
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

338

Manuscript received September 5, 2008.
Manuscript revised September 20, 2008.

Incremental Learning Algorithm for Dynamic Data Streams

Venu Madhav Kuthadi, Professor ,Vardhaman College of Engineering,Hyderabad.
Dr A.Govardhan, M.tech (cs),PhD(cs),Professor,J.N.T.University,Hyderabad.

Dr P.Prem Chand, M.tech(cs),Phd(cs),Professor, Osmania University,Hyderabad

Abstract:
The recent advances in hardware and software have
enabled the capture of different measurements of data in a
wide range of fields. These measurements are generated
continuously and in a very high fluctuating data rates.
Examples include sensor networks, web logs, and
computer network traffic. The storage, querying and
mining of such data sets are highly computationally
challenging tasks. Mining data streams is concerned with
extracting knowledge structures represented in models
and patterns in non stopping streams of information. The
research in data stream mining has gained a high
attraction due to the importance of its applications and the
increasing generation of streaming information.
Applications of data stream analysis can vary from critical
scientific and astronomical applications to important
business and financial ones. Algorithms, systems and
frameworks that address streaming challenges have been
developed from the past few years. This paper presents a
system for induction of forest of functional trees from
data streams able to detect concept drift. The Ultra Fast
Forest of Trees (UFFT)is an incremental algorithm, which
works online, processing each example in constant time,
and performing a single scan over the training examples.
It uses analytical techniques to choose the splitting criteria,
and the information gain to estimate the merit of each
possible splitting-test. For multi-class problems the
algorithm builds a binary tree for each possible pair of
classes, leading to a forest of trees. Decision nodes and
leaves contain naive-Bayes classifiers playing different
roles during the induction process. Naive-Bayes in leaves
are used to classify test examples. Naive-Bayes in inner
nodes play two different roles. They can be used as
multivariate splitting-tests if chosen by the splitting
criteria, and used to detect changes in the class-
distribution of the examples that traverse the node. When
a change in the class-distribution is detected,all the sub-
tree rooted at that node will be pruned. The use of naive-
Bayes classifiers at leaves to classify test examples, the
use of splitting-tests based on the outcome of naive-Bayes,
and the use of naive-Bayes classifiers at decision nodes to
detect changes in the distribution of the examples are
directly obtained from the sufficient statistics required to
compute the splitting criteria, without no additional

computations. This aspect is a main advantage in the
context of high-speed data streams. This methodology
was tested with artificial and real-world data sets. The
experimental results show a very good performance in
comparison to a batch decision tree learner, and high
capacity to detect drift in the distribution of the examples.

Key Words: Data streams, Incremental Decision trees,
Concept Drift

1. Introduction

In recent years, so-called data streams have attracted
considerable attention in different fields of computer
science such as, e.g., database systems, data mining, or
distributed systems. As the notion suggests, a data stream
can roughly be thought of as an ordered sequence of data
items, where the input arrives more or less continuously
as time progresses. There are various applications in
which streams of this type are produced such as, e.g.,
network monitoring, telecommunication systems,
customer click streams, stock markets or any type of multi
sensor system.
A data stream system may constantly produce huge
amounts of data. To illustrate, imagine multi-sensor
system with 10,000 sensors each of which sends a
measurement every second of time. Regarding aspects of
data storage, management and processing, the continuous
arrival of data items in multiple, rapid, time-varying, and
potentially unbounded streams raises new challenges and
research problems. Indeed, it is usually not feasible to
simply store the arriving data in a traditional database
management system in order to perform operations on that
data later on. Rather, stream data must generally be
processed in an online manner in order to guarantee that
results are up-to-date and that queries can be answered
with small time delay. The development of corresponding
stream processing systems is a topic of active research.

