ISP’s, and
can occur for two main reasons. One reason is for link
redundancy, allowing a site to retain connectivity when
one of the links fails. The other main reason is for optimal
use of links, for example increasing bandwidth, or for
quality of service (QoS) factors, or with a goal of
improving end-to-end throughput.

Wide spread use of multihoming was infeasible during the
early days of the Internet due to cost constraints; today,
network interfaces have become commodity items.
Cheaper network interfaces and cheaper Internet access
motivate content providers to have simultaneous
connectivity through multiple ISP’s, and more home users
are installing wired and wireless connections for added
flexibility and fault tolerance. Multiple active interfaces
also suggest the simultaneous existence of multiple paths
between the multihomed hosts.

The existing TCP [11] and its different variants (such as
HSTCP [4], Scalable TCP [2] and FAST TCP [5]) are not
designed to manipulate multiple addresses in one TCP
session. When a network outage occurs and the access-line
associated with the local and remote addresses is down,
the TCP session itself gets lost. However, some proposals
have been suggested for TCP multihome options [3] [6]
but they use multihome options for redundancy purpose
only.

In this paper, we focus on FAST TCP for our investigation
and our goal is to discuss the different issues involved for
the implementation of FAST TCP multihoming for end-to-
end data transfer through multiple paths concurrently and
to suggest some practical guidelines for improving the
end-to-end throughput. The general idea of multihoming
implementation using FAST TCP in a network to obtain
better performance and throughput has been explored in a
number of different research efforts.

The remainder of this paper is organized as follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

105

In section 2, we first introduce FAST TCP along with its
key features. In this section we also motivate FAST TCP
used for multihoming by illustrating the advantages of
replacing loss-based approach (i.e., like TCP [11] and
SCTP [14]) with delay-based approach [5] as the end-to-
end transport layer congestion control mechanism between
two communicating hosts. In section 3, we discuss the
various design issues and problems encountered in the
basic implementation of end-to-end multihoming using
FAST TCP. Section 4 delineates the proposed design and
provides an overview of our approach, which is sketched
in section 5 through simulations. In this section, we
analyze the behavior of FAST TCP multihoming by using
a particular network scenario in ns-2 (Network Simulator
[9]), to prove its efficiency in producing high end-to-end
throughput in multiple path environments. Finally in
section 6, we present the conclusions and future work of
this research.

2. FAST TCP Overview

FAST TCP [5] is a modification to the standard TCP [11]
congestion control algorithm for high-speed long-distance
connections. FAST TCP is a delay-based congestion
control algorithm that aims to improve the performance of
standard TCP. SCTP and TCP both use the packet loss as
the measure of congestion (i.e., both rely only on packet
loss to adjust congestion widow). But the FAST TCP uses
both queuing delay and packet loss as signals of
congestion, and departs from the loss based congestion
control schemes [11][14]. FAST TCP uses queueing delay
for congestion control and its advantage over loss-based
approach is small at low speed, but decisive at high speed.

2.1 FAST TCP Congestion Control Algorithms

FAST TCP window calculate mechanism is divided into
three sections: slow start (SS), multiplicative increase (MI),
and exponential convergence (EC). SS is essentially
identical to the standard slow start in TCP Reno; the only
difference being that FAST exits SS when the number of
packets queued in the network exceeds a threshold gamma
rather than using packet loss. MI is used to rapidly move a
FAST connection close to equilibrium whenever it falls
below equilibrium. FAST TCP implements a safeguard
mechanism in both MI and EC, where a window is
increased or decreased on alternative RTTs. In EC, the
window moves half-way between the current value and the
target in each update interval so it is exponentially
increasing, with a negative exponent so the window
converges to the target, with time measured in multiples of
10 ms.

FAST TCP updates the window based on the following
algorithm:

⎭
⎬
⎫

⎩
⎨
⎧ ++−←)),()(()1(,2min qdelayww

RTT
baseRTTwww αγγ (1)

Where]1,0(∈γ , baseRTT is the minimum RTT observed
so far, and qdelay is the end-to-end (average) queuing
delay. The constant α is the number of packets each flow
attempts to maintain in the network buffer(s) at
equilibrium.

2.2 Related Work and Motivation for FAST TCP
multihoming implementation

This section describes some prior work that exploit
transport layer multihoming (i.e., implements a transport
layer solution to aggregate bandwidth across multiple end-
to-end paths) and differentiates our work from this earlier
research by motivating the FAST TCP used for end-to-end
multihoming.

