
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

388

Manuscript received September 5, 2008.
Manuscript revised September 20, 2008.

Making AES Stronger: AES with Key Dependent S-Box

Krishnamurthy G N, V Ramaswamy

Bapuji Institute of Engineering and Technology, Davangere-577004, Karnataka, India

Summary
With the fast evolution of digital data exchange, security
information becomes much important in data storage and
transmission. In this paper, we show a new property of Advanced
Encryption Standard (AES)[1],[2],[3] using S-box and Inverse S-
box. We also show how this property can be used to make the S-
box key dependent[5],[6],[7],[9],[24] and hence make AES
stronger. This has been done without changing the basic
operations of AES. The importance lies in the fact that the S-box
is made Key dependent without changing its values (ranging
from 00 to FF) and without touching Inv-S-box. Detailed
explanations of implementation are given.
Key words:
Cryptography, Encryption, Advanced Encryption Standard (AES),
Key dependent S-box, Inverse S-box, Key expansion

1. Introduction

In October 2000, after a four year effort to replace the
aging DES, NIST announced the selection of
Rijndael[1],[2] as the proposed AES (NIST 2004). Draft
of the Federal Information Processing Standard (FIPS) [3]
for the AES was published in February 2001,
Standardization of AES was approved after public review
and comments, and published a final standard FIPS PUB-
197 [3] in December 2001. Standardization was effective
in May 2002 (NIST 2004).
Rijndael[1],[2] is a block cipher developed by Joan
Daemen and Vincent Rijmen[1]. The algorithm is flexible
in supporting any combination of data and key size of 128,
192, and 256 bits. However, AES merely allows a 128 bit
data length that can be divided into four basic operation
blocks. These blocks operate on array of bytes and
organized as a 4×4 matrix that is called the state. For full
encryption, the data is passed through Nr rounds (Nr = 10,
12, 14) [1], [2], [3]. These rounds are governed by the
following transformations:

(i) SubByte transformation: Is a non linear byte

Substitution, using a substation table (S-box), which is
constructed by multiplicative inverse and affine
transformation. It provides nonlinearity and confusion.

(ii) ShiftRows transformation: Is a simple byte
transposition, the bytes in the last three rows of the
state are cyclically shifted; the offset of the left shift

varies from one to three bytes. It provides inter-
column diffusion.

(iii) MixColumns transformation: Is equivalent to a matrix
multiplication of columns of the states. Each column
vector is multiplied by a fixed matrix. It should be
noted that the bytes are treated as polynomials rather
than numbers. It provides inter-byte diffusion.

(iv) AddRoundKey transformation: Is a simple XOR
between the working state and the roundkey. This
transformation is its own inverse. It adds confusion.

The encryption procedure consists of several steps as
shown in Fig. 1. After an initial addroundkey, a round
function is applied to the data block (consisting of
SubBytes, Shiftrows, Mixcolumns and AddRoundKey
transformation, respectively). It is performed iteratively
(Nr times) depending on the key length. The decryption
structure as shown in Fig. 2 has exactly the same sequence
of transformations as the one in the encryption structure.
The transformations Inv-SubBytes, Inv-ShiftRows, Inv-
MixColumns, and AddRoundKey allow the form of the
key schedules to be identical for encryption and
decryption.
The AES algorithm [1], [2] is designed to use one of three
key sizes (Nk). AES-128, AES-196 and AES-256 use 128
bit (16 bytes, 4 words), 196 bit (24 bytes, 6 words) and
256 bit (32 bytes, 8 words) key sizes respectively. In
this paper we will only emphasize on AES-128. The AES
-128 key expansion algorithm, takes as an input a four
word (16 bytes) key, produces a linear array of forty four
words (176 bytes) keys. This is sufficient to provide a four
word round key for the initial AddRoundKey stage and
each of the 10 rounds of cipher.
This paper introduces a new, key-dependent Advanced
Encryption standard algorithm, AES-KDS, to ensure that
no trapdoor is present in the cipher and to expand the key-
space to slow down attacks.
The paper is organized as follows: Section 2 presents the
proposed AES-KDS. Section 3 explains timing and
security aspects. Section 4 shows the experimental results.
Section 5 summarizes and concludes the paper. References
are given in Section 6.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

389

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

1st Round

Repeat
Nr -1
Round

Last
Round

PlainText

CipherText

RoundKey

RoundKey

RoundKey

Fig. 1 AES algorithm- Encryption Structure

AddRoundKey

InvShiftRows

InvSubBytes

AddRoundKey

InvMixColumns

InvShiftRows

InvSubBytes

AddRoundKey

1st Round

Repeat
Nr -1
Round

Last
Round

Cipher Text

Plain Text

RoundKey*

RoundKey*

RoundKey*

* RoundKey Added in reverse order

Fig. 2 AES algorithm- Decryption Structure

Many people have tried to modify AES algorithm to
improve its performance [24]. More relevant to our work
is a technique (Fahmy et al., 2005; Fahmy, Shaarawy,
Hadad, Salama and Hassanain, SEITT 2005). In Fahmy[5]
et al. (2005), an attempt is made to make AES key
dependent[5],[6],[7],[9],[23] (KAES)[5]. In that the AES
S-box is completely replaced by a new S-box. This
eliminates completely Inverse S-box, which violates AES
design and hence requires thorough analysis regarding its
security, because AES S-box is tested thoroughly for
linear, differential and algebraic attacks.

