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Abstract:    
The recent advances in hardware and software have 
enabled the capture of different measurements of data in a 
wide range of fields. These measurements are generated 
continuously and in a very high fluctuating data rates. 
Examples include sensor networks, web logs, and 
computer network traffic. The storage, querying and 
mining of such data sets are highly computationally 
challenging tasks. Mining data streams is concerned with 
extracting knowledge structures represented in models 
and patterns in non stopping streams of information. The 
research in data stream mining has gained a high 
attraction due to the importance of its applications and the 
increasing generation of streaming information. 
Applications of data stream analysis can vary from critical 
scientific and astronomical applications to important 
business and financial ones. Algorithms, systems and 
frameworks that address streaming challenges have been 
developed from the past few years. This paper presents a 
system for induction of forest of functional trees from 
data streams able to detect concept drift. The Ultra Fast 
Forest of Trees (UFFT)is an incremental algorithm, which 
works online, processing each example in constant time, 
and performing a single scan over the training examples. 
It uses analytical techniques to choose the splitting criteria, 
and the information gain to estimate the merit of each 
possible splitting-test. For multi-class problems the 
algorithm builds a binary tree for each possible pair of 
classes, leading to a forest of trees. Decision nodes and 
leaves contain naive-Bayes classifiers playing different 
roles during the induction process. Naive-Bayes in leaves 
are used to classify test examples. Naive-Bayes in inner 
nodes play two different roles. They can be used as 
multivariate splitting-tests if chosen by the splitting 
criteria, and used to detect changes in the class-
distribution of the examples that traverse the node. When 
a change in the class-distribution is detected,all the sub-
tree rooted at that node will be pruned. The use of naive-
Bayes classifiers at leaves to classify test examples, the 
use of splitting-tests based on the outcome of naive-Bayes, 
and the use of naive-Bayes classifiers at decision nodes to 
detect changes in the distribution of the examples are 
directly obtained from the sufficient statistics required to 
compute the splitting criteria, without no additional 

computations. This aspect is a main advantage in the 
context of high-speed data streams. This methodology 
was tested with artificial and real-world data sets. The 
experimental results show a very good performance in 
comparison to a batch decision tree learner, and high 
capacity to detect drift in the distribution of the examples. 
 
Key Words:  Data streams, Incremental Decision trees, 
Concept Drift 
 
1. Introduction 
 
In recent years, so-called data streams have attracted 
considerable attention in different fields of computer 
science such as, e.g., database systems, data mining, or 
distributed systems. As the notion suggests, a data stream 
can roughly be thought of as an ordered sequence of data 
items, where the input arrives more or less continuously 
as time progresses. There are various applications in 
which streams of this type are produced such as, e.g., 
network monitoring, telecommunication systems, 
customer click streams, stock markets or any type of multi 
sensor system. 
A data stream system may constantly produce huge 
amounts of data. To illustrate, imagine   multi-sensor 
system with 10,000 sensors each of which sends a 
measurement every second of time. Regarding aspects of 
data storage, management and processing, the continuous 
arrival of data items in multiple, rapid, time-varying, and 
potentially unbounded streams raises new challenges and 
research problems. Indeed, it is usually not feasible to 
simply store the arriving data in a traditional database 
management system in order to perform operations on that 
data later on. Rather, stream data must generally be 
processed in an online manner in order to guarantee that 
results are up-to-date and that queries can be answered 
with small time delay. The development of corresponding 
stream processing systems is a topic of active research. 
 
In this paper we present UFFT, an algorithm that 
generates forest of functional trees for data streams. The 
main contributions of this work include a fast method to 
choose the cut point for splitting tests, use of multivariate 
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splitting tests, the use of functional leaves to classify test 
cases, and the ability to detect concept drift. These 
aspects are integrated in the sense that the sufficient 
statistics needed by the splitting criteria are the only 
statistics used in the functional leaves, multivariate 
splitting tests, and in the drift detection method. The 
paper is organized as follows. In the next section we 
present related work in the areas of incremental decision-
tree induction and concept drift detection. In Section 3, 
we present the main issues of our algorithm. The system 
has been implemented, and evaluated in a set of 
benchmark problems. Preliminary results are presented in 
Section 4. In the last section we resume the main 
contributions of this paper, and point out some future 
work. 
 