SCTP is a transport protocol that introduces support for
simultaneous data transfer over multiple paths in
multihomed hosts. SCTP is relatively new; it has not yet
been widely deployed in the Internet despite its many
advantages over standard TCP and UDP, though the
research on extending SCTP to support concurrent
multipath transfer using transport layer multihoming to
increase the association bandwidth is still in progress [10].
We used FAST TCP for our reference multihoming
implementation and investigation, because FAST TCP has
a great advantage over other transport layer protocols (e.g.,
SCTP [14] and TCP [11]), it uses queueing delay, rather
than loss probability as the main measure of congestion,
and it is intended to solve the transport layer protocols
limitation in high-bandwidth large-delay environments.

The loss-based transport protocols (i.e., SCTP and TCP)
detect congestion only after a packet has been dropped at
the gateway (i.e., use packet loss as the measure of
congestion), which means the source will not know the
situation in the gateway until congestion occurs. Another
problem with concurrent multipath transfer using SCTP
[10] is that, it is more sensitive to receiver buffer (rbuf)
constraints [16], and this rbuf-blocking problem causes
significant throughput degradation when multiple paths are
used concurrently. In [13], we demonstrate the weakness
of SCTP-CMT rbuf constraints and, we then identify that
rbuf-blocking problem in SCTP multihoming is mostly
due to its loss-based nature for detecting network
congestion. We have also shown that FAST TCP
consistently outperforms SCTP in terms of throughput,
stability with zero packet loss at the bottleneck under a
similar network conditions, because FAST TCP
anticipates the onset of congestion by monitoring the
difference between the rates it is expecting to see and the
rate it is actually realizing. FAST TCP strategy is to adjust
the source’s sending rate in an attempt to keep a small

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

106

number of packets buffered in the routers along the path
such that it never exceeds the delay-bandwidth product of
the connection plus the number of buffers at the bottleneck.
This technique gives FAST TCP the ability to anticipate
congestion, and adjust its transmission rate accordingly in
such a way that there are little or no losses. Therefore, we
motivate delay-based approach (i.e., FAST TCP) as a
congestion control mechanism used for implementing the
end-to-end transport layer multihoming for parallel data
transfer (in high-speed long-distance networks) rather than
other loss-based congestion control protocols.

3. FAST TCP Multihoming Implementation
Issues

In this section, we address several open questions and
issues concerning the end-to-end multihoming
implementation using FAST TCP. We will also suggest
the solutions of some issues that have been explored in a
number of different research efforts.

Some issues for the implementation of FAST TCP
multihoming are as follows:

• How the use of FAST TCP multihoming for
multiple paths increases aggregate throughput?

• How to determine the number of paths used that
is necessary to maximize throughput while
avoiding network congestion?

• Scheduling of traffic on multiple paths.
• Congestion Control: separate or shared?
• How to use receiver’s advertised window (rwnd)

at the sender for multiple paths: shared buffer or
individual buffer for each path?

• How the sequence space shares among flows on
different paths that occur within an association?

• Loss detection and recovery.
• Packet reordering introduced by the sender over

multiple paths.
• Reverse path for acknowledgements.

Now, we address some of these issues in details.

3.1 Congestion Control and Flow Control Issues

The important issue that we want to address for end-to-end
transfer of data through multiple paths using FAST TCP
multihoming is its congestion control and flow control
mechanisms. Congestion control is a critical issue for
FAST TCP multihoming implementation as it tries to
utilize the network resources more aggressively. Since the
key obstacle for achieving the aggregate bandwidth for
FAST TCP multihoming through multiple paths
concurrently is that each of the individual paths can have
vastly differing characteristics in terms of bandwidth and
delay (round-trip time). If we ignore the factors for

implementing the propose system, the bandwidth achieved
through multiple paths can be significantly lower than the
maximum possible. As different sub-flows (paths) take
different network paths, so each path needs to have its own
congestion control.

FAST TCP multihoming for multiple paths strives to keep
all paths independent from each other. Suppose we had
used only one global congestion window for the entire
flow. The packet losses on any one of the paths will cause
the global congestion window to be halved, thus affecting
the all sub-flows (paths). If one sub-flow happens to go
across a heavily congested path, it can keep the global
congestion window small, and the other sub-flows will not
be able to utilize the available bandwidth on other good
paths. In certain situations, this can cause the throughput
of the whole flow to be even lower than that of a single-
path FAST TCP flow on a single good path. This fact was
studied in [12]. Thus all the paths should share the same
send/receive buffer as well as in this proposed system.
Packets are assigned sequence numbers in the same way as
in FAST TCP. But how the sequence space shares among
these multiple paths? We will discuss this issue in
section 4. Each path does its congestion control and
maintains a congestion window independently as in simple
FAST TCP [5]; i.e., congestion window changes
independently as the sub-flow adapts to the network state
and each sub-flow uses equation-based control with
queueing delay (according to Eq. (1)), and multiplicative
decrease with packet loss (when a packet loss is detected,
FAST TCP halves its window and enters loss recovery).

