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Summary 
Genetic algorithms simulate the survival of the fittest among 
individuals over consecutive generations for solving a problem. 
Prior work has shown that genetic algorithms generally do not 
perform well for shop problems [1]. This paper proposes a 
solution for the Flow Shop Problem (FSP) or Machine 
scheduling problem that implements a Genetic Algorithm based 
solution for Traveling Salesman Problem (GATSP) [2]. The 
suggested algorithm is stated as a scheduling problem in which a 
batch of jobs (n-jobs) is to be assigned to a group of machines 
(m-machine). It aims to maximize the total efficiency of the shop 
given only the job/machine processing time matrix for machine 
scheduling. 
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1. Introduction 

The flow shop sequencing problem (FSSP) with minimum 
makespan criterion has been treated quite extensively in 
the past years. The problem of finding the optimal 
processing sequence is known to be NP-hard [3] and 
heuristic approaches, as a consequence, have been a 
favored method for solving the problem when n is large 
(>50). If part overtaking is not permitted during transfer 
between machines, the flow shop becomes a permutation 
flow shop, and the optimal processing schedule is a 
permutation of the n jobs. Accordingly, search techniques 
are frequently employed to search the solution space for 
the permutation of jobs that minimizes the makespan. 
Search-based algorithms that have been widely used for 
solving the permutation flow shop have included 
simulated annealing SA [4-6], taboo search [7&8] and 
genetic algorithms GA [9-12]. Comparison of 
performance of SA with GA for flow shop test problems 
for selected number of jobs and machines concluded that 
SA out-performed GA in most of the tests where the 
number of jobs was 50 and less [10]. On the other hand, 
the solutions provided by GA for the larger problems were 
mostly superior to those obtained by SA [12]. However, 
hybrids of GA with local search and with simulated 

annealing tended to perform better than any one of those 
algorithms on its own. 
Construction heuristics solution, known as NEH algorithm, 
where a schedule is built iteratively by assigning jobs to a 
partial schedule are also developed [13]. It is widely 
acknowledged as one of the best currently available, in 
terms of solution quality, for minimizing the makespan in 
a permutation flow shop [12]. The NEH algorithm 
computes the sum of the processing times for each job and 
then lists them in non-increasing order of this value. The 
job at the top of the list is removed and inserted into the 
partial schedule. The position where it is inserted is 
determined by considering all the 8 possible positions it 
can occupy, without altering the relative positions of the 
jobs already in the partial schedule. The selected position 
is the one that minimizes the makespan in the partial 
schedule. This is repeated until the last of the unscheduled 
jobs is assigned. 
Moreover, the flow shop problem is subject to an 
additional constraint that is no in-process waiting is 
permitted. Reddy and Ramamoorthy [14] have used Flow 
Shop, No Intermediate Storage (FSNIS) to denote the 
latter problem while they used Flow Shop, Infinite 
Intermediate Storage (FSIIS) to the former problem. A 
special case of the flow shop is the ordered flow shop, no 
intermediate storage (OFSNIS) [15&16].  
The n job FSNIS problem can be formulated as an n+1 
city TSP, while for any number of machines, only 
permutation sequences need to be considered (in fact all 
no permutation sequences are infeasible). The special case 
considers a special class of n job on m machine FSSP with 
in-process waiting constraint and the criterion of minimum 
makespan. 
This work aims to develop a computer software system for 
machine scheduling or the flow shop problem using 
genetic algorithm scheme. The Traveling Salesman 
Problem solution based on Genetic Algorithm (TSPGA), 
reported by Al-Dulaimi and Ali [2] is implemented for the 
required solution.  
This paper is organized in the following sequence. After 
the brief introduction in section 1, genetic algorithms and 
flow shop problems are defined in sections 2 and 3. Then, 
section 4 summarizes the main components of Genetic 
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algorithm to be adopted in the proposed system. Section 5 
outlines in details the suggested Genetic based Flow Shop 
problem solution. System implementation is described in 
section 6 and the experimental results are listed and 
discussed in section 7. Finally, section 8 concludes the 
paper.   
     