2.     Related Work 
 
In this section we analyze related work in two dimensions. 
One dimension is related to methods dealing with 
concept drift. The other dimension is related to the 
induction of decision trees from data streams. In the 
literature of machine learning, several methods have been 
presented to deal with time changing concepts [2, 3,6]. 
The two basic methods are based on temporal windows 
where the window fixes the training set for the learning 
algorithm and weighting examples that ages the examples, 
shrinking the importance of the oldest examples. These 
basic methods can be combined and used together. Both 
weighting and time window forgetting systems are used 
for incremental learning. A method to dynamically 
choose the set of old examples that will be used to learn 
the new concept faces several difficulties. It has to select 
enough examples to the learner algorithm and also to 
keep old data from disturbing the learning process, when 
older data have a different probability distribution from 
the new concept. A larger set of examples allows a better 
generalization if no concept drift happened since the 
examples arrived [5]. The systems using weighting 
examples use partial memory to select the more recent 
examples, and therefore probably within the new context.  
 
Repeated examples are assigned more weight. The older 
examples, according to some threshold, are forgotten and 
only the newer ones are used to learn the new concept 
model [4]. When a drift concept occurs the older 
examples become   irrelevant. We can apply a time 
window on the training examples to learn the new 
concept description only from the most recent examples. 
The time window can be improved by adapting its size. 
There are  present several methods to choose a time 
window dynamically adjusting the size using heuristics to 
track the learning process. The methods select the time 
window to include only examples on the current target 

concept. formal method is to automatically select the time 
window size in order to minimize the generalization error. 
And other describes a system that adapts to drift in 
continuous domains. the application of several methods 
of handling concept drift with an adaptive time window 
on the training data, by selecting representative training 
examples or by weighting the training examples. Those 
systems automatically adjust the window size, the 
example selection and the example weighting to 
minimize the estimated generalization error. 

 

Concept drift in the context of data streams appears to 
ensembles of batch learners from sequential chunks of 
data and use error estimates on the test data under the 
time-evolving environment. Duda and Hart  have 
proposed a method to scale-up learning algorithms to 
very-large databases [2]. They have presented system 
VFDT [2], a very fast decision tree algorithm for data-
streams described by nominal attributes. The main 
innovation in VFDT is the use of the Hoeffding bound to 
decide when a leaf should be expanded to a decision node. 
The work of VFDT has been extended with the ability to 
detect changes in the underlying distribution of the 
examples. CVFDT [8] is a system for mining decision 
trees from time-changing data streams. CVFDT works by 
keeping its model consistent with a sliding window of the 
most recent examples. When a new example arrives it 
increments the counts corresponding to the new example 
and decrements the counts to the oldest example in the 
window which is now forgotten. Each node in the tree 
maintains the sufficient statistics Periodically, the 
splitting-test is recomputed. If a new test is chosen, the 
CVFDT starts growing an alternate sub-tree. The old one 
is replaced only when the new one becomes more 
accurate. 
 