3.2 Receiver’s Advertised Window (rwnd) at the
Sender for Multiple Paths

A transport layer receiver maintains receiver buffer space
for containing data for two reasons: (i) to handle out-of-
sequence data, and (ii) to receive data at a rate higher than
that of the receiving application’s consumption. In TCP, a
receiver advertises currently available rbuf space through
window advertisements (normally by ACKs) to a data
sender. This value is the advertised receive window. A
sender computes a peer-receiver window (rwnd) to deduce
how much more data can be buffered at the receiver.

Now the issue is that how to use rwnd at the sender for
multiple paths concurrently? It should be clear that each
sub-flow (path) should have its own retransmission timer
since each has its own round trip time (RTT) and of course
has its own congestion window per destination. They
represent the state of different network paths from a sender
to each destination address. A sender has no reason to
maintain separate rbufs or peer-rwnds per path since a
receiver can consume data only in-sequence, irrespective
of the destination address they are sent to. Thus a FAST
TCP multihoming for multiple paths receiver should

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

107

maintain a single rbuf which is shared across all sub-flows
in an association. In this way a sender divides the global
advertised window among all its sub-flows (paths)
proportional to their congestion window sizes and this will
always yield better throughput. On the other hand if the
advertised window is divided among sub-flows (paths) on
the multihomed receiver side, this buffer sharing degrades
overall throughput.

When multiple paths being used for simultaneous transfer
of data have different delay and/or bandwidth
characteristics between source and destination, additional
packet reordering is observed at the receiver. In other
words significant packet reordering can be introduced in
the flow by a multiple path data transfer sender, which in
turn can cause rbuf-blocking problems [13].

3.3 Sequence Space among the Multiple Paths and
Reverse Path for ACKs

As we have discussed in the previous section that all sub-
flows share the same send/receive buffer and each path has
its own congestion control. Also, each sub-flow estimates
its own round trip time, it needs to remember which
packets it has sent and match each received ACK with one
of the these packets. Thus each sub-flow also maintains
the sequence numbers of the packets sent from this path
but not acknowledged yet. This sequence space may or
may not be shared among all the paths.

Since ACKs are cumulative, so sharing of sequence space
across paths can help a multihomed sender for receiving
ACK information on either of the return paths. Thus a
shared sequence space for end-to-end transfer of data
through multiple paths can effectively use both (if two
paths are used) return paths for communicating ACK
information to the sender. But at the same time the
disadvantage of using different reverse paths for ACKs
can make our system more complex, because the
multihomed receiver has to maintain additional states
about which ACK going through which paths. Moreover
using several reverse paths will introduce ACK reordering,
which in turn will affect the sender’s behavior (e.g.,
increasing the burstiness of the sender).

4. FAST TCP Multihoming Proposed Design

In this section, we present some key design elements for
FAST TCP multihoming implementation through
multipath data transfer concurrently. It is important to
propose the design scheme in such a way that it will
provide the same semantics to applications as simple
FAST TCP– it will preserve the properties such as
reliability, fairness, stability and responsiveness. FAST
TCP multihomed sender host sends data through multiple

paths concurrently, so it has to decide how to schedule
packets across the multiple paths and how to manage
congestion control for each path (sub-flow).

In the previous sections, we have discussed that the key
obstruction for achieving the aggregate bandwidth through
multiple paths concurrently is that each of the individual
paths can have immensely different characteristics in
terms of bandwidth and delay (round-trip time). If we
ignore these factors for implementing the propose system,
the bandwidth achieved through multiple paths can be
considerably lower than maximum possible. As different
paths have different delay and/or bandwidth characteristics,
so each path needs to have its own window control
mechanism, like a simple FAST TCP. This means each
path needs its own estimation module [5] (like FAST
TCP) to estimate round-trip time (RTT) and remember
which packets it has sent and match each received ACK
with one of there packets.

Each path maintains a congestion window as in simple
FAST TCP and this congestion window changes
independently as the path adapts to the network state (i.e.,
under normal network conditions, FAST TCP periodically
updates the congestion window based on the average RTT
and average queuing delay provided by the estimation
component, according to Eq. (1)).

In our current design, we use a single sequence space
(used for congestion control and loss detection, and
recovery) across an association’s multiple paths. The
multihomed sender maintains a set of per path virtual
queues and spreads the packets across all available paths
immediately the congestion window allows it.
Retransmissions are prompted only when a number of
SACKs (generally 3-duplicate acknowledgements) report
the missing data packets from the same virtual queue.

