
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

229

Manuscript received September 5, 2008.
Manuscript revised September 20, 2008.

A Novel Genetic Algorithm Approach for Solving
Flow Shop Problem

Buthainah F Al-Dulaimi† and Hamza A.Ali††

Faculty of Computer Science and Information Technology,

Al- Isra Private University, Jordan

Summary
Genetic algorithms simulate the survival of the fittest among
individuals over consecutive generations for solving a problem.
Prior work has shown that genetic algorithms generally do not
perform well for shop problems [1]. This paper proposes a
solution for the Flow Shop Problem (FSP) or Machine
scheduling problem that implements a Genetic Algorithm based
solution for Traveling Salesman Problem (GATSP) [2]. The
suggested algorithm is stated as a scheduling problem in which a
batch of jobs (n-jobs) is to be assigned to a group of machines
(m-machine). It aims to maximize the total efficiency of the shop
given only the job/machine processing time matrix for machine
scheduling.

Key words:
Fflow shop, machine scheduling, genetic algorithms, traveling
salesman problem.

1. Introduction

The flow shop sequencing problem (FSSP) with minimum
makespan criterion has been treated quite extensively in
the past years. The problem of finding the optimal
processing sequence is known to be NP-hard [3] and
heuristic approaches, as a consequence, have been a
favored method for solving the problem when n is large
(>50). If part overtaking is not permitted during transfer
between machines, the flow shop becomes a permutation
flow shop, and the optimal processing schedule is a
permutation of the n jobs. Accordingly, search techniques
are frequently employed to search the solution space for
the permutation of jobs that minimizes the makespan.
Search-based algorithms that have been widely used for
solving the permutation flow shop have included
simulated annealing SA [4-6], taboo search [7&8] and
genetic algorithms GA [9-12]. Comparison of
performance of SA with GA for flow shop test problems
for selected number of jobs and machines concluded that
SA out-performed GA in most of the tests where the
number of jobs was 50 and less [10]. On the other hand,
the solutions provided by GA for the larger problems were
mostly superior to those obtained by SA [12]. However,
hybrids of GA with local search and with simulated

annealing tended to perform better than any one of those
algorithms on its own.
Construction heuristics solution, known as NEH algorithm,
where a schedule is built iteratively by assigning jobs to a
partial schedule are also developed [13]. It is widely
acknowledged as one of the best currently available, in
terms of solution quality, for minimizing the makespan in
a permutation flow shop [12]. The NEH algorithm
computes the sum of the processing times for each job and
then lists them in non-increasing order of this value. The
job at the top of the list is removed and inserted into the
partial schedule. The position where it is inserted is
determined by considering all the 8 possible positions it
can occupy, without altering the relative positions of the
jobs already in the partial schedule. The selected position
is the one that minimizes the makespan in the partial
schedule. This is repeated until the last of the unscheduled
jobs is assigned.
Moreover, the flow shop problem is subject to an
additional constraint that is no in-process waiting is
permitted. Reddy and Ramamoorthy [14] have used Flow
Shop, No Intermediate Storage (FSNIS) to denote the
latter problem while they used Flow Shop, Infinite
Intermediate Storage (FSIIS) to the former problem. A
special case of the flow shop is the ordered flow shop, no
intermediate storage (OFSNIS) [15&16].
The n job FSNIS problem can be formulated as an n+1
city TSP, while for any number of machines, only
permutation sequences need to be considered (in fact all
no permutation sequences are infeasible). The special case
considers a special class of n job on m machine FSSP with
in-process waiting constraint and the criterion of minimum
makespan.
This work aims to develop a computer software system for
machine scheduling or the flow shop problem using
genetic algorithm scheme. The Traveling Salesman
Problem solution based on Genetic Algorithm (TSPGA),
reported by Al-Dulaimi and Ali [2] is implemented for the
required solution.
This paper is organized in the following sequence. After
the brief introduction in section 1, genetic algorithms and
flow shop problems are defined in sections 2 and 3. Then,
section 4 summarizes the main components of Genetic

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

230

algorithm to be adopted in the proposed system. Section 5
outlines in details the suggested Genetic based Flow Shop
problem solution. System implementation is described in
section 6 and the experimental results are listed and
discussed in section 7. Finally, section 8 concludes the
paper.