3.    Ultra-Fast Forest Trees - UFFT 
 
UFFT is an algorithm for supervised classification 
learning that generates a forest of binary trees. The 
algorithm is incremental, processing each example in 
constant time, and works online. UFFT is designed for 
continuous data. It uses analytical techniques to choose 
the splitting criteria, and the information gain to estimate 
the merit of each possible splitting-test. For multi-class 
problems,the algorithm builds a binary tree for each 
possible pair of classes leading to a forest-of-trees. 
During the training phase the algorithm maintains a short 
term memory. Given a data stream, a limited number of 
the most recent examples are maintained in a data 
structure that supports constant time insertion and 
deletion. When a test is installed, a leaf is transformed 
into a decision node with two descendant leaves. The 
sufficient statistics of the leaf are initialized with the 
examples in the short term memory that will fall at that 
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leaf. The UFFT has shown good results with several large 
and medium size problems. In this work we incorporate 
in UFFT system the ability to support Concept Drift 
Detection. To detect concept drift we maintain, at each 
inner node, a naive-Bayes classifier [3] trained with the 
examples that traverse the node. Statistical theory 
guarantees that for stationary distribution of the examples, 
the online error of naive-Bayes will decrease; when the 
distribution function of the examples changes, the online 
error of the naive-Bayes at the node will increase. In that 
case we decide that the test installed at this node is not 
appropriate for the actual distribution of the examples. 
When this occurs the sub-tree rooted at this node will be 
pruned. The algorithm forgets the sufficient statistics and 
learns the new concept with only the examples in the new 
concept. The drift detection method will always check the 
stability of the distribution function of the examples at 
each decision node. In the following sections we provide 
detailed information about the most relevant aspects of 
the system. 
 
3.1   Algorithm Details 
3.1.1 The Splitting Criteria 
 
The UFFT starts with a single leaf. When a splitting test 
is installed at a leaf, the leaf becomes a decision node, 
and two descendant leaves are generated. The splitting 
test has two possible outcomes each conducting to a 
different leaf. The value True is associated with one 
branch and the value False, with the other. The splitting 
tests are over a numerical attribute and are of the form 
attributei ≤ valuej. We use the analytical method for split 
point selection presented in [5].We choose, for all 
numerical attributes, the most promising valuej. The only 
sufficient statistics required are the mean and variance 
per class of each numerical attribute. This is a major 
advantage over other approaches, as the exhaustive 
method used in C4.5 and in VFDT c [8], because all the 
necessary statistics are computed on the fly. This is a 
desirable property on the treatment of huge data streams 
because it guarantees constant time processing each 
example. 
 
The analytical method uses a modified form of quadratic 
discriminate analysis to include different variances on the 
two classes. This analysis assumes that the distribution of 
the values of an attribute follows a normal distribution for 

both classes. Let    be 

the normal density function, where   and   are the 
sample mean and variance of the class. The class mean 
and variance for the normal density function are 
estimated from the sample set of examples at the node. 
The quadratic discriminate splits the X -axis into three 

intervals (−∞, d1), (d1, d2), (d2, ∞) where d1 and d2 are 
the possible roots of the equation p(−)φ{( )}= 
p(+)φ{( )}  where p(i) denotes the estimated 
probability than an example belongs to class i. We 
pretend a binary split, so we use the root closer to the 
sample means of both classes. Let d be that root. The 
splitting test candidate for each numeric attribute i will be 
of the form Atti ≤ di. To choose the best splitting test from 
the candidate list we use a heuristic method. We use the 
information gain to choose, from all the splitting point 
candidates, the best splitting test. To compute the 
information gain we need to construct a contingency 
table with the distribution per class of the number of 
examples lesser and greater than di:   
 

 
 
The information kept by the tree is not sufficient to 
compute the exact number of examples for each entry in 
the   contingency table. Doing that would require to 
maintain information about all the examples at each leaf. 
With the assumption of normality, we can compute the 
probability of observing a value less or greater than di. 
From these probabilities and the distribution of examples 
per class at the leaf we populate the contingency table. 
The splitting test with the maximum information gain is 
chosen. This method only requires that we maintain the 
mean and standard deviation for each class per attribute. 
Both quantities are easily maintained incrementally.The 
authors presented an extension to VFDT to deal with 
continuous attributes. They use a Btree to store 
continuous attribute values with complexity O(nlog(n)). 
The complexity of the method proposed here is O(n). 
This is why we denote our algorithm as ultra-fast. Once 
the merit of each splitting has been evaluated, we have to 
decide on the expansion of the tree. This problem is 
discussed in the next section. 
 