In this paper we present UFFT, an algorithm that
generates forest of functional trees for data streams. The
main contributions of this work include a fast method to
choose the cut point for splitting tests, use of multivariate

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008 339

splitting tests, the use of functional leaves to classify test
cases, and the ability to detect concept drift. These
aspects are integrated in the sense that the sufficient
statistics needed by the splitting criteria are the only
statistics used in the functional leaves, multivariate
splitting tests, and in the drift detection method. The
paper is organized as follows. In the next section we
present related work in the areas of incremental decision-
tree induction and concept drift detection. In Section 3,
we present the main issues of our algorithm. The system
has been implemented, and evaluated in a set of
benchmark problems. Preliminary results are presented in
Section 4. In the last section we resume the main
contributions of this paper, and point out some future
work.

2. Related Work

In this section we analyze related work in two dimensions.
One dimension is related to methods dealing with
concept drift. The other dimension is related to the
induction of decision trees from data streams. In the
literature of machine learning, several methods have been
presented to deal with time changing concepts [2, 3,6].
The two basic methods are based on temporal windows
where the window fixes the training set for the learning
algorithm and weighting examples that ages the examples,
shrinking the importance of the oldest examples. These
basic methods can be combined and used together. Both
weighting and time window forgetting systems are used
for incremental learning. A method to dynamically
choose the set of old examples that will be used to learn
the new concept faces several difficulties. It has to select
enough examples to the learner algorithm and also to
keep old data from disturbing the learning process, when
older data have a different probability distribution from
the new concept. A larger set of examples allows a better
generalization if no concept drift happened since the
examples arrived [5]. The systems using weighting
examples use partial memory to select the more recent
examples, and therefore probably within the new context.

Repeated examples are assigned more weight. The older
examples, according to some threshold, are forgotten and
only the newer ones are used to learn the new concept
model [4]. When a drift concept occurs the older
examples become irrelevant. We can apply a time
window on the training examples to learn the new
concept description only from the most recent examples.
The time window can be improved by adapting its size.
There are present several methods to choose a time
window dynamically adjusting the size using heuristics to
track the learning process. The methods select the time
window to include only examples on the current target

concept. formal method is to automatically select the time
window size in order to minimize the generalization error.
And other describes a system that adapts to drift in
continuous domains. the application of several methods
of handling concept drift with an adaptive time window
on the training data, by selecting representative training
examples or by weighting the training examples. Those
systems automatically adjust the window size, the
example selection and the example weighting to
minimize the estimated generalization error.

Concept drift in the context of data streams appears to
ensembles of batch learners from sequential chunks of
data and use error estimates on the test data under the
time-evolving environment. Duda and Hart have
proposed a method to scale-up learning algorithms to
very-large databases [2]. They have presented system
VFDT [2], a very fast decision tree algorithm for data-
streams described by nominal attributes. The main
innovation in VFDT is the use of the Hoeffding bound to
decide when a leaf should be expanded to a decision node.
The work of VFDT has been extended with the ability to
detect changes in the underlying distribution of the
examples. CVFDT [8] is a system for mining decision
trees from time-changing data streams. CVFDT works by
keeping its model consistent with a sliding window of the
most recent examples. When a new example arrives it
increments the counts corresponding to the new example
and decrements the counts to the oldest example in the
window which is now forgotten. Each node in the tree
maintains the sufficient statistics Periodically, the
splitting-test is recomputed. If a new test is chosen, the
CVFDT starts growing an alternate sub-tree. The old one
is replaced only when the new one becomes more
accurate.