2. AES-KDS

AES-KDS is block cipher in which the block length and
the key length are specified according to AES
specification: three key length alternatives 128, 192, or
256 bits and block length of 128 bits. We assume a key
length of 128 bits, which is likely to be the one most
commonly implemented.
The encryption and decryption process AES-KDS
resembles that of AES with the same number of rounds,
data and key size. The round function resembles that of
AES, but is composed of 5 stages rather than 4 stages. The
extra stage named Rotate S-box is introduced at the
beginning of the round function. The other four stages
remain unchanged as it is in the AES and follow the
Rotate S-box stage. However, the decryption process will
have only 4 stages as in he AES. But the InvSubBytes
operation is modified to nullify the effect of the Rotate_S-
box operation of encryption. This is followed by a
description of key expansion and generation of shift
offset-matrix.
The input to the encryption and decryption algorithms is a
single 128-bit block. This block is depicted as a square
matrix of bytes. This block is copied into the state array,
which is modified at each stage of encryption or
decryption. After the final stage, state is copied to an
output matrix. Similarly, 128-bit key is depicted as a
square matrix of bytes. This key is then expanded into an
array of key schedule words: each word is four bytes and
the total key schedule is 44 words for the 128-bit key, a
round key similar to a state. The process of encryption and
decryption is as depicted in Fig. 3 and Fig. 4 respectively.

Fig. 3 AES-KDS algorithm- Encryption Structure

AddRoundKey

SubByte
s ShiftRows

MixColumn
s AddRoundKey

SubByte
s ShiftRows

AddRoundKey

1
st Round

Repeat
N r - 1
Rounds

Last
Round

PlainText

CipherText

RoundKey

RoundKey

RoundKey

 Rotate_S-box

Rotate_S-box

RoundKey+

RoundKey+

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

390

2.1 Rotate_S-box and SubBytes / InvSubBytes
transformations

AES-KDS uses rotated AES S-box for its SubBytes[8]
operation. To show how AES-KDS works, let us see how
Rotate_S-box and SubBytes / InvSubBytes transformations
work. A detailed study and analysis of AES S-box and
Inverse S-sox reveals the following property. Consider
AES S-box as shown in Fig. 5.

Fig. 4 AES-KDS algorithm- Decryption Structure

Y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 3B 52 D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

X

F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

Fig. 5 AES S-box
Y

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E
3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06
7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B
8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73
9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B
B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4
C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61

X

F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

Fig. 6 Inverse S-box

AddRoundKey

InvShiftRows

InvSubBytes
AddRoundKey
InvMixColumns

InvShiftRows

InvSubBytes
AddRoundKey

1
st

Repeat
N r - 1
Rounds

Last
Round

Cipher Text

Plain Text

RoundKey *

RoundKey *

RoundKey *

* RoundKey Added in reverse order

RoundKey+

RoundKey+

Round

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

391

Y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 FF F3 D2 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64
1 5D 19 73 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE
2 5E 0B DB E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91
3 95 E4 79 E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65
4 7A AE 08 BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B
5 BD 8B 8A 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86
6 C1 1D 9E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE
7 55 28 DF 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0
8 54 BB 16 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE
9 D7 AB 76 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C
A A4 72 C0 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71
B D8 31 15 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB
C 27 B2 75 09 83 2C 1A 1B 6E 5A A0 3B 52 D6 B3 29
D E3 2F 84 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A
E 4C 58 CF D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50

X

F 3C 9F A8 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10

Fig. 7 S-box rotated left 125(or 7D in Hex) times

Y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E
3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06
7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B
8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73
9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B
B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4
C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61

X

F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

Fig. 8 Inverse S-box demonstrating substitution for D1

In the SubBytes step, each byte in the state is replaced
with its entry in the S-box;

bij = S-box(aij).

This operation provides the non-linearity in the cipher.
The S-box used is derived from the multiplicative inverse
over GF(28), known to have good non-linearity properties.
To avoid attacks based on simple algebraic properties, the
S-box is constructed by combining the inverse function
with an invertible affine transformation. The S-box is also
chosen to avoid any fixed points (and so is a derangement),
and also any opposite fixed points.
Consider a byte, say D4 of the state. This will be replaced
by 48(in Hex) as shown in Fig. 5.

48(Hex)=S-box(D4)

During Decryption the InvSubBytes[8] operation performs
the inverse operation using Inverse S-box as shown in Fig.
6.

aij = Inv-S-box(bij).