2. Genetic Algorithms 
 John Holland et. al. [17] developed Genetic Algorithm 
(GA) as a search algorithm based on the mechanics of 
natural selection [18] in order to find optimal or near 
optimal solution.  The main idea of GA is that in order for 
a population of individuals to adapt to some environment, 
it should behave like a natural system [19]. This means 
that survival and reproduction of an individual is 
promoted by the elimination of useless or harmful traits 
and by rewarding useful behavior. Genetic algorithms are 
a class of adaptive heuristic search techniques which 
exploit gathered information to direct the search into 
regions of better performance within the search space. In 
terms of time complexity, compared with other 
optimization techniques (i.e. integer linear programming, 
branch and bound, tabu search), GA may offer a good 
approximation for the same big-O time when the state-
space is large [20 & 21]. 
 
GA belongs to the family of evolutionary algorithms, 
along with genetic programming, evolution strategies, and 
evolutionary programming. Evolutionary algorithms can 
be considered as a broad class of stochastic optimization 
techniques. An evolutionary algorithm maintains a 
population of candidate solutions for the problem at hand. 
The population is then evolved by the iterative application 
of a set of stochastic operators. These operators usually 
consist of mutation, recombination and selection or 
something very similar. Globally satisfactory, if sub-
optimal solutions to the problem are found in much the 
same way as population in nature adapt to their 
surrounding environment. 
 
An individual degree of adaptation to its environment is 
the counterpart of the fitness function evaluated on a 
solution. Similarly, a set of feasible solutions takes the 
place of a population of organisms. Each individual is a 
string of binary digits or some other set of symbols drawn 
from a finite set. It begins with a randomly generated set 
of individuals (population) then, successive populations, 
called generations, are derived by applying selection, 
crossover and mutation operators successively to the 
previous population. The selection operator chooses two 
members of the present generation in order to participate 
in the later operations; crossover and mutation. The 
crossover operator inter-mixes the alleles of the two 

parents to produce an offspring. Then mutation operator is 
activated shortly after crossover, and just like in nature, it 
exchanges alleles randomly [19]. 
 
3. Flow Shop Scheduling Problem  

3.1 Description 
Flow shop problems are a distinct class of shop scheduling 
problems [22&23], where n jobs (i = 1, . . . , n) have to be 
performed on m machines, < M1, ..., Mm >, where m ≥ 1, 
as follows. A job consists of m operations; the jth operation 
of each job must be processed on machine j and has 
processing time Tij, 1 ≤ j ≤ n. A job can start only on 
machine j if its operation is completed on machine (j − 1) 
and if machine j is free. The completion time of job i, Ti, is 
the time when its last operation has completed. Each of n 
jobs J1,..., Jn has to be processed on m machines M1, ..., 
Mm in that order. Job Ji for i=1... n, thus consists of a 
sequence of m Process Pi1, ..., Pim; where Pik corresponds 
to the processing of Ji on machine Mk during an 
uninterrupted processing time Tik.  
This problem is denoted in the literature in α |β |γ -
notation as Fm||PCi [24]. Consider an example of flow 
shop with three machines with the following data, see 
table 1. 

Table 1. Three Machine Flow Shop 
Jobi Pi1 Pi2 Pi3 
J1 1 2 3 
J2 1 2 1 
J3 1 1 1 

 
Figure 1 and Figure 2 show two feasible schedules for the 
example. Note that in both schedules the order of the jobs 
differs across machines. For the case (a), we have Tmax = 9 
and ∑ Ti = 18. In case (b), Tmax = 8 and ∑ Ti = 21. Note 
that ∑ Ti is better than Tmax in case (i) whereas it is the 
opposite in case (ii). The example suggests that things 
very much depend on the objective function. 
 
 
 
 
 
 
 

Figure 1. Flow Shop for 3 Machines, case (a) 
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Figure 2. Flow Shop for 3 Machines, case (b) 

We look for an efficient solution for the processing order 
on each Mk such that the time required to complete all jobs 
is minimized. 
 

3.2 Ordered Flow Shop Problem 
A special case of the flow shop is the ordered flow shop, 
no intermediate storage (OFSNIS).  
If the jobs are labeled in ascending, then for any i<k, i & k 
∈ n, Tij ≤ Tkj for all j ∈m. with this labeling sequence, 1,. ., 
n becomes the smallest processing time sequence SPT and 
sequence n, n-1, . . . , 1 becomes largest processing time 
LPT sequence. If the smallest processing time for job 
occurs on the first machine, LPT sequence minimizes the 
makespan, and vice versa [15]. 
 