3. Ultra-Fast Forest Trees - UFFT

UFFT is an algorithm for supervised classification
learning that generates a forest of binary trees. The
algorithm is incremental, processing each example in
constant time, and works online. UFFT is designed for
continuous data. It uses analytical techniques to choose
the splitting criteria, and the information gain to estimate
the merit of each possible splitting-test. For multi-class
problems,the algorithm builds a binary tree for each
possible pair of classes leading to a forest-of-trees.
During the training phase the algorithm maintains a short
term memory. Given a data stream, a limited number of
the most recent examples are maintained in a data
structure that supports constant time insertion and
deletion. When a test is installed, a leaf is transformed
into a decision node with two descendant leaves. The
sufficient statistics of the leaf are initialized with the
examples in the short term memory that will fall at that

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

340

leaf. The UFFT has shown good results with several large
and medium size problems. In this work we incorporate
in UFFT system the ability to support Concept Drift
Detection. To detect concept drift we maintain, at each
inner node, a naive-Bayes classifier [3] trained with the
examples that traverse the node. Statistical theory
guarantees that for stationary distribution of the examples,
the online error of naive-Bayes will decrease; when the
distribution function of the examples changes, the online
error of the naive-Bayes at the node will increase. In that
case we decide that the test installed at this node is not
appropriate for the actual distribution of the examples.
When this occurs the sub-tree rooted at this node will be
pruned. The algorithm forgets the sufficient statistics and
learns the new concept with only the examples in the new
concept. The drift detection method will always check the
stability of the distribution function of the examples at
each decision node. In the following sections we provide
detailed information about the most relevant aspects of
the system.

3.1 Algorithm Details
3.1.1 The Splitting Criteria

The UFFT starts with a single leaf. When a splitting test
is installed at a leaf, the leaf becomes a decision node,
and two descendant leaves are generated. The splitting
test has two possible outcomes each conducting to a
different leaf. The value True is associated with one
branch and the value False, with the other. The splitting
tests are over a numerical attribute and are of the form
attributei ≤ valuej. We use the analytical method for split
point selection presented in [5].We choose, for all
numerical attributes, the most promising valuej. The only
sufficient statistics required are the mean and variance
per class of each numerical attribute. This is a major
advantage over other approaches, as the exhaustive
method used in C4.5 and in VFDT c [8], because all the
necessary statistics are computed on the fly. This is a
desirable property on the treatment of huge data streams
because it guarantees constant time processing each
example.

The analytical method uses a modified form of quadratic
discriminate analysis to include different variances on the
two classes. This analysis assumes that the distribution of
the values of an attribute follows a normal distribution for

both classes. Let be

the normal density function, where and are the
sample mean and variance of the class. The class mean
and variance for the normal density function are
estimated from the sample set of examples at the node.
The quadratic discriminate splits the X -axis into three

intervals (−∞, d1), (d1, d2), (d2, ∞) where d1 and d2 are
the possible roots of the equation p(−)φ{()}=
p(+)φ{()} where p(i) denotes the estimated
probability than an example belongs to class i. We
pretend a binary split, so we use the root closer to the
sample means of both classes. Let d be that root. The
splitting test candidate for each numeric attribute i will be
of the form Atti ≤ di. To choose the best splitting test from
the candidate list we use a heuristic method. We use the
information gain to choose, from all the splitting point
candidates, the best splitting test. To compute the
information gain we need to construct a contingency
table with the distribution per class of the number of
examples lesser and greater than di:

The information kept by the tree is not sufficient to
compute the exact number of examples for each entry in
the contingency table. Doing that would require to
maintain information about all the examples at each leaf.
With the assumption of normality, we can compute the
probability of observing a value less or greater than di.
From these probabilities and the distribution of examples
per class at the leaf we populate the contingency table.
The splitting test with the maximum information gain is
chosen. This method only requires that we maintain the
mean and standard deviation for each class per attribute.
Both quantities are easily maintained incrementally.The
authors presented an extension to VFDT to deal with
continuous attributes. They use a Btree to store
continuous attribute values with complexity O(nlog(n)).
The complexity of the method proposed here is O(n).
This is why we denote our algorithm as ultra-fast. Once
the merit of each splitting has been evaluated, we have to
decide on the expansion of the tree. This problem is
discussed in the next section.