So the value 48(in Hex) will be replaced by the original
value D4 as shown in the figure below.

D4=Inv-S-box(48)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

392

Now suppose we rotate the S-box left by a value say
125(or 7D in Hex). The new S-box will be as shown in
Fig. 7.

Now suppose if we consider the same input D4, the
rotated S-box will give a value D1 as shown in the figure.
During Decryption the InvSubBytes operation performs the
inverse operation using Inverse S-box. So Inverse S-box
will produce a result 51(in Hex) as shown in Fig. 8.

51(in Hex)=Inv-S-box(D1)

The original value was D4 but what we are getting is
51(Hex). This leads to a wrong decryption. After a
thorough analysis we could find out a way to get back the
original value without changing the Inverse S-box. We can
get back the original value just by subtracting a value used
to rotate the S-box from the result obtained out of
InvSubBytes operation.

So, aij = (Inv-S-box(bij)-Number of times S-box bytes
rotated) mod 256(FF+1 in Hex)

i.e.,
(InvS(D1)-7D) mod 256(or FF+1 in Hex) = (51- 7D) mod
(FF+1) = D4.

This property holds good for all possible 256 rotations.
Hence this property can be used to make the S-box key
dependent [5],[6],[7],[9],[25].

The Rijndael S-box was specifically designed to be
resistant to linear and differential cryptanalysis. This was
done by minimizing the correlation between linear
transformations of input/output bits, and at the same time
minimizing the difference propagation probability. In
addition, to strengthen the S-box against algebraic attacks,
the affine transformation was added. In the case of
suspicion of a trapdoor being built into the cipher, the
current S-box might be replaced by another one. The
authors claim that the Rijndael cipher structure should
provide enough resistance against differential and linear
cryptanalysis, even if an S-box with "average" correlation
/ difference propagation properties is used. This is the
reason for keeping AES S-box values unchanged while
making it key dependent.

Now by making S-box key dependent[5],[6],[7],[9],[25]
AES will be much stronger[8]. We will now show how the
above property of S-box can be used to make it key
dependent using either of the following three cases
depending on the level of security requirement. For
moderate level security requirement Case 1 can be
employed. For high security requirements Case 2 can be

adopted. For very high level security Case 3 and Case 4
can be used.

Case 1:
Here different round keys are generated using a key
expansion algorithm which is similar to that of AES key
expansion algorithm. The round keys thus generated will
used for finding a value that is used to rotate the S-box.
The same round keys are used for AddRoundKey stage as
well. Suppose for a particular round j, if the round key
value is

2D9578565E262AA56F5F904A0B955B27 (each byte
represented by 2-Hex digits).

The last byte 27(Hex) is used to rotate the S-box. The
resulting S-box is used during the Subbyte operation.

Case 2:
Here different round keys are generated using a key
expansion algorithm which is similar to that of AES key
expansion algorithm. The round keys thus generated will
used for finding a value that is used to rotate the S-box.
The same round keys are used for AddRoundKey stage as
well. Suppose for a particular round j, if the round key
value is

06ACB47D588A9ED837D50E923C4055B5 (each byte
represented by 2-Hex digits).

Here XOR operation of all the bytes is taken.

15(Hex)=06^AC^B4^7D^58^8A^9E^D8^37^D5^0E^92^
3C^40^55^B5 (^ symbol used for XOR)

The resulting byte value 15(Hex) is used to rotate the S-
box. The resulting S-box is used during the SubBytes
operation. The advantage here is the rotation value is now
dependent on entire round key rather than only on the last
byte. The disadvantage is that it consumes little extra time.
The following pseudo code describes the encryption
operation for this case.

void encrypt(unsigned char state[4][4],unsigned
char key[16],unsigned char s_box[16][16],unsigned
long int expanded_key[])
{
 int round;
 unsigned long int mask=0xff;
 add_round_key(0,state,expanded_key);

 for(round=1;round<=9;round++)
 {
 rotate=(expanded_key[round*4]^expanded_ke
y[round*4+1]^expanded_key[round*4+2]^expanded_key
[round*4+3])&mask;
 create_s_box(s_box,rotate);
 // function to rotate S-box to left by

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

393

// a value equal to rotate
 substitute_bytes(state,s_box);
 shift_row(state);
 mix_column(state);

 add_round_key(round*4,state,expanded_key)
;
 }
 Rotate=(expanded_key[40]^expanded_key[41]
^expanded_key[42]^expanded_key[43])&mask;
 create_s_box(s_box,rotate);
 substitute_bytes(state,s_box);
 shift_row(state);
 add_round_key(40,state,expanded_key);
}

Case 3:

Here two sets of round keys are generated using a key
expansion algorithm which is similar to that of AES key
expansion algorithm. One set of round keys thus generated
will used for finding a value that is used to rotate the S-
box. The second set of round keys are used for
AddRoundKey stage. From the first set of round keys,
suppose for a particular round j, if the round key value is

EE0AF824 B02CD281 DF7342CB D4E619EC (each byte
represented by 2-Hex digits).

