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Summary 
With the fast evolution of digital data exchange, security 
information becomes much important in data storage and 
transmission. In this paper, we show a new property of Advanced 
Encryption Standard (AES)[1],[2],[3] using S-box and Inverse S-
box. We also show how this property can be used to make the S-
box key dependent[5],[6],[7],[9],[24] and hence make AES 
stronger. This has been done without changing the basic 
operations of AES. The importance lies in the fact that the S-box 
is made Key dependent without changing its values (ranging 
from 00 to FF) and without touching Inv-S-box. Detailed 
explanations of implementation are given. 
Key words: 
Cryptography, Encryption, Advanced Encryption Standard (AES), 
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1. Introduction 

In October 2000, after a four year effort to replace the 
aging DES, NIST announced the selection of 
Rijndael[1],[2] as the proposed AES (NIST 2004). Draft 
of the Federal Information Processing Standard (FIPS) [3] 
for the AES was published in February 2001, 
Standardization of AES was approved after public review 
and comments, and published a final standard FIPS PUB-
197 [3] in December 2001. Standardization was effective 
in May 2002 (NIST 2004). 
Rijndael[1],[2] is a block cipher developed by Joan 
Daemen and Vincent Rijmen[1]. The algorithm is flexible 
in supporting any combination of data and key size of 128, 
192, and 256 bits. However, AES merely allows a 128 bit 
data length that can be divided into four basic operation 
blocks. These blocks operate on array of bytes and 
organized as a 4×4 matrix that is called the state. For full 
encryption, the data is passed through Nr rounds (Nr = 10, 
12, 14) [1], [2], [3]. These rounds are governed by the 
following transformations: 
 
(i) SubByte transformation: Is a non linear byte 

Substitution, using a substation table (S-box), which is 
constructed by multiplicative inverse and affine 
transformation. It provides nonlinearity and confusion. 

(ii) ShiftRows transformation: Is a simple byte 
transposition, the bytes in the last three rows of the 
state are cyclically shifted; the offset of the left shift 

varies from one to three bytes. It provides inter-
column diffusion. 

(iii) MixColumns transformation: Is equivalent to a matrix 
multiplication of columns of the states. Each column 
vector is multiplied by a fixed matrix. It should be 
noted that the bytes are treated as polynomials rather 
than numbers. It provides inter-byte diffusion. 

(iv) AddRoundKey transformation: Is a simple XOR 
between the working state and the roundkey. This 
transformation is its own inverse. It adds confusion. 

 
The encryption procedure consists of several steps as 
shown in Fig. 1. After an initial addroundkey, a round 
function is applied to the data block (consisting of 
SubBytes, Shiftrows, Mixcolumns and AddRoundKey 
transformation, respectively). It is performed iteratively 
(Nr times) depending on the key length. The decryption 
structure as shown in Fig. 2 has exactly the same sequence 
of transformations as the one in the encryption structure. 
The transformations Inv-SubBytes, Inv-ShiftRows, Inv-
MixColumns, and AddRoundKey allow the form of the 
key schedules to be identical for encryption and 
decryption. 
The AES algorithm [1], [2] is designed to use one of three 
key sizes (Nk).  AES-128, AES-196 and AES-256 use 128 
bit (16 bytes, 4 words), 196 bit (24 bytes, 6 words) and 
256 bit   (32 bytes, 8 words) key sizes respectively.   In 
this paper we will only emphasize on AES-128. The AES 
-128 key expansion algorithm, takes as an input a four 
word (16 bytes) key, produces a linear array of forty four 
words (176 bytes) keys. This is sufficient to provide a four 
word round key for the initial AddRoundKey stage and 
each of the 10 rounds of cipher.  
This paper introduces a new, key-dependent Advanced 
Encryption standard algorithm, AES-KDS, to ensure that 
no trapdoor is present in the cipher and to expand the key-
space to slow down attacks.  
The paper is organized as follows: Section 2 presents the 
proposed AES-KDS. Section 3 explains timing and 
security aspects. Section 4 shows the experimental results. 
Section 5 summarizes and concludes the paper. References 
are given in Section 6. 
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Fig. 1 AES algorithm- Encryption Structure 
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Fig. 2 AES algorithm- Decryption Structure 

Many people have tried to modify AES algorithm to 
improve its performance [24]. More relevant to our work 
is a technique (Fahmy et al., 2005; Fahmy, Shaarawy, 
Hadad, Salama and Hassanain, SEITT 2005). In Fahmy[5] 
et al. (2005), an attempt is made to make AES key 
dependent[5],[6],[7],[9],[23] (KAES)[5]. In that the AES 
S-box is completely replaced by a new S-box. This 
eliminates completely Inverse S-box, which violates AES 
design and hence requires thorough analysis regarding its 
security, because AES S-box is tested thoroughly for 
linear, differential and algebraic attacks. 