3.1.2             From Leaf to Decision Node 
To expand the tree, a test  attributei≤ di  is installed in a 
leaf, and the leaf becomes a decision node with two new 
descendant leaves. To expand a leaf two conditions must 
be satisfied. The first one requires the information gain of 
the selected splitting test to be positive. That is, there is a 
gain in expanding the leaf against not expanding. The 
second condition, it must exist statistical support in favor 
of the best splitting test which is asserted using the 
Hoeffding bound as in VFDT [2]. When new nodes are 
created, the short term memory is used. This is described 
in the following section. 

 At  At  >  
Class +   
Class  -  
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3.1.3    Short Term Memory 
The short term memory maintains a limited number of 
the most recent examples.These examples are used to 
update the statistics at the new leaves when they are 
created. The examples in the short term memory traverse 
the tree. Only those that reach the new leaves will update 
the sufficient statistics of the tree. The data structure used 
in our algorithm supports constant time insertion of 
elements at the beginning of the sequence and constant 
time removal of elements at the end of the sequence. 
 
3.1.4     Functional Leaves 
To classify an unlabeled example, the example traverses 
the tree from the root to a leaf. It follows the path 
established, at each decision node, by the splitting test at 
the appropriate attribute-value. The leaf reached classifies 
the example. The classification method is a naive-Bayes 
classifier. The use of the naive-Bayes classifiers at the 
tree leaves does not enter any overhead in the training 
phase. At each leaf we maintain sufficient statistics to 
compute the information gain.These are the necessary 
statistics to compute the conditional probabilities of P 
(xi|Class) assuming that the attribute values follow, for 
each class, a normal distribution. Let l be the number of 
attributes, and φ( , σ) denotes the standard normal 
density function for the values of attribute i that belong to 
a given class. Assuming that the attributes are 
independent given the class, the Bayes rule will classify 
an example in the class that maximizes the a posteriori 
conditional probability,  given by: P ( |x) ∝ log(P 
r( )) +  )).  There is a simple 
motivation for this option. UFFT only changes a leaf to a 
decision node when there are a sufficient number of 
examples to support the change. Usually hundreds or 
even thousands of examples are required. To classify a 
test example, the majority class strategy only uses the 
information about class distributions and does not look 
for the attribute-values. It uses only a small part of the 
available information, a crude approximation to the 
distribution of the examples. On the other hand, naive-
Bayes takes into account not only the prior distribution of 
the classes, but also the conditional probabilities of the 
attribute-values given the class. In this way, there is a 
much better exploitation of the information available at 
each leaf [6]. 
 
3.1.5     Forest of Trees 
The splitting criterion only applies to two class problems. 
Most of real-world problems are multi-class. This 
problem was solved using, at each decision node, a 2-
means cluster algorithm to group the classes into two 
super-classes. Obviously, the cluster method cannot be 
applied in the context of learning from data streams. 

 
We propose another methodology based on round-robin 
classification. The round-robin classification technique 
decomposes a multi-class problem into k binary problems, 
that is, each pair of classes defines a two-class problem. 
In [4] the author shows the advantages of this method to 
solve n-class problems. The UFFT algorithm builds a 
binary tree for each possible pair of classes. For example, 
in a three class problem (A,B, and C) the algorithm 
grows a forest of binary trees, one for each pair: A-B, B-
C, and A-C. In the general case of n classes, the 
algorithm grows a forest of   binary trees. When a 
new example is received during the tree growing phase 
each tree will receive the example if the class attached to 
it is one of the two classes in the tree label. Each example 
is used to train several trees and neither tree will get all 
examples. The short term memory is common to all trees 
in the forest. When a leaf in a particular tree becomes a 
decision node, only the examples corresponding to this 
tree are used to initialize the new leaves. 
 