The last byte EC(Hex) is used to rotate the S-box. The
resulting S-box is used during the SubBytes operation. The
advantage here is that it increases key expansion time and
the rotation value is now dependent on round key other
than what is used in AddRoundKey stage. The
disadvantage is that it consumes extra time for generating
new round key.

Case 4:

Here two sets of round keys are generated using a key
expansion algorithm which is similar to that of AES key
expansion algorithm. One set of round keys thus generated
will used for finding a value that is used to rotate the S-
box. The second set of round keys are used for
AddRoundKey stage. From the first set of round keys,
suppose for a particular round j, if the round key value is

C556E6B8 9021DC53 DB002238 6EB86774 (each byte
represented by 2-Hex digits).

Here XOR operation of all the bytes is taken.

F7(Hex)=C5^56^E6^B8^90^21^DC^53^DB^00^22^38^6
E^ B8^67^74 (^ symbol used for XOR)

The resulting bye value F7(Hex) is used to rotate the S-
box. The resulting S-box is used during the SubBytes
operation. The advantage here is the rotation value is now

dependent on round key other than what is used in
AddRoundKey stage. And also rotational value is
dependent on the entire new round key rather than only on
the last byte. The disadvantage is that it consumes little
time extra.

The remaining 3 stages namely, ShiftRows, MixColumns
and AddRoundKey transformations will remain as they are
in the AES algorithm.

2.2 AES-KDS key expansion
 One of the following two types of key
expansion[1],[2],[8] is used in the AES-KDS algorithm.

Type 1:

The AES-KDS key expansion algorithm, takes as an input
a four word (16 Bytes) key. In this case, first XOR
operation of all the bytes of the key is carried out and the
resulting 8-bit (byte) value is used for shifting the S-Box.
This shifted S-Box is used to generate 11 subkeys, each of
4 words in length, totally a linear array of forty four words
(176 Bytes). This is sufficient to provide a four word
round key for the initial AddRoundKey stage and each of
the 10 rounds of cipher. These round keys are also used for
finding a value for rotating the S-box. The following
pseudo code describes the expansion.

unsigned char key[16]=1234567890ABCDEF;
unsigned char temp=0;
FILE *ky1;
unsigned int rotate;
for(i=0;i<16;i++)
temp=temp^key[i];
rotate=temp;
create_s_box(s_box,rotate);

 key_expansion(expanded_key,key,s_box);
// as in original AES
 for(i=0;i<44;i++)
 fprintf(ky1,"%lx ",expanded_key[i]);

This expanded key is for first two cases, Case 1 and Case
2 of encryption procedure described above based on the
requirements of the user.

Type 2:

Modern cryptography demands lengthy key schedule [11]
algorithm. So in order to increase the key expansion time
and to increase the security of the cipher we can make use
of two sets of sub keys, one set can be used to shift the S-
box, one in each round and the second set of sub keys are
used as a regular AddRoundKey as in the original
algorithm to perform add round key. This requires the key
expansion algorithm to be executed twice, which
indirectly helps to increase the time for key expansion.
Use of two sets of keys helps in increasing the security.
This operation is repeated during the decryption process.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

394

During InvSubBytes operation of decryption, the same
value that is used to rotate the S-box during SubBytes of
Encryption is subtracted from the resulting InvSubBytes
operation in order to nullify the effect of rotation of S-box.
The AES-KDS key expansion algorithm, takes as an input
a four word (16 Bytes) key. In this case, first XOR
operation of all the bytes of the key is carried out and the
resulting 8-bit (byte) value is used for shifting the S-Box.
This shifted S-Box is used to generate 11 sub keys, each
of 4 words in length, totally a linear array of forty four
words (176 Bytes). This forms first set of round keys
named expanded_key1. The round keys thus generated
will be used for finding a value that is used to rotate the S-
box in each round. These round keys are also used for
finding a value for rotating the S-box, which will be used
in generating second set of round keys named
expanded_key2. This is sufficient to provide a four word
round key for the initial AddRoundKey stage and each of
the 10 rounds of cipher. The following pseudo code
describes the expansion.

unsigned char key[16]=1234567890ABCDEF;
unsigned char temp=0;
FILE *ky1;
unsigned int rotate;
for(i=0;i<16;i++)
temp=temp^key[i];
rotate=temp;
create_s_box(s_box,rotate);

 key_expansion(expanded_key1,key,s_box);
// as in original AES
 for(i=0;i<44;i++)
 fprintf(ky1,"%lx ",expanded_key1[i]);
// First set of round keys

for(i=0;i<43;i++)
 {

 expanded_key1[i+1]=expanded_key1[i]^expan
ded_key1[i+1];
 }
 for(i=0;i<=3;i++)
 for(j=0;j<=3;j++)
 {

 temp=expanded_key1[44]&mask;
 temp=temp>>shift1;
 shift1=shift1+8;
 mask=mask<<8;
 shift=shift^temp;
 }
 create_s_box(s_box,shift);
 key_expansion(expanded_key2,key,s_box);
 for(i=0;i<44;i++)
 fprintf(ky2,"%lx ",expanded_key2[i]);
// Second set of round keys.