2. Genetic Algorithms
 John Holland et. al. [17] developed Genetic Algorithm
(GA) as a search algorithm based on the mechanics of
natural selection [18] in order to find optimal or near
optimal solution. The main idea of GA is that in order for
a population of individuals to adapt to some environment,
it should behave like a natural system [19]. This means
that survival and reproduction of an individual is
promoted by the elimination of useless or harmful traits
and by rewarding useful behavior. Genetic algorithms are
a class of adaptive heuristic search techniques which
exploit gathered information to direct the search into
regions of better performance within the search space. In
terms of time complexity, compared with other
optimization techniques (i.e. integer linear programming,
branch and bound, tabu search), GA may offer a good
approximation for the same big-O time when the state-
space is large [20 & 21].

GA belongs to the family of evolutionary algorithms,
along with genetic programming, evolution strategies, and
evolutionary programming. Evolutionary algorithms can
be considered as a broad class of stochastic optimization
techniques. An evolutionary algorithm maintains a
population of candidate solutions for the problem at hand.
The population is then evolved by the iterative application
of a set of stochastic operators. These operators usually
consist of mutation, recombination and selection or
something very similar. Globally satisfactory, if sub-
optimal solutions to the problem are found in much the
same way as population in nature adapt to their
surrounding environment.

An individual degree of adaptation to its environment is
the counterpart of the fitness function evaluated on a
solution. Similarly, a set of feasible solutions takes the
place of a population of organisms. Each individual is a
string of binary digits or some other set of symbols drawn
from a finite set. It begins with a randomly generated set
of individuals (population) then, successive populations,
called generations, are derived by applying selection,
crossover and mutation operators successively to the
previous population. The selection operator chooses two
members of the present generation in order to participate
in the later operations; crossover and mutation. The
crossover operator inter-mixes the alleles of the two

parents to produce an offspring. Then mutation operator is
activated shortly after crossover, and just like in nature, it
exchanges alleles randomly [19].

3. Flow Shop Scheduling Problem

3.1 Description
Flow shop problems are a distinct class of shop scheduling
problems [22&23], where n jobs (i = 1, . . . , n) have to be
performed on m machines, < M1, ..., Mm >, where m ≥ 1,
as follows. A job consists of m operations; the jth operation
of each job must be processed on machine j and has
processing time Tij, 1 ≤ j ≤ n. A job can start only on
machine j if its operation is completed on machine (j − 1)
and if machine j is free. The completion time of job i, Ti, is
the time when its last operation has completed. Each of n
jobs J1,..., Jn has to be processed on m machines M1, ...,
Mm in that order. Job Ji for i=1... n, thus consists of a
sequence of m Process Pi1, ..., Pim; where Pik corresponds
to the processing of Ji on machine Mk during an
uninterrupted processing time Tik.
This problem is denoted in the literature in α |β |γ -
notation as Fm||PCi [24]. Consider an example of flow
shop with three machines with the following data, see
table 1.

Table 1. Three Machine Flow Shop
Jobi Pi1 Pi2 Pi3
J1 1 2 3
J2 1 2 1
J3 1 1 1

Figure 1 and Figure 2 show two feasible schedules for the
example. Note that in both schedules the order of the jobs
differs across machines. For the case (a), we have Tmax = 9
and ∑ Ti = 18. In case (b), Tmax = 8 and ∑ Ti = 21. Note
that ∑ Ti is better than Tmax in case (i) whereas it is the
opposite in case (ii). The example suggests that things
very much depend on the objective function.

Figure 1. Flow Shop for 3 Machines, case (a)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

231

Figure 2. Flow Shop for 3 Machines, case (b)

We look for an efficient solution for the processing order
on each Mk such that the time required to complete all jobs
is minimized.

3.2 Ordered Flow Shop Problem
A special case of the flow shop is the ordered flow shop,
no intermediate storage (OFSNIS).
If the jobs are labeled in ascending, then for any i<k, i & k
∈ n, Tij ≤ Tkj for all j ∈m. with this labeling sequence, 1,. .,
n becomes the smallest processing time sequence SPT and
sequence n, n-1, . . . , 1 becomes largest processing time
LPT sequence. If the smallest processing time for job
occurs on the first machine, LPT sequence minimizes the
makespan, and vice versa [15].

4. Genetic Algorithms Components:
A detailed description of the genetic algorithm
components is cited in reference [2&18] in the course of
outlining the TSPGA algorithm which is implemented in
the proposed system. An initial sequence population is
randomly generated and successive populations called
generations are derived by applying the selection,
crossover and mutation operators to the previous sequence
generation.