3.1.5.1   Fusion of Classifier 
When doing classification of a test example, the 
algorithm sends the example to all trees in the forest. The 
example will traverse the tree from root to leaf and the 
classification is registered. Each tree in the forest makes a 
prediction. This prediction takes the form of a probability 
class distribution. Taking into account the classes that 
each tree discriminates, these probabilities are aggregated 
using the sum rule [10]. The most probable class is used 
to classify the example. Note that some examples will be 
forced to be classified erroneously by some of the binary 
base classifier, because each classifier must label all 
examples as belonging to one of the two classes it was 
trained on. 
 
 
3.1.6      Functional Inner-nodes 
When evaluating the splitting-criteria the merit of the 
best attributes could be closed enough that the difference 
in gains does not satisfy the Hoeffding bound. This 
aspect has been pointed out in [2]. In VFDT, the authors 
propose the use of a user defined constant, τ, that can 
decide towards a split (given that € < τ), even when the 
Hoeffding bound is not satisfied. In UFFT when there is a 
tie in the evaluation of the merit of tests based on single 
attributes, the system starts trying more complex splitting 
tests [5]. 
As we have shown, the sufficient statistics for the 
splitting-criteria can be directly used to construct a naive-
Bayes classifier. The idea of functional inner nodes is to 
install splitting-tests based on the predictions of the 
naive-Bayes classifier build at that node.Suppose that we 
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observe a leaf where the difference in gain between the 
two best attributes does not satisfies the Hoeffding bound. 
Since the first tie, when a  new training example falls at 
this leaf, it will be classified using the naive-Bayes 
derived from the sufficient statistics. Those predictions 
are used to populate a 2 × 2 contingency table, where 
each cell nij contains the number of examples from class i  
that naive Bayes predict class j. 
 
In the next evaluation we evaluate also, in addition to the 
evaluation of all the original attributes, the information 
gain of the contingency table obtained by the naive-
Bayes predictions. This evaluation corresponds to 
consider a new attribute: the naive-Bayes predictions. If 
this implicit attribute is the best attribute in terms of 
information gain, and the difference with respect to the 
second best satisfies the Hoeffding bound, then the leaf 
becomes a decision node with two outcomes: the naive-
Bayes predictions. UFFT uses naive-Bayes classifiers at 
leaves. When considering splitting-tests based on naive-
Bayes we must consider the advantage of splitting versus 
not splitting. For example, if the predictions of naive-
Bayes are accurate, the corresponding gain will be high. 
In such cases, we don’t need to expand the leaf, avoiding 
too much structure and overfitting. After a first tie, we 
only expand a leaf, if the gain of the naive-Bayes 
predictions is less than a user defined threshold. In the 
experiments described below the threshold was set to 0.5. 
Naive Bayes classifiers use all attributes to make 
predictions. This aspect could be negative in the presence 
of irrelevant attributes. In UFFT we only consider 
splitting-tests based on naive-Bayes classifiers after the 
first tie. This aspect can be used to select the most 
informative attributes to use with naive-Bayes. 
 
3.2   Concept Drift Detection 
 
The UFFT algorithm maintains, at each node of all 
decision trees, a naive- Bayes classifier. Those classifiers 
were constructed using the sufficient statistics needed to 
evaluate the splitting criteria when that node was a leaf. 
When the leaf becomes a node the naive-Bayes classifier 
will classify the examples that traverse the node. The 
basic idea of the drift detection method is to control this 
online error-rate. If the distribution of the examples that 
traverse a node is stationary, the error rate of naive-Bayes 
decreases. If there is a change on the distribution of the 
examples the naive-Bayes error will increase [7]. When 
the system detects an increase of the naive-Bayes error in 
a given node, an indication of a change in the distribution 
of the examples, this suggests that the splitting-test that 
has been installed at this node is no longer appropriate. In 
such cases, the entire sub tree rooted at that node is 
pruned, and the node becomes a leaf. All the sufficient 

statistics of the leaf are initialized using the examples in 
the new context from the short term memory. We 
designate as context a set of contiguous examples where 
the distribution is stationary, assuming that the data 
stream is a set of contexts. The goal of the method is to 
detect when in the sequence of examples of the data 
stream there is a change from one context to another. 
 