3. Timing and Security aspects

AES-KDS requires little extra time for encryption and
decryption. The added stage in encryption, the Rotate S-
box operation does not contain any calculation like
multiplication or division. Here the bytes are just rotated
and hence consume very less time. Decryption process

does not have any extra stage we compared to AES, but
one subtraction operation is carried out during the
InvSubByes operation. The extra time taken for this is also
negligible. Some time is consumed during the key
expansion and to compute a value that is used for rotating
S-box. This is affordable at the gain of security.
AES-KDS uses S-box whose entries ranging from 00 to
FF as in the AES S-box. AES S-box was specifically
designed to be resistant to linear and differential
cryptanalysis [4], [12], [13] [14], [21]. It is secure against
linear, differential and algebraic attacks[18]. AES-KDS
does not even touch Inverse S-box. The aim of the
algorithm was to make the S-box key dependent without
changing design and by making minimum modifications to
the implementation. In each round AES-KDS S-box can
have 256 possible entries. Totally there are 10 rounds. So
total number of possible S-boxes is given by,

256 x 256 x 256 x 256 x 256 x 256 x 256 x 256 x256 x 256 = 280

This gives the clear picture of the difficulty involved in the
Cryptanalysis.
Moreover sub keys (round keys) are also generated after
shifting the S-box. We can have 256 possible sub keys
when only one set of keys are used. When two sets of keys
are used, first set can have one of the 256 possible sub
keys and the second set can have one of the 256 x 256
possible values.

4. Experimental Results

 Key = ADF278565E262AD1F5DEC94A0BF25B27
SN Plaintext Ciphertext
1 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00
B2 43 B5 85 CA DD F4 4E F5
E6 6E D1 D7 08 B3 0B

2 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 01

37 14 10 49 D7 DE 2D 56 CC
74 66 6B CF 89 4C 95

3 00 00 00 00 00 00 00 00 00
00 00 00 00 00 01 01

64 E2 C1 53 C4 79 78 DF FC
87 35 15 9F 4C 39 76

4 10 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00

2F 1D C4 1D DB 52 D6 9D A5
74 99 69 9B 16 31 9E

Table.1. Plaintext & Ciphertext samples

 Key = ADF278565E262AD1F5DEC94A0BF25B28
SN Plaintext Ciphertext
1 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00
21 55 66 73 D8 BE 4F 9D 98 55
68 D0 06 DC E6 35

2 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 01

32 67 6F 89 15 6E 88 80 D0 82
07 9A 0E E2 35 07

3 00 00 00 00 00 00 00 00 00
00 00 00 00 00 01 01

25 AE 71 C2 4F E0 7F A3 AD 23
35 84 31 47 2B 9E

4 10 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00

C9 89 71 71 A1 F0 9D 4A 80 A9
6D CF F3 EE 40 4C

Table.2. Plaintext & Ciphertext samples

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

395

Fig. 9 Image and is corresponding Cipher-Image

The experimental results shown in Table.1 and Table.2
above are taken for Case 4 of encryption and posses very
good avalanche characteristic. Encryption of a bitmap
image Cman.bmp is also shown.

5.5 Security Analysis
5.5.1 Avalanche effect:

In cryptography, the avalanche effect refers to a desirable
property of cryptographic algorithms, typically block
ciphers and cryptographic hash functions. The avalanche
effect is evident if, when an input is changed slightly (for
example, flipping a single bit) the output changes
significantly (eg, half the output bits flip). In the case of
quality block ciphers, such a small change in either the
key or the plaintext should cause a drastic change in the
ciphertext.
 If a block cipher does not exhibit the avalanche
effect to a significant degree, then it has poor
randomization, and thus a cryptanalyst can make
predictions about the input, being given only the output.
This may be sufficient to partially or completely break the
algorithm. It is thus not a desirable condition from the
point of view of the designer of the cryptographic
algorithm or device.
 Constructing a cipher or hash to exhibit a substantial
avalanche effect is one of the primary design
objectives.We have taken 60000 samples each for the
original algorithm and modified algorithm and noted down
the Avalanche effect by changing the plain text by one bit.
The results observed in security analysis are shown below.
Tabulation of results observed by changing one bit of
plaintext/key in the samples:

One bit change in Plaintext (60000 samples), using Key 1

Case Numb
er of
sampl
es

Number of
times
Original
algorithm
gives better
Avalanche

Number of
times
Modified
algorithm
gives better
Avalanche

Number of times
the Original and
Modified
algorithms give
same Avalanche

Case 1 60000 28630 28329 3041
Case 2 60000 28478 28558 2964
Case 3 60000 28298 28699 3003
Case 4 60000 28322 28541 3137