3.1.2 From Leaf to Decision Node
To expand the tree, a test attributei≤ di is installed in a
leaf, and the leaf becomes a decision node with two new
descendant leaves. To expand a leaf two conditions must
be satisfied. The first one requires the information gain of
the selected splitting test to be positive. That is, there is a
gain in expanding the leaf against not expanding. The
second condition, it must exist statistical support in favor
of the best splitting test which is asserted using the
Hoeffding bound as in VFDT [2]. When new nodes are
created, the short term memory is used. This is described
in the following section.

 At At >
Class +
Class -

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008 341

3.1.3 Short Term Memory
The short term memory maintains a limited number of
the most recent examples.These examples are used to
update the statistics at the new leaves when they are
created. The examples in the short term memory traverse
the tree. Only those that reach the new leaves will update
the sufficient statistics of the tree. The data structure used
in our algorithm supports constant time insertion of
elements at the beginning of the sequence and constant
time removal of elements at the end of the sequence.

3.1.4 Functional Leaves
To classify an unlabeled example, the example traverses
the tree from the root to a leaf. It follows the path
established, at each decision node, by the splitting test at
the appropriate attribute-value. The leaf reached classifies
the example. The classification method is a naive-Bayes
classifier. The use of the naive-Bayes classifiers at the
tree leaves does not enter any overhead in the training
phase. At each leaf we maintain sufficient statistics to
compute the information gain.These are the necessary
statistics to compute the conditional probabilities of P
(xi|Class) assuming that the attribute values follow, for
each class, a normal distribution. Let l be the number of
attributes, and φ(, σ) denotes the standard normal
density function for the values of attribute i that belong to
a given class. Assuming that the attributes are
independent given the class, the Bayes rule will classify
an example in the class that maximizes the a posteriori
conditional probability, given by: P (|x) ∝ log(P
r()) +)). There is a simple
motivation for this option. UFFT only changes a leaf to a
decision node when there are a sufficient number of
examples to support the change. Usually hundreds or
even thousands of examples are required. To classify a
test example, the majority class strategy only uses the
information about class distributions and does not look
for the attribute-values. It uses only a small part of the
available information, a crude approximation to the
distribution of the examples. On the other hand, naive-
Bayes takes into account not only the prior distribution of
the classes, but also the conditional probabilities of the
attribute-values given the class. In this way, there is a
much better exploitation of the information available at
each leaf [6].

3.1.5 Forest of Trees
The splitting criterion only applies to two class problems.
Most of real-world problems are multi-class. This
problem was solved using, at each decision node, a 2-
means cluster algorithm to group the classes into two
super-classes. Obviously, the cluster method cannot be
applied in the context of learning from data streams.

We propose another methodology based on round-robin
classification. The round-robin classification technique
decomposes a multi-class problem into k binary problems,
that is, each pair of classes defines a two-class problem.
In [4] the author shows the advantages of this method to
solve n-class problems. The UFFT algorithm builds a
binary tree for each possible pair of classes. For example,
in a three class problem (A,B, and C) the algorithm
grows a forest of binary trees, one for each pair: A-B, B-
C, and A-C. In the general case of n classes, the
algorithm grows a forest of binary trees. When a
new example is received during the tree growing phase
each tree will receive the example if the class attached to
it is one of the two classes in the tree label. Each example
is used to train several trees and neither tree will get all
examples. The short term memory is common to all trees
in the forest. When a leaf in a particular tree becomes a
decision node, only the examples corresponding to this
tree are used to initialize the new leaves.

3.1.5.1 Fusion of Classifier
When doing classification of a test example, the
algorithm sends the example to all trees in the forest. The
example will traverse the tree from root to leaf and the
classification is registered. Each tree in the forest makes a
prediction. This prediction takes the form of a probability
class distribution. Taking into account the classes that
each tree discriminates, these probabilities are aggregated
using the sum rule [10]. The most probable class is used
to classify the example. Note that some examples will be
forced to be classified erroneously by some of the binary
base classifier, because each classifier must label all
examples as belonging to one of the two classes it was
trained on.