When a new training example becomes available, it will 
cross the corresponding binary decision trees from the 
root node till a leaf. At each node, the naïve Bayes 
installed at that node classifies the example. The example 
will be correctly or incorrectly classified. For a set of 
examples the error is a random variable from Bernoulli 
trials. The Binomial distribution gives the general form of 
the probability for the random variable that represents the 
number of errors in a sample of n examples. We use the 
following estimator for the true error of the classification 
function pi≡ (errori/i) where i is the number of examples 
and errori  is the number of examples misclassified, both 
measured in the actual context. The estimate of error has 
a variance. The standard deviation for a Binomial is 

given by si≡  where i is the number of 

examples observed within the present context. For 
sufficient large values of the example size, the Binomial 
distribution is closely approximated by a Normal 
distribution with the same mean and variance. 
Considering that the probability distribution is unchanged 
when the context is static, then the 1 − α/2 confidence 
interval for p with n > 30 examples is approximately pi± 
α ∗ si. The parameter α depends on the confidence level. 
In our experiments the confidence level for drift has been 
set to 99%. The drift detection method manages two 
registers during the training of the learning algorithm, 
pminand smin. Every time a new example i is processed 
those values are updated when pi+ si is lower than pmin+ 
smin. 
 
We use a warning level to define the optimal size of the 
context window. The context window will contain the old 
examples that are on the new context and a minimal 
number of examples on the old context. Suppose that in 
the sequence of examples that traverse a node, there is an 
example i with correspondent pi  and si. The warning level 
is reached if pi+ si≥ pmin+ 1.5 ∗ smin. The drift level is 
reached if pi+ si≥ pmin+ 3 ∗ smin. Suppose a sequence of 
examples where the naive-Bayes error increases reaching 
the warning level at example kw, and the drift level at 
example kd. This is an indicator of a change in the 
distribution of the examples. A new context is declared 
starting in example kw, and the node is pruned becoming 
a leaf. The sufficient statistics of the leaf are initialized 
with the examples in the short term memory whose time 
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stamp is greater than kw. It is possible to observe an 
increase of the error reaching the warning level, followed 
by a decrease. We assume that such situations correspond 
to a false alarm, without changing the context. With this 
method of learning and forgetting we ensure a way to 
continuously keep a model better adapted to the present 
context. The method uses the information already 
available to the learning algorithm and does not require 
additional computational resources. 

 
An advantage of this method is it continuously monitors 
the online error of naive Bayes. It can detect changes in 
the class-distribution of the examples at any time. All 
decision nodes contain naive Bayes to detect changes in 
the class distribution of the examples that traverse the 
node, that correspond to detect shifts in different regions 
of the instance space. Nodes near the root should be able 
to detect abrupt changes in the distribution of the 
examples, while deeper nodes should detect smoothed 
changes.  
All the main characteristics of UFFT are due to the 
splitting criteria. All the statistics required by the splitting 
criteria can be computed incrementally. Moreover we can 
directly derive naive Bayes classifiers from the sufficient 
statistics. Naive Bayes classifiers are used in leaves to 
classify test examples, are used in inner decision nodes to 
detect drift and can be used in splitting tests. It is known 
that naive Bayes is a low-variance classifier. This 
property is relevant mainly when the naive Bayes acts as 
splitting test and in the drift detection. 
 
4.   Experimental Work 
 
4.1          Stationary Data 
 
The experimental work has been done using the 
Waveform, LED and Balance datasets available at the 
UCI repository [1]. There   are two Waveform 
problems,both with three classes. The first problem is 
defined by 21 numerical attributes. The second one 
contains 40 attributes. It is known that the optimal Bayes 
error is 14%. The LED problem has 24 binary attributes 
(17 are rrelevant) and 10 classes. The optimal Bayes error 
is 26%. The Balance problem has 4 attributes and 3 
classes. The choice of these datasets was motivated by 
the existence of dataset generators at the UCI repository 
that could simulate streams of data. For all the problems 
we generate training sets of a varying number of 
examples, starting from 50k till 1500k. The test set 
contains 100k examples. UFFT generates a model from 
the training set, seeing each example once. The generated 
model classifies the test examples. The UFFT algorithm 
was used with parameters values δ = 0.05, τ = 0.001, 
nmin= 300, and buffer size of 1000. All algorithms ran on 

a Centrino at 1.5GHz with 512 MB of RAM and using 
Linux Mandrake. 
 