Table.3. Avalanche effect for 1 bit change in plaintext

One bit change in key, using Plaintext (60000 samples)

Case Numb
er of
sampl
es

Number of
times
Original
algorithm
gives better
Avalanche

Number of
times
Modified
algorithm
gives better
Avalanche

Number of
times the
Original and
Modified
algorithms
give same
Avalanche

Case 1 60000 28544 28475 2981
Case 2 60000 28717 27299 2984
Case 3 60000 28689 28325 2986
Case 4 60000 28557 28354 3089

Table.4. Avalanche effect for 1 bit change in key

5.5.1.1 Strict Avalanche Criterion (SAC)

It is a property of boolean functions of relevance in
cryptography. A function is said to satisfy the strict
avalanche criterion if, whenever a single input bit is
complemented, each of the output bits should change with
a probability of one half. The SAC builds on the concepts
of completeness and avalanche and was introduced by
Webster and Tavares in 1985. Following tables (Table. 5
and Table. 6) show the SAC by changing one bit of
plaintext/key in the samples:

Case Numb
er of
sampl
es

Number of
times
Original
algorithm
gives better
Avalanche

Number of
times
Modified
algorithm
gives better
Avalanche

Number of times
the Original and
Modified
algorithms give
same Avalanche

Case 1 60000 27144 27163 5693
Case 2 60000 27262 28118 5620
Case 3 60000 27074 27249 5677
Case 4 60000 27278 26952 5820

 Table.5. Strict Avalanche Criteria for 1 bit change in plaintext

Case Numb
er of
sample
s

Number of
times
Original
algorithm
gives better
Avalanche

Number of
times
Modified
algorithm
gives better
Avalanche

Number of
times the
Original and
Modified
algorithms
give same
Avalanche

Case 1 60000 27239 27119 5642
Case 2 60000 27243 27122 5635
Case 3 60000 26975 27214 5811
Case 4 60000 27200 27113 5687

 Table.6. Strict Avalanche Criteria for 1 bit change in key

The above results show that the modification to AES will
not violate the security and is not vulnerable in any way.
So the modified algorithm introduces confusion to the
greater extent without violating diffusion.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

396

5.5.2 Security Analysis using Digital Images

In this section, to evaluate the efficiency of modified AES
(AES-KDS) cipher for application to digital images and to
compare with that of AES, some experiments results are
given to prove the efficiency. AES-KDS and AES ciphers
are applied to several digital images. Before
encryption/decryption, we must extract the image header
for the image to be encrypted / decrypted. So, we must
study the file format for image to determine all parts of the
file header and to determine the beginning of the data
stream to be encrypted. Then, the AES-KDS and AES
ciphers are applied to the image. We have used bitmap
grey scale(0-255) images, Lena and Cman as the original
images (plainimages).

5.5.2.1 Encryption Quality Analysis of AES-KDS Block
Cipher
 All previous studies on image encryption were
based on the visual inspection to judge the effectiveness of
the encryption technique used in hiding features. Visual
inspection is insufficient in evaluating the amount of
information hidden. So, we need to have a mathematical
measure to evaluate the degree of encryption quantity,
which we will call the encryption quality. The main goal
here is to use a mathematical model for the measurement
of the amount of encryption quantity of AESKDS and to
compare it with that of AES. In all experiments, we use
the grey-scale two images-- Lena, and Cman, each of size
grey-scale (0-255) as the original images (plainimages).

Measurement of Encryption Quality
With the application of encryption to an image a change
takes place in pixels values as compared to those values
before encryption. Such change may be irregular. This
means that the higher the change in pixels values, the
more effective will be the image encryption and hence the
encryption quality. So the encryption quality may be
expressed in terms of the total changes in pixels values
between the original image and the encrypted one. A
measure for encryption quality may be expressed as the
deviation between the original and encrypted image. The
quality of image encryption may be determined as follows:
Let F, F′ denote the original image (plainimage) and the
encrypted image (cipherimage) respectively, each of size
M*N pixels with L grey levels. F(x, y),F′ (x, y) Є{0,.., L
− 1} are the grey levels of the images F , F′ at position
(x, y) , 0 ≤ x ≤ M − 1, 0 ≤ y ≤ N − 1. We will define
HL(F) as the number of occurrence for each grey level L in
the original image (plainimage), and HL(F’) as the number
of occurrence for each grey level L in the encrypted image
(cipherimage). The encryption quality represents the

average number of changes to each grey level L and it can
be expressed mathematically as

Following table (Table. 7) shows results of Encryption
quality of AES and its comparison with AES-KDS. From
the results we can conclude that the modification to AES
will not affect the Encryption Quality of he cipher in any
way.