2. AES-KDS 

AES-KDS is block cipher in which the block length and 
the key length are specified according to AES 
specification: three key length alternatives 128, 192, or 
256 bits and block length of 128 bits. We assume a key 
length of 128 bits, which is likely to be the one most 
commonly implemented.  
The encryption and decryption process AES-KDS 
resembles that of AES with the same number of rounds, 
data and key size. The round function resembles that of 
AES, but is composed of 5 stages rather than 4 stages. The 
extra stage named Rotate S-box is introduced at the 
beginning of the round function. The other four stages 
remain unchanged as it is in the AES and follow the 
Rotate S-box stage. However, the decryption process will 
have only 4 stages as in he AES. But the InvSubBytes 
operation is modified to nullify the effect of the Rotate_S-
box operation of encryption. This is followed by a 
description of key expansion and generation of shift 
offset-matrix. 
The input to the encryption and decryption algorithms is a 
single 128-bit block. This block is depicted as a square 
matrix of bytes. This block is copied into the state array, 
which is modified at each stage of encryption or 
decryption. After the final stage, state is copied to an 
output matrix. Similarly, 128-bit key is depicted as a 
square matrix of bytes. This key is then expanded into an 
array of key schedule words: each word is four bytes and 
the total key schedule is 44 words for the 128-bit key, a 
round key similar to a state. The process of encryption and 
decryption is as depicted in Fig. 3 and Fig. 4 respectively. 
 

 

Fig. 3 AES-KDS algorithm- Encryption Structure 
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2.1 Rotate_S-box and SubBytes / InvSubBytes 
transformations 

AES-KDS uses rotated AES S-box for its SubBytes[8] 
operation. To show how AES-KDS works, let us see how 
Rotate_S-box and SubBytes / InvSubBytes transformations 
work. A detailed study and analysis of AES S-box and 
Inverse S-sox reveals the following property. Consider 
AES S-box as shown in Fig. 5. 
 

Fig. 4 AES-KDS algorithm- Decryption Structure 
 

Y  
0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76 
1 CA  82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0 
2 B7     FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15 
3 04    C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75 
4 09      83 2C 1A 1B 6E 5A A0 3B 52 D6 B3 29 E3 2F 84 
5 53      D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF 
6 D0    EF AA FB 43 4D 33 85   45 F9 02 7F 50  3C  9F  A8 
7 51     A3 40 8F 92 9D 38 F5 BC  B6 DA 21 10 FF  F3 D2 
8 CD     0C 13 EC 5F 97 44 17 C4    A7 7E 3D 64 5D 19 73 
9 60      81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB 
A E0      32 3A 0A 49 06 24 5C C2   D3 AC 62 91 95 E4 79 
B E7      C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08 
C BA     78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A 
D 70    3E B5 66 48 03 F6     0E 61 35 57 B9 86 C1 1D 9E 
E E1      F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE    55 28 DF 

 
 
 
 
 
 
 
 
X 

F 8C      A1 89 0D BF E6 42 68 41 99 2D 0F B0   54 BB 16 

Fig. 5 AES S-box 
Y  

0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 52     09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB 
1 7C    E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB 
2 54     7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E 
3 08     2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25 
4 72     F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92 
5 6C     70 48 50 FD ED B9 DA 5E 15 46 57   A7 8D 9D 84 
6 90     D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06 
7 D0     2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01  13 8A 6B 
8 3A     91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73 
9 96     AC 74 22 E7 AD 35 85   E2 F9 37 E8 1C 75 DF 6E 
A 47     F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B 
B FC     56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4 
C 1F     DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F 
D 60     51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF 
E A0     E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61 
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F 17     2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D 

Fig. 6 Inverse S-box
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Y  
0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 FF  F3 D2 CD     0C 13 EC 5F 97 44 17 C4    A7 7E 3D 64 
1 5D 19 73 60      81 4F DC 22 2A 90 88 46 EE B8 14 DE 
2 5E 0B DB E0      32 3A 0A 49 06 24 5C C2   D3 AC 62 91 
3 95 E4 79 E7      C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 
4 7A AE 08 BA     78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B 
5 BD 8B 8A 70    3E B5 66 48 03 F6     0E 61 35 57 B9 86 
6 C1 1D 9E E1      F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE   
7 55 28 DF 8C      A1 89 0D BF E6 42 68 41 99 2D 0F B0  
8 54 BB 16 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE 
9 D7 AB 76 CA  82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C 
A A4 72 C0 B7     FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 
B D8 31 15 04    C7 23 C3 18 96 05 9A 07 12 80 E2 EB 
C 27 B2 75 09      83 2C 1A 1B 6E 5A A0 3B 52 D6 B3 29 
D E3 2F 84 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 
E 4C 58 CF D0    EF AA FB 43 4D 33 85   45 F9 02 7F 50  