In our current prototype, the FAST TCP multihomed
receiver maintains and controls a single rbuf, which is
shared across all sub-flows (paths) in an association. In
this way the FAST TCP multihomed sender divides the
global advertised window among all its sub-flows (paths)
proportional to their congestion window sizes. We identify
through extensive simulations that for N (sub-flows) paths
the FAST TCP multihomed receiver roughly needs the
maximum buffer size to be
()Nαααα ++++3213 packets (not a strong

conclusion), with each path injecting α packets
(corresponding to their links capacities) into the network
towards its destination, where alpha (α) is the minimum
number of packets, each path aims to maintain in the
network queue. Ideally, if the link capacity of a path is C
packets/ms then we set alpha to equal to 2C so that the
source generates 2ms of queueing delay for that path. In
practice C is not known, so we set alpha to a value that

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

108

works well for a range of capacities expected. With alpha
tuning enabled (i.e., tcp_fast_at_sec [8] not 0), this alpha
value is ignored and an automatic alpha estimation is used.
With alpha tuning, the maximum throughput achieved is
detected, and the alpha value is set according to whether it
is a low, medium or high speed environment. For example,
if α1 =100 packets and α2 = 150 packets are fixed for the
two paths (path1 and path2) respectively, then FAST TCP
multihoming would not effectively aggregate the
bandwidth available on two independent paths and reach
equilibrium if the receiver buffer size is much less than
3(α1+ α2) or 3(100+150) = 750 packets or (750KB).

FAST TCP is a delay-based congestion control algorithm.
It departs from the loss-based congestion control schemes
[4], [15] and [14], but it reacts primarily to queuing delay
with the ability to anticipate congestion, and adjust its
transmission rate accordingly to inform the source that the
network will be congested. Since on the reception of an
acknowledgement, FAST TCP updates its congestion
window based on the queuing delay i.e.,

baseRTT-avgRTTqdelay = according to Eq. (1). It
means, we must maintain a steady stream of ACKs (with
selective acknowledgement) from new transmissions in
order to obtain unambiguous RTT measurements. This is
generally possible only when all ACKs return over the
same path to which they were originally sent. Thus in our
design, although the data packets are sent through multiple
paths concurrently, all SACKs return over the same path to
which they were originally sent. But despite its many
desirable properties, FAST TCP multihoming would have
throughput problems if network congestion builds up in
the reverse direction on the destination host to source host.
This occurs because FAST TCP uses the round-trip time to
sense congestion, which includes reverse path congestion.
Thus in our future work, we will effort for its solution and
will include one-way congestion measurement, so that
FAST TCP multihoming only reacts to forward path
congestion.

5. Applicability of FAST TCP for
Multihoming Implementation

In this section, we investigate the applicability of FAST
TCP for end-to-end multihoming implementation. For this,
we used ns-2 [9] network simulator as the basis for our
investigation. We used FAST TCP simulator module for
ns-2 [8], version 1.1 (SACK introduced). This fast-tcp-ns2-
v1_1c patch was developed at the University of
Melbourne's Centre for Ultra-Broadband Information
Networks (CUBIN) and was written by Tony Cui with
advice from Lachlan Andrew and others. For our
multihoming implementation using FAST TCP, we

modified this ns-2 module [8] by sketching all the key
design elements that we have discussed in the previous
sections. We describe the setup of our experimental
evaluation of FAST TCP multihoming performance in
terms of application throughput during file transfers
through multiple paths concurrently.

5.1 Experimental Setup and Network Topology

In this section, we discuss the simulation parameters and
assumptions, network topology and evaluation metrics
used. We did not implement the initial negotiation phase
of a FAST TCP multihoming connection, as we believe
this is not the limiting factor of end to end performance
and we are more interested in the performance aspect of
FAST TCP multihoming. Fig. 1 illustrates the network
topology used in our experiments.

Two multihomed hosts, a sender host (S) having local
addresses S1, S2 and a destination host (D) having local
addresses D1, D2 are connected by two independent paths.
We used two types of links in our simulations to show the
FAST TCP multihoming behavior: (i) two paths

11 DS ↔ and 22 DS ↔ are connected as duplex links of
20Mbps with a one-way propagation delay of 60ms. Thus
the roundtrip propagation delay on both paths is 120ms
and both paths have exactly the same characteristics (i.e.,
delay, bandwidth), and this scenario is described in
(section 5.2.1), (ii) two paths 11 DS ↔ and 22 DS ↔ are
connected as duplex links having end-to-end available
bandwidths 30Mbps and 10Mbps with a one-way
propagation delay of 40ms and 80ms, respectively. Thus
the roundtrip propagation delays on both paths are 80ms
and 160ms, respectively and this scenario is described in
(section 5.2.2).