4. Genetic Algorithms Components: 
A detailed description of the genetic algorithm 
components is cited in reference [2&18] in the course of 
outlining the TSPGA algorithm which is implemented in 
the proposed system. An initial sequence population is 
randomly generated and successive populations called 
generations are derived by applying the selection, 
crossover and mutation operators to the previous sequence 
generation. 
 
4.1 Selection Operations: 
A selection operator is applied first. It creates an 
intermediate population of n “parent” individuals. To 
produce these “parents”, n independent extractions of an 
individual from the old population are performed [18]. 
The probability of each individual being extracted should 
be (linearly) proportional to the fitness of that individual. 
This means that above average individuals should have 
more copies in the new population, while below average 
individuals should have few to no copies present, i.e., a 
below average individual risks extinction.  
The selection operator chooses two members of the 
present generation to participate in later crossover and 
mutation operations. Selection process raises the issue of 
fitness function. A requirement of the selection methods is 

that the probability fi of an organism must be the best to be 
selected.  
Two approaches for organism selection were popular; 
roulette selection and deterministic sampling. The first is 
based on a probability proportion Fi for each organism 
calculated by: 
F f fi i j= ÷ ∑     . . . . . . . . . . . . (1) 
While the second is based on determining a criteria Ci for 
each organism calculated by: 

1)( +∗= PsizeFRNDC ii . . . . . . . . . . . (2) 
Where RND means rounding to integer and Psize means 
population size. 
The selection operator then assures that each organism 
participates as parent exactly Ci times.  
To enhance the selection speed, a newly developed 
method was reported in [6]. This selection process 
combines the two mentioned approaches, where relevant 
organisms with higher fitness are selected and survive.  
  
4.2 Crossover and Mutation Operations: 
Once the intermediate population of “parents” (those 
individuals selected for reproduction or survived) has been 
produced, the individuals for the next generation will be 
created through the application of the reproduction 
operators [18]. These operators involve one or more 
parents in the operation. An operator that involves just one 
parent, simulating a sexual reproduction, is called a 
mutation operator. When more than one parent is involved, 
sexual reproduction is simulated, and the operator is called 
recombination. GA uses two reproduction operators - 
crossover and mutation.  
a. Crossover Operations: 
To apply a crossover operator, parents are paired together. 
There are several different types of crossover operators, 
and each available type depends on what representation is 
used for the individuals. The one-point crossover means 
that the parent individuals exchange a random prefix when 
creating the child individuals. Two-point crossover is an 
exchange of a random substring, and uniform crossover 
takes each element in the child arbitrarily from either 
parent. Order crossover (OX) and partially mapped 
crossover (PMX) are similar to two-point crossover in that 
two cut points are selected. For PMX, the selection 
between the two cut points defines a series of swapping 
operations to be performed on the second parent [25]. 
Cycle crossover (CX) satisfies two conditions - every 
position of the child must retain a value found in the 
corresponding position of a parent [26], and the child must 
be a valid permutation. In each cycle, a random parent is 
selected. CX does not use crossing sites; a cycle is defined 
in a manner similar to an algebraic permutation group [27]. 
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b. Mutation Operator: 
After crossover, each individual has a small chance of 
mutation. The purpose of the mutation operator is to 
simulate the effect of transcription errors that can happen 
with a very low probability when a chromosome is 
mutated. For example, a standard mutation operator for 
binary strings is bit inversion. Each bit in an individual has 
a small chance of mutating into its complement i.e. a ‘0’ 
would mutate into a ‘1’.  
The Specialized Mutation operator (SMX) is a 
permutation problem arbitrarily changing single allele 
value that does not preserve allele uniqueness. The method 
frequently used for permutation problems is to interchange 
two randomly selected positions, thus preserving allele 
uniqueness [15].  
 