4.1 Selection Operations:
A selection operator is applied first. It creates an
intermediate population of n “parent” individuals. To
produce these “parents”, n independent extractions of an
individual from the old population are performed [18].
The probability of each individual being extracted should
be (linearly) proportional to the fitness of that individual.
This means that above average individuals should have
more copies in the new population, while below average
individuals should have few to no copies present, i.e., a
below average individual risks extinction.
The selection operator chooses two members of the
present generation to participate in later crossover and
mutation operations. Selection process raises the issue of
fitness function. A requirement of the selection methods is

that the probability fi of an organism must be the best to be
selected.
Two approaches for organism selection were popular;
roulette selection and deterministic sampling. The first is
based on a probability proportion Fi for each organism
calculated by:
F f fi i j= ÷ ∑ (1)
While the second is based on determining a criteria Ci for
each organism calculated by:

1)(+∗= PsizeFRNDC ii (2)
Where RND means rounding to integer and Psize means
population size.
The selection operator then assures that each organism
participates as parent exactly Ci times.
To enhance the selection speed, a newly developed
method was reported in [6]. This selection process
combines the two mentioned approaches, where relevant
organisms with higher fitness are selected and survive.

4.2 Crossover and Mutation Operations:
Once the intermediate population of “parents” (those
individuals selected for reproduction or survived) has been
produced, the individuals for the next generation will be
created through the application of the reproduction
operators [18]. These operators involve one or more
parents in the operation. An operator that involves just one
parent, simulating a sexual reproduction, is called a
mutation operator. When more than one parent is involved,
sexual reproduction is simulated, and the operator is called
recombination. GA uses two reproduction operators -
crossover and mutation.
a. Crossover Operations:
To apply a crossover operator, parents are paired together.
There are several different types of crossover operators,
and each available type depends on what representation is
used for the individuals. The one-point crossover means
that the parent individuals exchange a random prefix when
creating the child individuals. Two-point crossover is an
exchange of a random substring, and uniform crossover
takes each element in the child arbitrarily from either
parent. Order crossover (OX) and partially mapped
crossover (PMX) are similar to two-point crossover in that
two cut points are selected. For PMX, the selection
between the two cut points defines a series of swapping
operations to be performed on the second parent [25].
Cycle crossover (CX) satisfies two conditions - every
position of the child must retain a value found in the
corresponding position of a parent [26], and the child must
be a valid permutation. In each cycle, a random parent is
selected. CX does not use crossing sites; a cycle is defined
in a manner similar to an algebraic permutation group [27].

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

232

b. Mutation Operator:
After crossover, each individual has a small chance of
mutation. The purpose of the mutation operator is to
simulate the effect of transcription errors that can happen
with a very low probability when a chromosome is
mutated. For example, a standard mutation operator for
binary strings is bit inversion. Each bit in an individual has
a small chance of mutating into its complement i.e. a ‘0’
would mutate into a ‘1’.
The Specialized Mutation operator (SMX) is a
permutation problem arbitrarily changing single allele
value that does not preserve allele uniqueness. The method
frequently used for permutation problems is to interchange
two randomly selected positions, thus preserving allele
uniqueness [15].

5. The Proposed Genetic based Flow Shop
(GFS) Problem Solution:
This paper proposes a system for the Flow Shop problem
based on Genetic algorithm. This system aims to give an
optimal schedule for n jobs on m machines using Genetic
Algorithm technique. The block diagram for this system is
shown in figure 3 and the algorithm is listed in figure 4.
Detailed description of the system is listed in the following
sections.

Figure 3. The Flow Diagram of the proposed GFS System.

5.1 Problem Representation and Fitness

Function:
The n job Flow Shop, No Intermediate Storage (FSNIS)
problem can be represented as an (n+1) city TSP. Several

ways exists for representing the equivalent distance matrix
for such TSP system, of which Bakers’ matrix is used and
shown in table 2 [14].

Table 2. The TSP Distance Matrix for FSNIS Problem
0 D12 D13 ... D1n

D21 0 D23 ... D2n

D31 D32 0 ... D3n

...

Dn1 Dn2 Dn3 ... 0

In the distance matrix of table 2, Dik represents the delay
in starting of job k (measured from the start of job i) and
the total value of any tour represents the makespan for the
corresponding sequence. Dik is calculated by equation 3.

∑ ∑
=

−

=

−−−+−+=
m

j

m

j
kjijkkiikiiik TTTTTTTTTD

2

1

1
2132121),...,,,0max(

 (3)

(Where Tij denoting the processing time of job i (i=1, ...,n)
on machine j (j=1, ..., m).
Now if Ti1 is subtracted from each row i (≤n) for the
distance values in table 2, i.e.