Key K1 = ADF278565E262AD1F5DEC94A0BF25B27
Key K2 = ADF278565E262AD1F5DEC94A0BF25B28

Encryption Quality (E.Q) of AES and AES-KDS
Algorithm type

AES-KDS
Image Key

AES
Case 1 Case 2 Case 3 Case 4

Cman K1 128.109375 128.773438 128.441406 128.738281 126.714844
Cman K2 126.390625 127.882812 129.136719 128.878906 126.933594
Lena K1 55.515625 56.835938 56.539062 57.703125 56.710938
Lena K2 56.945312 55.406250 56.226562 56.296875 56.007812

 Table.7. Encryption quality of AES and AES-KDS

5.5.2.2 Key sensitivity test
Assume that a 128-bit ciphering key is used. A typical key
sensitivity test has been performed, according to the
following steps:
First, an image is encrypted by using the test key
K1="ADF278565E262AD1F5DEC94A0BF25B27".
Then, the least significant bit of the key is changed,
so that the original key becomes, say
K2="ADF278565E262AD1F5DEC94A0BF25B28" in this
example, which is used to encrypt the same image.
Finally, the above two ciphered images, encrypted by the
two slightly different keys, are compared.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

397

Case 1:

1. Plainimage Cman.bmp 2.Encrypted with key K1

3. Encrypted with key K2 4. Difference of images in 2 & 3

 K1= ADF278565E262AD1F5DEC94A0BF25B27

 K2= ADF278565E262AD1F5DEC94A0BF25B28

5. Encrypted with key K1,
but decrypted using K2

The above figures show plainimage(Cman.bmp) (1) and
the encrypted images (2,3) using keys K1 and K2
respectively. The fourth image is the difference of the
images encrypted. This cleary shows that even when one
bit of key is changed, it has its influence on all the pixels.
Morever when we tried to decrypt the image encrypted
with K1 using the key K2, we got the image as shown in 5.
This proves the sensitivity of the key of the modified
algorithm. Similar results are obtained for Case 2, Case 3
and Case 4.

5.5.2.3 Correlation of two adjacent pixels
 To test the correlation between two vertically adjacent
pixels, two horizontally adjacent pixels, and two
diagonally adjacent pixels in plainimage/cipherimage,
respectively, the procedure is as follows: First, randomly
select 1000 pairs of two adjacent pixels from an image.
Then, calculate their correlation coefficient using the
following two formulas:

where x and y are grey-scale values of two adjacent pixels
in the image. In numerical computations, the following
discrete formulas were used:

Figures below show the correlation distribution of two
horizontally adjacent pixels in the plainimage/cipherimage
for AES and Case 1 of AES-KDS block ciphers. The
correlation coefficients are plain and cipher images are far
apart. Similar results are obtained for AES, other Cases of
AES-KDS.

Correlation between adjacet pixels for plainimage
Cman.bmp

0

50

100

150

200

250

300

0 50 100 150 200 250 300
Pixel value at location(x,y)

Pi
xe

l v
al

ue
 a

t l
oc

at
io

n(
x+

1,
y)

Correlation Coefficient for encrypted image

using Case 1 of AES-KDS

0

50

100

150

200

250

300

0 100 200 300

Pixel value at location(x,y)

Pi
xe

l v
al

ue
 a

t
lo

ca
tio

n(
x+

1,
y)

Summary of results for both he ciphers are shown in table
(Table. 8) below.

AES-KDS

Image

Plainimage

AES
Case 1

Case 2

Case 3

Case 4

Cman 0.452019 0.048484 0.032304 0.040144 0.045481 0.044151

Table.8. Correlation Coefficient for AES and AES-KDS

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

398

6. Conclusion

In this paper a new improved version of AES has been
proposed. AES-KDS doesn’t contradict the security of the
AES algorithm. We tried to keep all the mathematical
criteria for AES without change. We have improved the
security of AES by making its S-box to be key dependent
and by changing the key expansion procedure.

References
[1] J. Daemen and V. Rijmen, "The Design of Rijndael: AES - The

Advanced Encryption Standard." Springer-Verlag, 2002
[2] J. Daemen, V. Rijmen, "The block cipher Rijindael", Proceedings of

the Third International Conference on smart card Research and
Applications, CARDIS’98, Lecture Notes in computer Science,
vol.1820, Springer, Berlin, 2000, pp.277_284.

[3] Federal Information Processing Standards Publications (FIPS 197),
"Advanced Encryption Standard (AES) ", 26 Nov. 2001.

[4] H. Gilbert, M. Minier. A collision attack on 7 rounds of Rijndael. In
The third Advanced Encryption Standard Candidate Conference,
pages 230–241, NIST, April 2000. See http://www.nist.gov/aes.

[5] A. Fahmy, M. Shaarawy, K. El-Hadad, G. Salama and K. Hassanain,
“A Proposal For A Key-Dependent AES” SETIT 2005, TUNISIA

[6] B. Schneier, Applied Cryptography: Protocols, Algorithms and
Source Code in C. John Wiley and Sons, 1996.