3.1.6 Functional Inner-nodes
When evaluating the splitting-criteria the merit of the
best attributes could be closed enough that the difference
in gains does not satisfy the Hoeffding bound. This
aspect has been pointed out in [2]. In VFDT, the authors
propose the use of a user defined constant, τ, that can
decide towards a split (given that € < τ), even when the
Hoeffding bound is not satisfied. In UFFT when there is a
tie in the evaluation of the merit of tests based on single
attributes, the system starts trying more complex splitting
tests [5].
As we have shown, the sufficient statistics for the
splitting-criteria can be directly used to construct a naive-
Bayes classifier. The idea of functional inner nodes is to
install splitting-tests based on the predictions of the
naive-Bayes classifier build at that node.Suppose that we

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

342

observe a leaf where the difference in gain between the
two best attributes does not satisfies the Hoeffding bound.
Since the first tie, when a new training example falls at
this leaf, it will be classified using the naive-Bayes
derived from the sufficient statistics. Those predictions
are used to populate a 2 × 2 contingency table, where
each cell nij contains the number of examples from class i
that naive Bayes predict class j.

In the next evaluation we evaluate also, in addition to the
evaluation of all the original attributes, the information
gain of the contingency table obtained by the naive-
Bayes predictions. This evaluation corresponds to
consider a new attribute: the naive-Bayes predictions. If
this implicit attribute is the best attribute in terms of
information gain, and the difference with respect to the
second best satisfies the Hoeffding bound, then the leaf
becomes a decision node with two outcomes: the naive-
Bayes predictions. UFFT uses naive-Bayes classifiers at
leaves. When considering splitting-tests based on naive-
Bayes we must consider the advantage of splitting versus
not splitting. For example, if the predictions of naive-
Bayes are accurate, the corresponding gain will be high.
In such cases, we don’t need to expand the leaf, avoiding
too much structure and overfitting. After a first tie, we
only expand a leaf, if the gain of the naive-Bayes
predictions is less than a user defined threshold. In the
experiments described below the threshold was set to 0.5.
Naive Bayes classifiers use all attributes to make
predictions. This aspect could be negative in the presence
of irrelevant attributes. In UFFT we only consider
splitting-tests based on naive-Bayes classifiers after the
first tie. This aspect can be used to select the most
informative attributes to use with naive-Bayes.

3.2 Concept Drift Detection

The UFFT algorithm maintains, at each node of all
decision trees, a naive- Bayes classifier. Those classifiers
were constructed using the sufficient statistics needed to
evaluate the splitting criteria when that node was a leaf.
When the leaf becomes a node the naive-Bayes classifier
will classify the examples that traverse the node. The
basic idea of the drift detection method is to control this
online error-rate. If the distribution of the examples that
traverse a node is stationary, the error rate of naive-Bayes
decreases. If there is a change on the distribution of the
examples the naive-Bayes error will increase [7]. When
the system detects an increase of the naive-Bayes error in
a given node, an indication of a change in the distribution
of the examples, this suggests that the splitting-test that
has been installed at this node is no longer appropriate. In
such cases, the entire sub tree rooted at that node is
pruned, and the node becomes a leaf. All the sufficient

statistics of the leaf are initialized using the examples in
the new context from the short term memory. We
designate as context a set of contiguous examples where
the distribution is stationary, assuming that the data
stream is a set of contexts. The goal of the method is to
detect when in the sequence of examples of the data
stream there is a change from one context to another.