1iikik TDD −=′
 (4)

The resulting values are listed in table 3.

Table 3. The Reduced Cost Matrix of Table 2

0 D′12 D′13 ... D′1n

D′21 0 D′23 ... D′2n

D′31 D′32 0 ... D′3n

...

D′n1 D′n2 D′n3 ... 0

The reduced cost matrix values shown in table 3 apply to
any of FSNIS as well as any of OFSNIS problems.
The fitness function adopted in this work is computed
using equation 5 from the cost matrix
f d d d di i last first= − + −max (5)

Where last and first in this equation are related to schedule
job i, and dmax is the maximum time delay.

5.2 GFS Algorithm Operators:
Using the TSPGA system reported by the authors in [2],
the optimal machine scheduling is supposed to be obtained.
However, in case of optimal schedule does not satisfy the
problem constraints, then the proposed GFS system will

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

233

be applied. This system works according to the proposed
algorithm shown in figure 4.

Figure 4. The Propose Algorithm for GFS System.

In this algorithm the machine schedule is determined by
arranging the operations of jobs on machines such that no
operation starts until finishing execution of previous
machine. The algorithm checks on such criteria in order to
handle operation until it finishes execution on previous
machine. The execution of any job does not intersect with
that of previous job; in this case the algorithm determines
the time difference between starting of job operation and
ending of previous job operation by applying the equation.

 difference = Dij − Tij (6)

Where Dij is the delay in starting of job j (measured from
the start of job i) and Tij denotes the processing time of job
i on machine j).
The algorithm checks each calculated difference value, in
case it is positive the job operation starts execution after
the (difference time) value from the ending of previous job
operation. But in case it is negative then the delay time of
current and next jobs will be increased by difference value.
Application of this algorithm produces machine schedule
that satisfies the problem constraints.

6. System Implementation:
The proposed GFS system is designed to run in two
options; default and customized options. It is up to the
user to select the option he prefers. Figure 3 illustrated the
flow diagram for the proposed default GFS system options.
A brief description of each option is included in the
following.

6.1 Default System:
When the GFS system runs under this option, the user has
no influence on the flow of the system operation. The
choice of options is based on the results of experiments.
The flow diagram of the default system is displayed on
screen to be seen by the user. The user enters only the
required data to produce solutions, the steps to enter these
data are as follows:
• The system prompts to enter number of jobs and number

of machines, (in our prototype design, these numbers
must not exceed 26 since letters had been used to
represent jobs and machines).

• The system prompts to enter the processing time of each
operation of n jobs on m machines, then distance and
cost matrices are computed.

• Once distance and cost matrices become available, the
system generates initial solutions randomly. Then the
GFS cycle continues as in figure 4 till a final solution is
obtained.

6.2- Customized System:
When chosen by the user, the system prompts to enter the
required data as in default option, then prepares distance
matrix and cost matrices. The flow diagram of customized
GFS system is shown in figure 4. The user has the
following selection choices

 The crossover operator type, i.e. OX, PMX, CX.
 The method of maintaining the mating pool, i.e.
choosing one of the following strategies

Strategy1: New generation replaces old generation.
Strategy2: Combination of old and new generations.

Choosing strategy1 have given noisy results and took long
implementation time. Therefore, strategy2 was adopted,
which determines the longest (maximum) Euclidean
distance over old and new generations. This maximum
Euclidean distance is then used to compute the fitness of
both generations. The resulted solutions were sorted in
descending order according to fitness value then the
solution with higher fitness was chosen. Finally the GFS
system continues the cycle as shown in figure 4.
Implementation of proposed GFS system was on the
processing time matrix listed in table 4. Associated

Algorithm for adjusting optimal schedule for GFS System

Begin
input data: distance matrix “D”;
input processing time matrix “P”;
time = 1 ; job = 1
for machine = 1 to m
 start operation[job][machine] at time ;
 time = time + P[job][machine]
endfor;
 for job = 2 to n
 for machine = 1 to m
 time = time[job-1][machine]
 difference = D[job][machine] - P[job][machine]
 if(difference<0) {
 D[job][machine] = D[job][machine] - difference
 D[job+1][machine] = D[job][machine] - difference
 time = time – difference
 else
 time = time + difference
 endif
 start operation[job][machine] at time ;
 time = time + P[job][machine] ;
 endfor;
 endfor;
end.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

234

distance and cost matrices for the time matrix of table 4
are listed in tables 5 and 6, respectively.