Scenario 1:

Scenario 2:

Path1: Bandwidth = 20Mbps, Propagation delay = 60ms

Path2: Bandwidth = 20Mbps, Propagation delay = 60ms

Path1: Bandwidth = 30Mbps, Propagation delay = 40ms

Path2: Bandwidth = 10Mbps, Propagation delay = 80ms

Fig. 1. Simulation topology used for FAST TCP multihoming evaluation

Path1

Path

S

S2

D

S1

D2

D1

Dual-homed
sender host

Dual-homed
receiver host

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

109

We simulated the end-to-end paths from the multihomed
host (S) to the destination (D) through our custom
bandwidth, queuing delay, aggregate congestion window
evolution and loss modules added to the link object in ns-2.
Multihomed sender host (S) sends data to destinations D1
and D2 concurrently, as the bandwidth becomes available
on corresponding paths, i.e., as corresponding congestion
windows allow. In all of our experiments, alpha (α) was
set to 100 for each path and packet size was set to 1000
bytes. We transferred an infinitely large file using FTP
from S to D for 30 seconds with the maximum receiver
buffer size of 600 packets (or 600KB) and drop-tail
queuing.

5.2 Simulation Results and Analysis

We now present our experimental results and following
experimental scenarios were investigated:
• FAST TCP multihomed hosts with same path

characteristics (i.e., bandwidth and delay): Scenario 1
• FAST TCP multihomed hosts with different path

bandwidth and delay: Scenario 2
All the two scenarios are based on the simulation topology
shown in Fig. 1.

Before we look at the FAST TCP multihoming
scenarios (1, 2) in detail, we first wanted to see how
simple FAST TCP (FAST TCP without multihoming
options) congestion control mechanisms handle and update
the (single congestion window for two paths) window
when applied to multiple path environments. For this
purpose, we conducted a simple simulation also based on
the topology shown in Fig. 1, in which both paths
(DDS S 11 ↔↔↔ and DDS S 22 ↔↔↔) from the
source host (S) to the destination host (D) are used at the
same time and each host has a single local address. Both
data packets and acknowledgements of the same FAST
TCP connection are scattered over both paths (i.e., path1
and path2) having different path characteristics. Both paths
(path1 and path2) are connected as duplex links having
end-to-end available bandwidths 30Mbps and 10Mbps
respectively.

Fig. 2 shows the throughput achieved by the FAST TCP in
the first few seconds of the connection life over the two
paths having 60ms propagation delay (i.e., 120ms round-
trip time) for each path. Similarly, Fig. 3 shows the
throughput achieved by the FAST TCP over the two paths,
when path1 and path2 have 40ms and 80ms propagation
delays (similar to scenario 2) respectively.

The results in Fig. 2 show that the achieved aggregate
bandwidth of FAST TCP over two equal propagation
delays paths is 20Mbps, which is theoretically twice the
bandwidth of path2 (smaller bandwidth path of the two
paths). This achieved aggregate bandwidth is much

smaller than the expected aggregate bandwidth of two
paths (i.e., path1 (30Mbps) + path2 (10Mbps)). Similarly,
the results in Fig. 3 show that the achieved aggregate
bandwidth of FAST TCP over two different propagation
delays paths is smaller than that of a single-path FAST
TCP flow on a single good path.

To explain these surprising results (Fig. 2 and Fig. 3), we
remind the reader that FAST TCP updates its congestion
window based on the queueing delay and the average
queueing delay is estimated as

baseRTT-avgRTTqdelay = , where baseRTT is the
propagation delay and avgRTT comes from exponentially

Fig. 2. Throughput achieved by simple FAST TCP over the two paths
when both paths (path1 and path2) have the same 60ms propagation delay.

Fig. 3. Throughput achieved by simple FAST TCP over the two paths
when path1 and path2 have 40ms and 80ms propagation delays,
respectively.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

110

averaging instantaneous RTT samples, as (for Fig. 2) both
paths have the same 60ms propagation delay, resulting in
qdelay to zero and FAST TCP performs multiplicative
increase and grows exponentially at a rate α (100) until it
reaches to (2 * bandwidth of path2). Also at the same time,
FAST TCP uses a single global congestion window for the
entire flow (two paths) that basically causes the path1 not
be able to utilize its available bandwidth. Same case is
with the Fig. 3 result, as both paths have different
propagation delays, the acknowledgements coming from
path1 (having 80ms RTT) and path2 (having 160ms RTT)
causing a large queuing delays for updating the FAST
TCP’s single global congestion window. As queueing
delay is the dominant congestion signal for FAST TCP to
adjust its window, thus it forces the FAST TCP to
decrease its window to unnecessarily small values.