When a new training example becomes available, it will
cross the corresponding binary decision trees from the
root node till a leaf. At each node, the naïve Bayes
installed at that node classifies the example. The example
will be correctly or incorrectly classified. For a set of
examples the error is a random variable from Bernoulli
trials. The Binomial distribution gives the general form of
the probability for the random variable that represents the
number of errors in a sample of n examples. We use the
following estimator for the true error of the classification
function pi≡ (errori/i) where i is the number of examples
and errori is the number of examples misclassified, both
measured in the actual context. The estimate of error has
a variance. The standard deviation for a Binomial is

given by si≡ where i is the number of

examples observed within the present context. For
sufficient large values of the example size, the Binomial
distribution is closely approximated by a Normal
distribution with the same mean and variance.
Considering that the probability distribution is unchanged
when the context is static, then the 1 − α/2 confidence
interval for p with n > 30 examples is approximately pi±
α ∗ si. The parameter α depends on the confidence level.
In our experiments the confidence level for drift has been
set to 99%. The drift detection method manages two
registers during the training of the learning algorithm,
pminand smin. Every time a new example i is processed
those values are updated when pi+ si is lower than pmin+
smin.

We use a warning level to define the optimal size of the
context window. The context window will contain the old
examples that are on the new context and a minimal
number of examples on the old context. Suppose that in
the sequence of examples that traverse a node, there is an
example i with correspondent pi and si. The warning level
is reached if pi+ si≥ pmin+ 1.5 ∗ smin. The drift level is
reached if pi+ si≥ pmin+ 3 ∗ smin. Suppose a sequence of
examples where the naive-Bayes error increases reaching
the warning level at example kw, and the drift level at
example kd. This is an indicator of a change in the
distribution of the examples. A new context is declared
starting in example kw, and the node is pruned becoming
a leaf. The sufficient statistics of the leaf are initialized
with the examples in the short term memory whose time

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008 343

stamp is greater than kw. It is possible to observe an
increase of the error reaching the warning level, followed
by a decrease. We assume that such situations correspond
to a false alarm, without changing the context. With this
method of learning and forgetting we ensure a way to
continuously keep a model better adapted to the present
context. The method uses the information already
available to the learning algorithm and does not require
additional computational resources.

An advantage of this method is it continuously monitors
the online error of naive Bayes. It can detect changes in
the class-distribution of the examples at any time. All
decision nodes contain naive Bayes to detect changes in
the class distribution of the examples that traverse the
node, that correspond to detect shifts in different regions
of the instance space. Nodes near the root should be able
to detect abrupt changes in the distribution of the
examples, while deeper nodes should detect smoothed
changes.
All the main characteristics of UFFT are due to the
splitting criteria. All the statistics required by the splitting
criteria can be computed incrementally. Moreover we can
directly derive naive Bayes classifiers from the sufficient
statistics. Naive Bayes classifiers are used in leaves to
classify test examples, are used in inner decision nodes to
detect drift and can be used in splitting tests. It is known
that naive Bayes is a low-variance classifier. This
property is relevant mainly when the naive Bayes acts as
splitting test and in the drift detection.

4. Experimental Work

4.1 Stationary Data

The experimental work has been done using the
Waveform, LED and Balance datasets available at the
UCI repository [1]. There are two Waveform
problems,both with three classes. The first problem is
defined by 21 numerical attributes. The second one
contains 40 attributes. It is known that the optimal Bayes
error is 14%. The LED problem has 24 binary attributes
(17 are rrelevant) and 10 classes. The optimal Bayes error
is 26%. The Balance problem has 4 attributes and 3
classes. The choice of these datasets was motivated by
the existence of dataset generators at the UCI repository
that could simulate streams of data. For all the problems
we generate training sets of a varying number of
examples, starting from 50k till 1500k. The test set
contains 100k examples. UFFT generates a model from
the training set, seeing each example once. The generated
model classifies the test examples. The UFFT algorithm
was used with parameters values δ = 0.05, τ = 0.001,
nmin= 300, and buffer size of 1000. All algorithms ran on

a Centrino at 1.5GHz with 512 MB of RAM and using
Linux Mandrake.