5. The Proposed Genetic based Flow Shop 
(GFS) Problem Solution: 
This paper proposes a system for the Flow Shop problem 
based on Genetic algorithm. This system aims to give an 
optimal schedule for n jobs on m machines using Genetic 
Algorithm technique. The block diagram for this system is 
shown in figure 3 and the algorithm is listed in figure 4. 
Detailed description of the system is listed in the following 
sections. 

 

Figure 3. The Flow Diagram of the proposed GFS System. 

 
5.1 Problem Representation and Fitness 

Function: 
The n job Flow Shop, No Intermediate Storage (FSNIS) 
problem can be represented as an (n+1) city TSP. Several 

ways exists for representing the equivalent distance matrix 
for such TSP system, of which Bakers’ matrix is used and 
shown in table 2 [14]. 

Table 2. The TSP Distance Matrix for FSNIS Problem 
0 D12 D13 ... D1n 

D21 0 D23 ... D2n 

D31 D32 0 ... D3n 

... ... ... ... ... 

Dn1 Dn2 Dn3 ... 0 

 
In the distance matrix of table 2, Dik represents the delay 
in starting of job k (measured from the start of job i) and 
the total value of any tour represents the makespan for the 
corresponding sequence. Dik is calculated by equation 3.  

∑ ∑
=

−

=

−−−+−+=
m

j

m

j
kjijkkiikiiik TTTTTTTTTD

2

1

1
2132121 ),...,,,0max(

          . . . . . . . . . (3) 
 
(Where Tij denoting the processing time of job i (i=1, ...,n) 
on machine j (j=1, ..., m). 
Now if Ti1 is subtracted from each row i (≤n) for the 
distance values in table 2, i.e. 

1iikik TDD −=′
                . . . . . . . . . . (4) 

The resulting values are listed in table 3.  
 

Table 3. The Reduced Cost Matrix of Table 2 

0 D′12 D′13 ... D′1n 

D′21 0 D′23 ... D′2n 

D′31 D′32 0 ... D′3n 

... ... ... ... ... 

D′n1 D′n2 D′n3 ... 0 

 
The reduced cost matrix values shown in table 3 apply to 
any of FSNIS as well as any of OFSNIS problems.  
The fitness function adopted in this work is computed 
using equation 5 from the cost matrix 
f d d d di i last first= − + −max  . . . . . (5) 

Where last and first in this equation are related to schedule 
job i, and dmax is the maximum time delay. 
 
5.2 GFS Algorithm Operators: 
Using the TSPGA system reported by the authors in [2], 
the optimal machine scheduling is supposed to be obtained. 
However, in case of optimal schedule does not satisfy the 
problem constraints, then the proposed GFS system will 
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be applied. This system works according to the proposed 
algorithm shown in figure 4.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. The Propose Algorithm for GFS System. 

In this algorithm the machine schedule is determined by 
arranging the operations of jobs on machines such that no 
operation starts until finishing execution of previous 
machine. The algorithm checks on such criteria in order to 
handle operation until it finishes execution on previous 
machine. The execution of any job does not intersect with 
that of previous job; in this case the algorithm determines 
the time difference between starting of job operation and 
ending of previous job operation by applying the equation. 
 
 difference = Dij − Tij                    . . . . . . . . . . (6) 
 
Where Dij is the delay in starting of job j (measured from 
the start of job i) and Tij denotes the processing time of job 
i on machine j). 
The algorithm checks each calculated difference value, in 
case it is positive the job operation starts execution after 
the (difference time) value from the ending of previous job 
operation. But in case it is negative then the delay time of 
current and next jobs will be increased by difference value. 
Application of this algorithm produces machine schedule 
that satisfies the problem constraints. 
 
 
 
 

6. System Implementation: 
The proposed GFS system is designed to run in two 
options; default and customized options. It is up to the 
user to select the option he prefers. Figure 3 illustrated the 
flow diagram for the proposed default GFS system options. 
A brief description of each option is included in the 
following. 
 
6.1 Default System: 
When the GFS system runs under this option, the user has 
no influence on the flow of the system operation. The 
choice of options is based on the results of experiments. 
The flow diagram of the default system is displayed on 
screen to be seen by the user. The user enters only the 
required data to produce solutions, the steps to enter these 
data are as follows: 
• The system prompts to enter number of jobs and number 

of machines, (in our prototype design, these numbers 
must not exceed 26 since letters had been used to 
represent jobs and machines).  