The problems that arise due to bandwidth differences
and/or due to delay differences over the multiple paths
data transfer can be solved by performing the independent
congestion control mechanism for each path separately
(i.e., each path maintains a congestion window as in
simple FAST TCP).

Now we move on to the above two cases and look at these
two scenarios (1, 2) in detail, comparing not only the
throughput behavior by implementing the proposed
multihoming design scheme into FAST TCP, but also the
queue behavior inside the network, by examining
trajectories of throughputs, windows, instantaneous queue
and link utilization. In particular, we wanted to see how
well FAST TCP multihoming handles congestion control
mechanisms and packet reordering in presence of multiple
paths.

5.2.1 Scenario 1
In the first scenario, we conducted simple simulation to
investigate how much FAST TCP multihoming improves
throughput using multiple independent paths under certain
conditions. Although this simulation scenario does not
justify some effects seen in the Internet and other real
networks such as network induced reordering and delay.
However, for an idealize case, we selected a simple
topology to avoid influence of these effects, and to present
the best possible performance expected by an application
that strips data over multiple paths concurrently. The
bandwidths were chosen to be high enough because FAST
TCP can sustain high throughput for extended periods of
time in high-speed long-distance networks using standard
packet size.

Fig. 4 shows the sequence number plots of the sent packets
verses the time at which they were sent. Y-axis represents
the sequence number plot and X-Axis shows the time
when it was transmitted. Fig. 4 has a single curve, which
shows the FAST TCP multihomed sender host’s sequence
number plots of the sent packets through both paths.

The plots show the way multihomed sender normally
sends packets, when no loss is involved. It is possible to
see that FAST TCP multihomed sender sends data up to
the congestion window size value (as corresponding
cwnds for each path allow) and then waits for ACKs to put
more data onto the network by updating its congestion
window based on the queuing delay according to Eq. (1).

Similarly, Fig. 5 shows congestion window evolution over
time for the whole association. The plots in Fig. 5 show
the FAST TCP multihomed sender’s observed cwnd
evolution for each destination for this association, and
compare the calculated aggregate cwnd evolution (sum of

 (a) (b) (c)

 Fig. 4 Simulation scenario 1: FAST TCP multihoming Sequence Number Plot (a close-up look at the first 3 seconds of the simulation)
 (a) for path1 (11 DS ↔), (b) for path2 (22 DS ↔) and (c) for both destinations (21 D ,D).

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

111

both paths (path1+path2)) with the expected aggregate
cwnd evolution (the expected aggregate cwnd is the sum
of the cwnd growth of two independent FAST TCP runs).
We observed that FAST TCP multihomed sender’s
aggregate cwnd growth came close to the expected
aggregate cwnd growth. This observable fact shows that
the performance gains of parallel transfer through multiple
paths can be fully achieved by using a sharing sequence
space among flows on different paths that occurs within a
single association.

We presented the throughput results in Fig. 6. The curves
in Fig. 6 compare expected aggregate throughput (the

expected aggregate throughput is the sum of the
throughputs of two independent FAST TCP runs) with the
aggregate throughput actually achieved by the FAST TCP
multihomed sender when using both paths (path1 and
path2) for end-to-end data transfer concurrently. We
observed that FAST TCP multihoming achieved the
aggregate throughput near the ideal performance (i.e.,
expected aggregate bandwidth). So this is exactly what we
expected to see from the simulation: the throughput
climbed nearly to 40Mbps by implementing the proposed
multihoming design scheme into FAST TCP.

In fact this is because, a FAST TCP multihomed sender

 (a) (b)

 Fig. 6 Simulation scenario 1: (a) End-to-end throughput achieved by FAST TCP multihoming through multiple paths (two paths) data
 transfer concurrently under equal path delays (path1 = 60ms, path2 = 60ms) (b) A close-up look at the first 3 seconds of the simulation.

 (a) (b)

 Fig. 5 Simulation scenario 1: (a) Evolution of the different Congestion Windows (FAST TCP multihoming) (b) A close-up look
 at the first 3 seconds of the simulation.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

112

during the association, simultaneously opens up a separate
congestion window for the each path, so that it is nearly
close to the expected aggregate throughput.