For comparative purposes, we use C4.5, the state of the
art in decision tree learning. It is a batch algorithm that
requires that all the data should fit in memory. All the
data is successively re-used at decision nodes in order to
choose the splitting test. At each decision node,
continuous attributes should be sorted, an operation with
complexity of O(n log n). We conducted a set of
experiments comparing UFFT against C4.5. Both
algorithms learn on the same training dataset, and the
generated models are evaluated on the same test set.
Detailed results are presented in Table 1. UFFT is orders
of magnitude faster that C4.5 generating simpler (in
terms of the number of decision nodes) models, with
similar performance. The advantage of using multivariate
splitting tests is evident in waveform datasets. The
deference in performance appears in columns Version 1
and Default in Table 1. In these datasets the observed
improvement is about 5 %.

 Error Rate
Exs UFFT

No Drift Version 1 Default
Balance Dataset -4 Attributes
100k 3.2 3.3 3.2 3.0
500k 2.2 2.3 2.2 2.1
1000k 1.7 2.1 1.7 1.7
500k 17.4 23.3 17.3 18.6
1000k 17.1 22.9 17.9 18.3
500k 18.4 23.4 18.4 19.5
1000k 18.3 23.5 18.3 19.1
100k 26.3 26.2 26.2 26.7
500k 26.1 26.1 26.1 26.7
1000k 26.1 26.1 26.2 26.7

Table 1.(a)

Training Time Tree Size
UFTT C4.

5
UFFT C4.5

Balance Dataset -4 Attributes
18 41 315 1 1 2929
128 822 1355 1 1 9689
301 2949 2051 1 1 16223
Waveform Dataset -21 Attributes
38 156 11 13 1 7945
223 2734 48 83 6

5
33787

409 10802 11 73 1 61841

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

344

Waveform Dataset -40 Attributes
69 298 15 7 1 9837
371 4054 59 53 75 435233
719 16346 45 49 1 80331
LED Dataset -24 Attributes
174 525 30 8309
1372 15209 82 34679
2861 67271 116 65469

Table 1.(b)

Table a,b: Learning curves for the datasets under study.
For UFFT we present the results of three versions:
disabling drift (No Drift), disabling the use of naïve
Bayes in splitting tests (Version 1) and enabling the use
of naive Bayes and drift detection (Default). For Led
dataset the figures of tree size refer to the mean of all 45
trees.

These datasets are generated by a stationary distribution.
Nevertheless there are signals of false alarms drift
detection. They never appear in the root node but in
deeper nodes in the tree. The impact in performance is
reduced or even null.

4.2 Non-Stationary Data

For illustrative purposes we evaluate UFFT in the SEA
concepts, previously used in [8] to evaluate the ability to
detect concept drift. Table 2(a) presents the average
error-rate of 30 runs of UFFT setting on/off the ability of
drift detection. The results are different at a significance
level of 99%. They clear indicate the benefits of using
drift detection in this dataset. For reference we also
present the results of CVFDT.

a) Sea Data set
 UFFT
 Drift No Drift

CVFDT

Mean 12.79 17.20 14.72
Variance 1.26 1.89 1.06

 b) Electricity market dataset
 Upper Bound
Test
Set

Lower
Bound All

data
Last
Year

UFFT

Last
Day

8.0 20.8 12.5 10.4

Last
Week

14.5 25.0 24.7 21.4

Table 2 (a) ,(b) : Error-rates on drift detection problems.

The Electricity Market Dataset was collected from the
Electricity Market. In this market, the prices are not fixed
and are affected by demand and supply of the market.
The prices in this market are set every five minutes. The
class label identifies the change of the price related to a
moving average of the last 24 hours. The goal of the
problem is to predict if the price will increase or decrease.
From the original dataset we design two experiments. In
one of the experiments, the test set is the last day (48
examples); in the other, the test set is the last week (336
examples). For each problem, we detect a lower bound
and an upper bound of the error using a batch decision
tree learner. The upper bound use ad-hoc heuristics to
choose the training set. One heuristic use all the training
data; the other heuristic use only the last year training
examples. When predicting the last day, the error-rate of
Rpart2 using all the training set is 18.7%, when
restricting the training set to the last year, the error
decrease to 12.5%. To compute the lower-bound we
perform an exhaustive search for the best training set that
produces lower error rate in the last day of the training set.
The results appear in Table 2(b). The experiments using
UFFT with drift detection exhibit a performance similar
to the lower-bound using exhaustive search. This is an
indication of the quality of the results. The advantage of
using a drift detection method is the ability to
automatically choose the set of training examples. This is
a real world dataset where we do not know where the
context is changing.