For comparative purposes, we use C4.5, the state of the 
art in decision tree learning. It is a batch algorithm that 
requires that all the data should fit in memory. All the 
data is successively re-used at decision nodes in order to 
choose the splitting test. At each decision node, 
continuous attributes should be sorted, an operation with 
complexity of O(n log n). We conducted a set of 
experiments comparing UFFT against C4.5. Both 
algorithms learn on the same training dataset, and the 
generated models are evaluated on the same test set. 
Detailed results are presented in Table 1. UFFT is orders 
of magnitude faster that C4.5 generating simpler (in 
terms of the number of decision nodes) models, with 
similar performance. The advantage of using multivariate 
splitting tests is evident in waveform datasets. The 
deference in performance appears in columns Version 1 
and Default in Table 1. In these datasets the observed 
improvement is about 5 %. 
 

 Error Rate 
Exs UFFT 

No Drift Version 1 Default 
Balance  Dataset -4  Attributes 
100k 3.2 3.3 3.2       3.0 
500k 2.2 2.3 2.2       2.1 
1000k 1.7 2.1 1.7       1.7 
500k 17.4 23.3 17.3    18.6
1000k 17.1 22.9 17.9    18.3
500k 18.4 23.4 18.4    19.5
1000k 18.3 23.5 18.3    19.1
100k 26.3 26.2 26.2    26.7
500k 26.1 26.1 26.1    26.7
1000k 26.1 26.1 26.2    26.7

Table 1.(a) 
 

Training Time Tree Size 
UFTT C4.

5 
UFFT            C4.5 

Balance  Dataset -4  Attributes 
18 41 315 1 1 2929 
128 822 1355 1 1 9689 
301 2949 2051 1 1 16223 
Waveform Dataset -21  Attributes 
38 156 11 13 1 7945 
223 2734 48 83 6

5 
33787 

409 10802 11 73 1 61841 
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Waveform Dataset -40  Attributes 
69 298 15 7 1 9837 
371 4054 59 53 75 435233 
719 16346 45 49 1 80331 
LED Dataset -24 Attributes 
174 525 30   8309 
1372 15209 82   34679 
2861 67271 116   65469 

Table 1.(b) 
 
Table a,b: Learning curves for the datasets under study. 
For UFFT we present the results of three versions: 
disabling drift (No Drift), disabling the use of naïve 
Bayes in splitting tests (Version 1) and enabling the use 
of naive Bayes and drift detection (Default). For Led 
dataset the figures of tree size refer to the mean of all 45 
trees. 
 
These datasets are generated by a stationary distribution. 
Nevertheless there are signals of false alarms drift 
detection. They never appear in the root node but in 
deeper nodes in the tree. The impact in performance is 
reduced or even null. 
 
4.2       Non-Stationary Data 
 
For illustrative purposes we evaluate UFFT in the SEA 
concepts, previously used in [8] to evaluate the ability to 
detect concept drift. Table 2(a) presents the average 
error-rate of 30 runs of UFFT setting on/off the ability of 
drift detection. The results are different at a significance 
level of 99%. They clear indicate the benefits of using 
drift detection in this dataset. For reference we also 
present the results of CVFDT. 
 

a) Sea Data set                                                    
 UFFT 
 Drift No Drift 

CVFDT 

Mean 12.79 17.20 14.72 
Variance 1.26 1.89 1.06 

 
 
 

 b) Electricity market dataset 
 Upper Bound 
Test 
Set 

Lower 
Bound All 

data 
Last 
Year 

UFFT 

Last 
Day 

8.0 20.8 12.5 10.4 

Last 
Week 

14.5 25.0 24.7 21.4 

 
Table 2 (a)  ,(b) :  Error-rates on drift detection problems. 
 