These results (Fig. 4 – Fig. 6) verify that FAST TCP
multihoming for end-to-end data transfer through multiple
paths concurrently can effectively aggregate the bandwidth
available on all the paths (i.e., two paths). From this
experiment, some other information was also gathered that
higher throughput can be achieved when congestion
control is performed for each path separately.
5.2.2 Scenario 2
The exact same setup (Fig. 1) was used for this scenario
except that the both paths have the different characteristics
(i.e., bandwidth and delay) as previously described in
(section 5.1). In this second test, we tried to evaluate how
FAST TCP multihomed hosts determined congestion
window based on congestion information (queueing delay
and packet loss) and reacted to packet reordering1 due to
different path characteristics for end-to-end data transfer
through multiple paths concurrently. Thus for this scenario,
we increased the delay of link 22 DS ↔ from 60ms to
80ms and bandwidth of link 11 DS ↔ from 20Mbps to
30Mbps, and we decreased the delay of link

11 DS ↔ from 60ms to 40ms and bandwidth of link
22 DS ↔ from 20Mbps to 10Mbps; as a result one path

from S to D now has a total delay 40ms greater and a total
bandwidth 20Mbps smaller than the other (Fig. 1). The
packet loss was set to 0%.

1 The packets sent through multiple paths (having different traffic-load
distribution) simultaneously to destination using end-to-end multihoming,
the packets are highly likely to arrive in the order they were initially sent
(preventing rbuf from blocking [13]).

Fig. 7 corresponds to the sequence number progressions of
an experiment performed following this scenario. Through
extensive simulations, we observed that unequal delay on
the two paths do not impact the relative performance of
FAST TCP multihoming. Fig. 7 – Fig. 9, demonstrate this
consistent behavior with different end-to-end link
capacities and unequal path delays of 40ms on path1, and
80ms on path2.

We also examined that these outcomes are consistent with
the results obtained from scenario 1 (Fig. 4 – Fig. 6),
which have equal delays of 60ms on both paths.
Specifically, as the bandwidth ratio between multiple paths
increases in the network, stability becomes worse for the
loss-based protocols, produces more out-of-sequence
packets at the receiver, causing lots of retransmissions and
blocking the rbuf, which impair the whole association
throughput. But we observed that the performance of
FAST TCP multihoming under a single sequence space
within a transport layer association did not degrade in any
significant way for any evaluation criterion and its
sketched design scheme for parallel data transfer through
multiple paths using end-to-end multihoming remain quite
stable and insensitive to the path characteristics changes.

6. Conclusion and Future Work

In this research work, we have addressed a number of
issues in attempting to develop such a transport layer
protocol based on FAST TCP, which can transfer data
parallel through multiple paths using end-to-end
multihoming. We have also proposed a design scheme for
multihoming implementation using FAST TCP by taking
advantage of its delay-based features with the goal of
improving end-to-end throughput.

 (a) (b) (c)

 Fig. 7 Simulation scenario 2: FAST TCP multihoming Sequence Number Plot (a close-up look at the first 30 seconds of the simulation)
 (a) for path1 (11 DS ↔), (b) for path2 (22 DS ↔) and (c) for both destinations (21 D ,D).

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

113

In this study, two scenarios were sketched to illustrate the
concept and to evaluate the proposed design scheme of
FAST TCP multihoming on two high-speed networks (ns-
2), and through these simulations we have shown that
FAST TCP multihoming achieves bandwidth aggregation
efficiently under a variety of network conditions.

We conclude that FAST TCP is better suited as a transport
layer protocol for parallel data transfer through multiple
paths using end-to-end multihoming because of its several
distinct features not present in current TCP and SCTP.
Since data transfer through multiple paths is becoming an
increasingly popular topic of research and mechanism for

using extra network links, so we also conclude that the
issues considered in this research provide insight on design
decisions for future multihomed transport protocols. The
results of our initial efforts are encouraging but there are
several avenues for future work.

 In this paper, we focus on evaluation of proposed design
scheme through analysis and simulation, however, much
remains to be done to make it a practical scheme for
implementation in the networks, thus we will first modify
or re-design the FAST TCP algorithms [9] for the ns-2 to
perform the simulation work by evaluating these design
decisions.

 (a) (b)

 Fig. 9 Simulation scenario 2: (a) End-to-end throughput achieved by FAST TCP multihoming under different link capacities (path1 = 30Mbps,
path2 = 10Mbps) and unequal path delays (path1 = 40ms, path2 = 80ms). (b) A close-up look at the first 3 seconds of the simulation.

 (a) (b)

 Fig. 8 Simulation scenario 2: (a) Evolution of the different Congestion Windows (FAST TCP multihoming) (b) A close-up look
at the first 3 seconds of the simulation.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

114

Acknowledgments

The authors would like to express their deep gratitude to
Ishtiaq A. Choudhry, whose continuous criticism helped to
shape up the idea, and the special thanks go to Masanori
Kanazawa for the ongoing moral support. This research
was supported by the Directorate of Research Extension
and Advisory Services U.E.T., Lahore-Pakistan.