 
 
 
 
 
 
 
 
X 

F 3C  9F  A8 51     A3 40 8F 92 9D 38 F5 BC  B6 DA 21 10 

Fig. 7 S-box rotated left 125(or 7D in Hex) times 

Y  
0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 52     09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB 
1 7C    E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB 
2 54     7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E 
3 08     2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25 
4 72     F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92 
5 6C     70 48 50 FD ED B9 DA 5E 15 46 57   A7 8D 9D 84 
6 90     D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06 
7 D0     2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01  13 8A 6B 
8 3A     91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73 
9 96     AC 74 22 E7 AD 35 85   E2 F9 37 E8 1C 75 DF 6E 
A 47     F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B 
B FC     56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4 
C 1F     DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F 
D 60     51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF 
E A0     E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61 

 
 
 
 
 
 
 
 
X 

F 17     2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D 

Fig. 8 Inverse S-box demonstrating substitution for D1 
 
 
In the SubBytes step, each byte in the state is replaced 
with its entry in the S-box;  
 
bij = S-box(aij). 
        
This operation provides the non-linearity in the cipher. 
The S-box used is derived from the multiplicative inverse 
over GF(28), known to have good non-linearity properties. 
To avoid attacks based on simple algebraic properties, the 
S-box is constructed by combining the inverse function 
with an invertible affine transformation. The S-box is also 
chosen to avoid any fixed points (and so is a derangement), 
and also any opposite fixed points. 
Consider a byte, say D4 of the state. This will be replaced 
by 48(in Hex) as shown in Fig. 5.  

 
48(Hex)=S-box(D4) 
 
During Decryption the InvSubBytes[8] operation performs 
the inverse operation using Inverse S-box as shown in Fig. 
6.  
 
aij = Inv-S-box(bij).  
 
So the value 48(in Hex) will be replaced by the original 
value D4 as shown in the figure below.  
 
D4=Inv-S-box(48) 
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Now suppose we rotate the S-box left by a value say 
125(or 7D in Hex). The new S-box will be as shown in 
Fig. 7.  
 
Now suppose if we consider the same input D4, the 
rotated S-box will give a value D1 as shown in the figure. 
During Decryption the InvSubBytes operation performs the 
inverse operation using Inverse S-box. So Inverse S-box 
will produce a result 51(in Hex) as shown in Fig. 8. 
 
51(in Hex)=Inv-S-box(D1) 
 
The original value was D4 but what we are getting is 
51(Hex). This leads to a wrong decryption. After a 
thorough analysis we could find out a way to get back the 
original value without changing the Inverse S-box. We can 
get back the original value just by subtracting a value used 
to rotate the S-box from the result obtained out of 
InvSubBytes operation. 
 
So, aij = (Inv-S-box(bij)-Number of times S-box bytes 
rotated) mod 256(FF+1 in Hex) 
 
i.e.,  
(InvS(D1)-7D) mod 256(or FF+1 in Hex) = (51- 7D) mod 
(FF+1) = D4. 
 
This property holds good for all possible 256 rotations. 
Hence this property can be used to make the S-box key 
dependent [5],[6],[7],[9],[25].  
 
The Rijndael S-box was specifically designed to be 
resistant to linear and differential cryptanalysis. This was 
done by minimizing the correlation between linear 
transformations of input/output bits, and at the same time 
minimizing the difference propagation probability. In 
addition, to strengthen the S-box against algebraic attacks, 
the affine transformation was added. In the case of 
suspicion of a trapdoor being built into the cipher, the 
current S-box might be replaced by another one. The 
authors claim that the Rijndael cipher structure should 
provide enough resistance against differential and linear 
cryptanalysis, even if an S-box with "average" correlation 
/ difference propagation properties is used. This is the 
reason for keeping AES S-box values unchanged while 
making it key dependent. 
 
Now by making S-box key dependent[5],[6],[7],[9],[25] 
AES will be much stronger[8]. We will now show how the 
above property of S-box can be used to make it key 
dependent using either of the following three cases 
depending on the level of security requirement. For 
moderate level security requirement Case 1 can be 
employed. For high security requirements Case 2 can be 

adopted. For very high level security Case 3 and Case 4 
can be used.  
        