[7] B. Schneier, “Description o f a New Variable-Length Key, 64-Bit
Block Cipher (Blowfish)”, Fast Software Encryption, Cambridge
Security Workshop roceedings (December 1993), Springer-Verlag,
1994, pp. 191-204.

[8] William Stallings, Cryptography and Network Security, Third Edition,
Pearson Education, 2003.

[9] Kishnamurthy G.N, V.Ramaswamy, and Leela.G.H “Performance
Enhancement of Blowfish algorithm by modifying its function”
Proceedings of International Conference in CISSE 2006 university of
Bridgeport, Bridgeport, CT, USA, pp 244-249.

[10] Adams, C. The CAST-128 Encryption Algorithm. RFC 2144, May
1997.

[11] Anne Canteaut(Editor) “Ongoing Research Areas in Symmetric
Cryptography” Francois-Xavier Standaert, Gilles Piret, Jean-Jacques
Quisquater, Cryptanalysis of Block Ciphers: A Survey, available at
http://www.dice.ucl.ac.be/crypto/

[12] Howard M. Heys, A Tutorial on Linear and Differential
Cryptanalysis, St. John’s, NF, Canada.

[13] Pascal JUNOD, Statistical Cryptanalysis of Block Ciphers, Ph.D.
Thesis, EPFL, 2005.

[14] Orr Dunkelman, Techniques for Cryptanalysis of Block Ciphers,
Ph.D. Thesis, Israel Institute of Technology, 2006.

[15] Gilles-Fracois Piret, Block Ciphers: Security Proofs, Cryptanalysis,
Design, and Fault Attacks, Ph.D. Thesis, UCL Crypto Group, 2005.

[16] Elad Pinhas Barkan, Cryptanalysis of Ciphers and Protocols, Ph.D.
Thesis, Israel Institute of Technology, 2006.

[17] HM Heys and SE Tavares "On the security of the CAST encryption
algorithm Canadian Conference on Electrical and Computer
Engineering pp 332-335, Sept 1994, Halifax, Canada.

[18] Deepak Kumar Dalai, “On Some Necessary Conditions of Boolean
Functions to Resist Algebraic Attacks”, Ph.D Thesis, Applied
Statistics Unit, Indian Statistical Institute, Kolkata, India, August,
2006.

[19] Krishnamurthy G N, V Ramaswamy, Leela G H, Ashalatha M E,
“Blow-CAST-Fish, a New 64-bit Block Cipher”, IJCSNS, ISSN :
1738-7906, Vol. 8, No.4, pp 282-290, April -2008, Korea.

[20] Krishnamurthy G N, V Ramaswamy, Leela G H, Ashalatha M E,
“Performance enhancement of Blowfish and CAST-128 algorithms
and Security analysis of modified Blowfish algorithm using
Avalanche effect”, Journal ISSN : 1738-7906Vol Number: Vol.8,
No.3, pp 244-250, March -2008, Korea.

[21] R.C.W. Phan, "Impossible differential cryptanalysis of 7-round
Advanced Encryption Standard (AES)", Information processing
letters 91(2004) 33-38.

[22] Kishnamurthy G.N, V.Ramaswamy, and Leela.G.H “Performance
Enhancement of CAST-128 algorithm by modifying its function”
Proceedings of International Conference in CISSE 2006 university of
Bridgeport, Bridgeport, CT, USA.

[23] Bruce Schneier, Doug Whiting (2000-04-07). "A Performance
Comparison of the Five AES Finalists" (PDF/PostScript). Retrieved
on 2006-08-13.

[24] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris
Hall, Niels Ferguson (1998-06-15). "The Twofish Encryption
Algorithm" (PDF/PostScript). Retrieved on 2007-03-04.

[25] R.L. Rivest, M.J.B. Robshaw, R.Sidney, and Y.L. Yin. The RC6
Block Cipher. v1.1, August 1998.

Krishnamurthy G N obtained his B.E.
degree in Electronics & Communication
Engineering from Kuvempu University
in 1996 and M.Tech. degree in Computer
Science & Engineering from
Visveswaraya technological University,
India in 2000. He is presently pursuing
his Ph.D. from Visveswaraya
Technological University, India under
the guidance of Dr. V ramaswamy. He

has published papers in national and international conferences,
journals in the area of Cryptography. After working as a lecturer
(from 1997) he has been promoted to Assistant Professor (from
2005), in the Department of Information Science & Engineering,
Bapuji Institute of Engineering & Technology, Davangere,
affiliated to Visveswaraya Technological University, Belgaum,
India. His area of interest includes Design and analysis of Block
ciphers; He is a life member of ISTE, India.

Dr. V Ramaswamy obtained his Ph.D.
degree from Madras University, in 1982.
He is working as Professor and Head in
the Department of Information Science
and Engineering. He has more the 25
years of teaching experience including
his four years of service in Malaysia. He
is guiding many research scholars and
has published many papers in national
and international conference and in

many international journals. He has visited many universities in
USA and Malaysia.