References
[1] M. Ohta, “The Architecture of End to End Multihoming,”

Internet-draft, IETF (Nov 2002), draft-ohta-e2e-
multihoming-03.txt.

[2] Tom Kelly, “Scalable TCP: Improving performance in
highspeed wide area networks,” Submitted for publication,
http://www-lce.eng. cam.ac.uk/~ctk21/scalable/, December
2002.

[3] A. Matsumoto, M. Kozuka, K. Fujikawa, Y. Okabe, “TCP
Multi-Home Options,” Internet-draft, IETF (Oct 2003),
draft-arifumi-tcp-mh-00.txt. (work in progress).

[4] Sally Floyd, “HighSpeed TCP for large congestion
windows”. Internet draft draft-floyd-tcp-highspeed-02.txt,
work in progress, http://www.icir.org/floyd/hstcp.html,
February 2003.

[5] C. Jin, D. Wei, and S. H. Low, FAST TCP: motivation,
architecture, algorithms, performance, Tech. Rep.
CaltechCSTR: 2003.010, Caltech, Pasadena CA, 2003,
http://netlab.caltech.edu/FAST.

[6] M. J. Arshad and M. S. Mian, “Simulation and Visualization
of Transmission Control Protocol’s (TCP) Flow-Control and
Multi-Home Options,” in Proceedings of IEEE IBCAST,
Islamabad, Pakistan, 8th - 11th January, 2007.

[7] Van Jacobson. Congestion Avoidance and Control. InACM
SIGCOMM, 1988.

[8] T. Cui and L. Andrew, "FAST TCP simulator module for
ns-2, version 1.1",
http://www.cubinlab.ee.mu.oz.au/ns2fasttcp.

[9] VINT Project, Network Simulator ns-2,
http://www.isi.edu/nsnam/ns/.

[10] J. R. Iyengar, K. C. Shah, P. D. Amer, and R. Stewart,
“Concurrent multipath transfer using SCTP multihoming,”
in Proc. SPECTS, San Jose, CA, July 2004.

[11] M. Allman, V. Paxson, and W.Stevens,”TCP Congestion
Control,” RFC2581, IETF, April 1999,
http://www.ietf.org/rfc/rfc2581.txt.

[12] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and R.
Wang, “A transport layer approach for improving end-to-
end performance and robustness using redundant paths,” in
Proc. USENIX Annual Technical Conference, Boston, MA,
June 2004, pp. 99–112.

[13] M. J. Arshad and M. S. Mian, “Experimental Study of
FAST TCP compared to SCTP:”, Submitted for publication
2008.

[14] R. Stewart et al. Stream control transmission protocol. IETF
RFC 2960, Oct. 2000.

[15] Kevin Fall and Sally Floyd, “Simulations–based
comparisons of Tahoe, Reno and SACK TCP,” ACM
Computer Communication Review, vol.26, no. 3, pp. 5–21,
July 1996.

[16] J. Iyengar, P. Amer, and R. Stewart. Receive Buffer
Blocking In Concurrent Multipath Transport. In IEEE
GLOBECOM, St. Louis, Missouri, November 2005.

[17] H. Hsieh and R. Sivakumar. ptcp: An end-to-end transport
layer protocol for striped connections. In Proceedings of
IEEE ICNP, 2002.

[18] R. Braden. Requirements for Internet Hosts –
Communication Layers. RFC1122, IETF, October 1989.

M. Junaid Arshad received his Master
degree in Computer Science in 2000.
Since 2001, he has been an Assistant
Professor in the Department of Computer
Science and Engineering, U.E.T., Lahore-
Pakistan. His master thesis received the
outstanding thesis award of the faculty of
Computer Science, in 2000. He is
currently a PhD student in the Department

of Computer Science and Engineering, at University of
Engineering & Technology, Lahore-Pakistan. His research
interests include Internet protocols, multihomed networks
focusing on performance, security and mobility issues,
congestion control and wireless networks.

M. Saleem Mian received the B.E.
degree in 1972 and M.E. degree in 1979 in
Electrical Engineering from University of
Engineering & Technology Lahore,
Pakistan and PhD degree in Electrical
Engineering from University of
Manchester U.K. in 1998. Since 1992, he
has been a Professor in the Department of
Electrical Engineering, U.E.T., Lahore-

Pakistan and currently working as a Chairman in this department.
His research interests include video streaming, multihomed
networks focusing on performance, security and mobility issues,
digital image processing and wireless networks. Publications of M.
Saleem Mian can be found in http://www.uet.edu.pk.