5. Conclusions and Future Work

This work presents an incremental learning algorithm
appropriate for processing high-speed numerical data
streams. The main contributions of this work are the
ability to use multivariate splitting tests, and the ability to
adapt the decision model to concept drift. While the
former has impact in the performance of the system, the
latter extends the range of applications to dynamic
environments. The UFFT system can process new
examples as they arrive, performing a single scan of the
training data. The method to choose the cut point for
splitting tests is based on quadratic discriminant analysis.
It has complexity O (#examples). The sufficient statistics
required by the analytical method can be computed in an
incremental way, guaranteeing constant time to process
each example. This analytical method is restricted to two-
class problems. We use a forest of binary trees to solve
problems with more than 2 classes. Other contributions of
this work are the use of a short-term memory to initialize
new leaves, and the use of functional leaves to classify
test cases.An important aspect in this work, is the ability
to detect changes in the distribution of the examples. To
detect concept drift, we maintain, at each inner node, a
naive-Bayes classifier trained with the examples that

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008 345

cross the node. While the distribution of the examples is
stationary, the online error of naïve-Bayes will decrease.

When the distribution changes, the naive-Bayes online
error will increase. In that case the test installed at this
node is no more appropriate for the actual distribution of
the examples. When this occurs the entire subtree rooted
at this node will be pruned. The pruning corresponds to
forget older examples. The empirical evaluation, using
stationary data, shows that UFFT is competitive to the
state of the art in batch decision tree learning, using much
less computational resources. There are two main factors
that justifies the overall good performance of the system.
One is the use of more powerful classification strategies
at tree leaves. The other is the ability to use multivariate
splits. The experimental results using non-stationary data,
suggest that the system exhibit fast reaction to changes in
the concept to learn. The performance of the system
indicates that there is a good adaptation of the decision
model to the actual distribution of the examples. We
should stress that the use of naive-Bayes classifiers at
leaves to classify test examples, the use of naive-Bayes as
splitting-tests, and the use of naive-Bayes classifiers at
decision nodes to detect changes in the distribution of the
examples are directly obtained from the sufficient
statistics required to compute the splitting criteria,
without any additional computations. This aspect is a
main advantage in the context of high-speed data streams.

References
[1] C.Nlake, E.Keogh, and C.Merrz. UCI Repository of

Machine Learning,2007.
[2] R.Duda, P.Hart, and D.Stork. Pattern Classification.Willey

and sons, 2006.
[3] Gama. Functional trees. Machine Learning, 55(3):219–250,

2005.
[4] J. Kittler. Combining classifiers: A theoretical framework

Pattern analysis and Applications, 2006.
[5] T. Mitchell. Machine Learning. McGraw Hill, 2002.
[6] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A

framework for clustering evolving data streams. In VLDB,
pages 81–92, 2003.

[7] B. Babcock, M. Datar, and R. Motwani. Sampling from a
moving window over streaming data.In SODA, pages 633–
634, 2004.

[8] R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers,Inc., 2004.

Name: Venu Madhav Kuthadi

Qualification:B.Tech(CSE),M.Tec
h(SE), Ph.D(CS)
Experience: 12 years of
Experience in Teaching. Working
as Professor in Vardhaman
College of Engineering,
Hyderabad,A.P. Presently with
National Institute of Information
Technology, Gaborone, Botswana,

Area of Expertise : Data Mining, Software Engineering
and Computer Networks.