Table 4. Chosen Processing Time Matrix

Table 5. The Distance Matrix of Table 4

Table 6. The Cost Matrix of Table 5

7. Experiments Discussion of GFS System:
Since strategy1 have given noisy results and took long
implementation time, therefore strategy2 is adopted for all
system testing. Results for the GFS system, using the three
types of crossover (i.e. OX, PMX and CX) with 1% 100%
mutation were studied. It is noticed that the schedule
depends on a number of parameters, such as the number of
jobs, number of machines and number of operations
besides processing times and machine loadings.
Considering the results using various processing time
matrices, the proposed approach generates optimal and
near optimal schedules with respect to the machine
imbalance workload. This reflects the robustness of the
GA to solve flow shop problems. The best run for “cdba”
schedule without using GFS algorithm is shown here in
figure 5. It considers for jobs running on five machines.
Then, after applying the proposed GFS algorithm, the
schedule is recalculated and became as shown in figure 6.
From these figures, it is clear that using GFS algorithm
have increased the scheduling efficiency. This is

manifested by the comparatively less time required to
perform all jobs on all machines.

Figure 5. “cdba” schedule before using GFS algorithm

Figure 6. “cdba” schedule after using GFS algorithm

8. Conclusions:
The Flow Shop problem is tackled using Genetic
Algorithm based solution for Traveling Salesman Problem
(GATSP) in order to obtain optimal machine sequencing
schedule. It must be noted that critical path must always
pass through machine with large processing times for all
jobs. The proposed algorithm targeted the maximization of
the total efficiency of the shop given only the job/machine
processing time matrix for machine scheduling, with ease
and flexibility of data handling and manipulation. The
proposed algorithm is necessary to maintain optimal
schedule that does not satisfy problem constraint.

References
[1] Matthew Matthew Wall. A Genetic Algorithm for Resource-

Constrained Scheduling. PhD thesis, Massachusetts Institute
of Technology, Cambridge, Massachusetts, 1996.

[2] Al-Dulaimi B. F. and Ali H. A., “Enhanced Traveling
Salesman Problem Solving by Genetic Algorithm
Technique (TSPGA)”, proceedings of the WASET
Conference, 24-26th April, Rome, Italy (2008), PP 70-76.

[3] Rinooy Kan, A.H.G. (1976) Machine scheduling problems:
classification, complexity and computations. Martinus
Nijhoff, The Hague.

[4] Osman, I.H. & Potts, C.N. (1989). Simulated annealing for
permutation flow-shop scheduling. Omega, 17(6), 551-557.

[5] Ogbu, F.A. & Smith, D.K. (1991). Simulated annealing for
the permutation flow shop problem. Omega, 19(1), PP 64 -
67.

[6] Ogbu, F.A. & Smith, D.K.. (1990). The application of the
simulated annealing algorithm to the solution of the

Jobi (city) Ti1 Ti2 Ti3 Ti4 Ti5

J1 (a) 5 10 6 6 2

J2 (b) 6 11 8 6 3

J3 (c) 7 13 8 8 3

J4 (d) 9 15 11 10 4

Jobi (city) Di1 Di2 Di3 Di4

J1 (a) 0 9 8 6

J2 (b) 12 0 10 8

J3 (c) 15 14 0 11

J4 (d) 22 18 17 0

Jobi (city) Ci1 Ci2 Ci3 Ci4

J1 (a) 0 4 3 1

J2 (b) 6 0 4 2

J3 (c) 8 7 0 4

J4 (d) 13 9 8 0

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

235

n/m/Cmax flow shop problem, Computers &Ops Res., 17(3),
243-253.

[7] Widmer, M. & Hertz, A. (1989). A new heuristic method
for the flow shop sequencing problem, Eur. J. Opnl Res., 41,
186-193.

[8] Taillard, E. (1990). Some efficient heuristic methods for the
flow shop sequencing problem, Eur. J. Opnl Res., 47(1), 65-
74.

[9] Syswerda, G. (1991). Scheduling optimization using genetic
algorithms, in Handbook of genetic algorithms (edited by L.
Davis), 332-349, Van Nostrand Reinhold, New York.

[10] Reeves, C. (1995). A genetic algorithm for flow shop
sequencing, Computers Ops Res., 22(1), 5-13.

[11] Chen, C-L., Vempati, V.S. & Aljaber, N. (1995). An
application of genetic algorithms for flow shop problems,
Eur. J. Opnl Res., 80(2), 389-396.