• The system prompts to enter the processing time of each 
operation of n jobs on m machines, then distance and 
cost matrices are computed. 

• Once distance and cost matrices become available, the 
system generates initial solutions randomly. Then the 
GFS cycle continues as in figure 4 till a final solution is 
obtained. 
 

6.2- Customized System: 
When chosen by the user, the system prompts to enter the 
required data as in default option, then prepares distance 
matrix and cost matrices. The flow diagram of customized 
GFS system is shown in figure 4. The user has the 
following selection choices  

 The crossover operator type, i.e. OX, PMX, CX. 
 The method of maintaining the mating pool, i.e. 
choosing one of the following strategies 

 
Strategy1: New generation replaces old generation. 
Strategy2: Combination of old and new generations.  
 
Choosing strategy1 have given noisy results and took long 
implementation time. Therefore, strategy2 was adopted, 
which determines the longest (maximum) Euclidean 
distance over old and new generations. This maximum 
Euclidean distance is then used to compute the fitness of 
both generations. The resulted solutions were sorted in 
descending order according to fitness value then the 
solution with higher fitness was chosen. Finally the GFS 
system continues the cycle as shown in figure 4. 
Implementation of proposed GFS system was on the 
processing time matrix listed in table 4. Associated 

Algorithm for adjusting optimal schedule for GFS System 
 

Begin 
input data: distance matrix “D”;  
input processing time matrix “P”; 
time = 1 ;  job = 1 
for machine = 1 to m     
    start operation[job][machine] at time ;     
    time = time + P[job][machine] 
endfor; 
 for job = 2 to n 
    for machine = 1 to m 
        time  = time[job-1][machine] 
        difference = D[job][machine] - P[job][machine] 
        if(difference<0) { 
                  D[job][machine] = D[job][machine] - difference   
                  D[job+1][machine] = D[job][machine] - difference     
                  time = time – difference 
         else     
                  time = time  + difference             
         endif 
         start operation[job][machine] at time ; 
         time = time + P[job][machine] ;       
    endfor; 
   endfor; 
end. 
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distance and cost matrices for the time matrix of table 4 
are listed in tables 5 and 6, respectively. 

Table 4. Chosen Processing Time Matrix 

Table 5. The Distance Matrix of Table 4 

 

 

 

 

 

Table 6. The Cost Matrix of Table 5 

 

 

 

 

 

7. Experiments Discussion of GFS System: 
Since strategy1 have given noisy results and took long 
implementation time, therefore strategy2 is adopted for all 
system testing. Results for the GFS system, using the three 
types of crossover (i.e. OX, PMX and CX) with 1% 100% 
mutation were studied. It is noticed that the schedule 
depends on a number of parameters, such as the number of 
jobs, number of machines and number of operations 
besides processing times and machine loadings.  
Considering the results using various processing time 
matrices, the proposed approach generates optimal and 
near optimal schedules with respect to the machine 
imbalance workload. This reflects the robustness of the 
GA to solve flow shop problems.  The best run for “cdba” 
schedule without using GFS algorithm is shown here in 
figure 5. It considers for jobs running on five machines. 
Then, after applying the proposed GFS algorithm, the 
schedule is recalculated and became as shown in figure 6. 
From these figures, it is clear that using GFS algorithm 
have increased the scheduling efficiency. This is 

manifested by the comparatively less time required to 
perform all jobs on all machines.  
 

 
Figure 5. “cdba” schedule before using GFS algorithm 

 

 
Figure 6. “cdba” schedule after using GFS algorithm 

 

8. Conclusions: 
The Flow Shop problem is tackled using Genetic 
Algorithm based solution for Traveling Salesman Problem 
(GATSP) in order to obtain optimal machine sequencing 
schedule. It must be noted that critical path must always 
pass through machine with large processing times for all 
jobs. The proposed algorithm targeted the maximization of 
the total efficiency of the shop given only the job/machine 
processing time matrix for machine scheduling, with ease 
and flexibility of data handling and manipulation. The 
proposed algorithm is necessary to maintain optimal 
schedule that does not satisfy problem constraint. 
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