The Electricity Market Dataset was collected from the 
Electricity Market. In this market, the prices are not fixed 
and are affected by demand and supply of the market. 
The prices in this market are set every five minutes. The 
class label identifies the change of the price related to a 
moving average of the last 24 hours. The goal of the 
problem is to predict if the price will increase or decrease. 
From the original dataset we design two experiments. In 
one of the experiments, the test set is the last day (48 
examples); in the other, the test set is the last week (336 
examples). For each problem, we detect a lower bound 
and an upper bound of the error using a batch decision 
tree learner. The upper bound use ad-hoc heuristics to 
choose the training set. One heuristic use all the training 
data; the other heuristic use only the last year training 
examples. When predicting the last day, the error-rate of 
Rpart2 using all the training set is 18.7%, when 
restricting the training set to the last year, the error 
decrease to 12.5%. To compute the lower-bound we 
perform an exhaustive search for the best training set that 
produces lower error rate in the last day of the training set. 
The results appear in Table 2(b). The experiments using 
UFFT with drift detection exhibit a performance similar 
to the lower-bound using exhaustive search. This is an 
indication of the quality of the results. The advantage of 
using a drift detection method is the ability to 
automatically choose the set of training examples. This is 
a real world dataset where we do not know where the 
context is changing. 
 
5.  Conclusions and Future Work 
 
This work presents an incremental learning algorithm 
appropriate for processing high-speed numerical data 
streams. The main contributions of this work are the 
ability to use multivariate splitting tests, and the ability to 
adapt the decision model to concept drift. While the 
former has impact in the performance of the system, the 
latter extends the range of applications to dynamic 
environments. The UFFT system can process new 
examples as they arrive, performing a single scan of the 
training data. The method to choose the cut point for 
splitting tests is based on quadratic discriminant analysis. 
It has complexity O (#examples). The sufficient statistics 
required by the analytical method can be computed in an 
incremental way, guaranteeing constant time to process 
each example. This analytical method is restricted to two-
class problems. We use a forest of binary trees to solve 
problems with more than 2 classes. Other contributions of 
this work are the use of a short-term memory to initialize 
new leaves, and the use of functional leaves to classify 
test cases.An important aspect in this work, is the ability 
to detect changes in the distribution of the examples. To 
detect concept drift, we maintain, at each inner node, a 
naive-Bayes classifier trained with the examples that 
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cross the node. While the distribution of the examples is 
stationary, the online error of naïve-Bayes will decrease. 
 
When the distribution changes, the naive-Bayes online 
error will increase. In that case the test installed at this 
node is no more appropriate for the actual distribution of 
the examples. When this occurs the entire subtree rooted 
at this node will be pruned. The pruning corresponds to 
forget older examples. The empirical evaluation, using 
stationary data, shows that UFFT is competitive to the 
state of the art in batch decision tree learning, using much 
less computational resources. There are two main factors 
that justifies the overall good performance of the system. 
One is the use of more powerful classification strategies 
at tree leaves. The other is the ability to use multivariate 
splits. The experimental results using non-stationary data, 
suggest that the system exhibit fast reaction to changes in 
the concept to learn. The performance of the system 
indicates that there is a good adaptation of the decision 
model to the actual distribution of the examples. We 
should stress that the use of naive-Bayes classifiers at 
leaves to classify test examples, the use of naive-Bayes as 
splitting-tests, and the use of naive-Bayes classifiers at 
decision nodes to detect changes in the distribution of the 
examples are directly obtained from the sufficient 
statistics required to compute the splitting criteria, 
without any additional computations. This aspect is a 
main advantage in the context of high-speed data streams. 
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