[12] Murata, T., Ishibuchi, H. & Tanaka, H. (1996). Genetic
algorithms for flow shop scheduling problems, Computers
Ind. Eng., 30(4), 1061-1071.

[13] Nawaz, M., Enscore Jr., E.E. & Ham, I. (1983). A heuristic
algorithm for the m-machine, n-job flow shop sequencing
problem. Omega, 11, 91-95.

[14] Panwalkar S. S. and Woollam C. R., “Flow Shop
Scheduling Problems with No In-Process Waiting: A
Special Case”, Soc. Vol. 30, No. 7, (1979), PP 661-664.

[15] Gonzalez T. and Sahni S., “Flow Shop and Job shop
Schedules: Complexity and Approximation”, Operation
Research, Vol. 26, No. 1, (1978), PP 36-52.

[16] Adiri I. and Amit N., “Open hop and Flow Shop Scheduling
to Minimize Sum of Completion Times”, Computer and
Operation, Vol. 11, No. 3, (1984), PP 275-284.

[17] Holland J. H. et. Al., “Induction: Processes of Inference,
Learning, and Discovery", MIT Press, (1989).

[18] Tomassini, M., "Parallel and Distributed Evolutionary
Algorithms: A Review. In K. Miettinen, M. M¨akel¨a, P.
Neittaanm¨aki and J. Periaux (Eds.)", Evolutionary
Algorithms in Engineering and Computer Science (pp. 113 -
133). Chichester: J. Wiley and Sons, (1999).

[19] Goldberg D. E., “Genetic Algorithms in Search,
Optimization, and Machine Learning”, Addison Wesley
Publishing Company Inc. (1989).

[20] Richard M. Golden. Mathematical Methods for Neural
Network Analysis and Design. MIT Press, Cambridge,
Massachusetts, 1996.

[21] Melanie Mitchell. An Introduction to Genetic Algorithms.
The MIT Press, Cambridge, Massachusetts, 1996.

[22] J. Du and J. Y.-T. Leung. Minimizing mean flow time in
two-machine open shops and flow shops. Journal of
Algorithms, 14:24–44, 1993.

[23] M. R. Garey, D. S. Johnson, and R. Sethi. The complexity
of flow shop and job shop scheduling. Mathematics of
operations research, 1:117–129, 1976.

[24] P. Brucker. Scheduling algorithms (Fourth edition).
Springer-Verlag, Heidelberg, Germany, 2004.

[25] Oliver I.M., Smith, D.J. and Holland, J.R.C., "A Study of
Permutation Crossover Operators on the Traveling
Salesman Problem. In John J. Grefenstette (Ed.)", Lawrence
Erlbaum Associates. Proceedings of the 2nd International
Conference on Genetic Algorithms, Cambridge, MA, USA,
(July 1987), (PP 224-230).

[26] Ding C., Cheng Ye. and He M., “Two-Level Genetic
Algorithm for Clustered Traveling Salesman Problem with
Application in Large-Scale TSPs”, Tsinghua Science and
Technology, Vol.12, No.4, (2007), PP 459-465.

[27] Phillips D. T., Rarindran A. and Solberg J. J., “Operations
Research: Principles and Practice”, John Wiley and Sons
Inc, (1976).

Buthainah Fahran Al-Dulaimi is an
assistance professor at the Faculty of
Science and Information Technology at
Isra Private University (IPU), Jordan.
She got her B.Sc.in 1981 from AL-
Mustansryah University/Iraq, M.Sc. in
1999 from University of Baghdad/ Iraq
and PhD in 2003 from Institute for Post
Graduate Studies in Informatics/ Iraqi
Commission for Computers and
Informatics (ICCI)/Iraq. Before joining

IPU, she worked in the National Computer Center (NCC)/ Iraq as
chief programmer/analyzer, executive director of training
management and teacher in the same institute. Her research
interests include Artificial Intelligence and Software Engineering
(model designs).

Hamza Abbass Ali is an associate
professor at the Faculty of Science and
Information Technology at Isra Private
University (IPU), Jordan. He got his
B.Sc.in 1968 from Basrah
University/Iraq, M.Sc. and Ph.D. in
1973 and 1977 respectively, from The
University of London, UK. Before
joining IPU, he worked as associate
professor at Zarqa Private University
(Jordan), visiting professor at

University of Aizu (Japan) and associate professor at Basrah
University (Iraq). His research interests include Cryptography,
Information and Computer Network Security, Artificial
Intelligence, Neural Networks and character recognition.