Case 1: 
Here different round keys are generated using a key 
expansion algorithm which is similar to that of AES key 
expansion algorithm. The round keys thus generated will 
used for finding a value that is used to rotate the S-box. 
The same round keys are used for AddRoundKey stage as 
well. Suppose for a particular round j, if the round key 
value is  
 
2D9578565E262AA56F5F904A0B955B27 (each byte 
represented by 2-Hex digits). 
 
The last byte 27(Hex) is used to rotate the S-box. The 
resulting S-box is used during the Subbyte operation.  
 
Case 2: 
Here different round keys are generated using a key 
expansion algorithm which is similar to that of AES key 
expansion algorithm. The round keys thus generated will 
used for finding a value that is used to rotate the S-box. 
The same round keys are used for AddRoundKey stage as 
well. Suppose for a particular round j, if the round key 
value is 
 
06ACB47D588A9ED837D50E923C4055B5 (each byte 
represented by 2-Hex digits). 
 
Here XOR operation of all the bytes is taken.  
 
15(Hex)=06^AC^B4^7D^58^8A^9E^D8^37^D5^0E^92^
3C^40^55^B5  (^ symbol used for XOR) 
 
The resulting byte value 15(Hex) is used to rotate the S-
box. The resulting S-box is used during the SubBytes 
operation.  The advantage here is the rotation value is now 
dependent on entire round key rather than only on the last 
byte. The disadvantage is that it consumes little extra time. 
The following pseudo code describes the encryption 
operation for this case. 
 
void encrypt(unsigned char state[4][4],unsigned 
char key[16],unsigned char s_box[16][16],unsigned 
long int expanded_key[]) 
{ 
 int round; 
 unsigned long int mask=0xff; 
 add_round_key(0,state,expanded_key); 
  
 for(round=1;round<=9;round++) 
 {
 rotate=(expanded_key[round*4]^expanded_ke
y[round*4+1]^expanded_key[round*4+2]^expanded_key
[round*4+3])&mask; 
  create_s_box(s_box,rotate);  
 // function to rotate S-box to left by  
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// a value equal to rotate  
  substitute_bytes(state,s_box); 
  shift_row(state); 
  mix_column(state); 
 
 add_round_key(round*4,state,expanded_key)
; 
 } 
 Rotate=(expanded_key[40]^expanded_key[41]
^expanded_key[42]^expanded_key[43])&mask; 
 create_s_box(s_box,rotate); 
 substitute_bytes(state,s_box); 
 shift_row(state); 
 add_round_key(40,state,expanded_key); 
} 
 
Case 3: 
 
Here two sets of round keys are generated using a key 
expansion algorithm which is similar to that of AES key 
expansion algorithm. One set of round keys thus generated 
will used for finding a value that is used to rotate the S-
box. The second set of round keys are used for 
AddRoundKey stage. From the first set of round keys, 
suppose for a particular round j, if the round key value is  
 
EE0AF824 B02CD281 DF7342CB D4E619EC (each byte 
represented by 2-Hex digits). 
 
The last byte EC(Hex) is used to rotate the S-box. The 
resulting S-box is used during the SubBytes operation. The 
advantage here is that it increases key expansion time and 
the rotation value is now dependent on round key other 
than what is used in AddRoundKey stage. The 
disadvantage is that it consumes extra time for generating 
new round key. 
 
Case 4: 
 
Here two sets of round keys are generated using a key 
expansion algorithm which is similar to that of AES key 
expansion algorithm. One set of round keys thus generated 
will used for finding a value that is used to rotate the S-
box. The second set of round keys are used for 
AddRoundKey stage. From the first set of round keys, 
suppose for a particular round j, if the round key value is  
 
C556E6B8 9021DC53 DB002238 6EB86774 (each byte 
represented by 2-Hex digits). 
 
Here XOR operation of all the bytes is taken.  
 
F7(Hex)=C5^56^E6^B8^90^21^DC^53^DB^00^22^38^6
E^ B8^67^74 (^ symbol used for XOR) 
 
The resulting bye value F7(Hex) is used to rotate the S-
box. The resulting S-box is used during the SubBytes 
operation.  The advantage here is the rotation value is now 

dependent on round key other than what is used in 
AddRoundKey stage. And also rotational value is 
dependent on the entire new round key rather than only on 
the last byte. The disadvantage is that it consumes little 
time extra. 
 
The remaining 3 stages namely, ShiftRows, MixColumns 
and AddRoundKey transformations will remain as they are 
in the AES algorithm. 
 
2.2 AES-KDS key expansion 
      One of the following two types of key 
expansion[1],[2],[8] is used in the AES-KDS algorithm.  
 
Type 1: 
 
The AES-KDS key expansion algorithm, takes as an input 
a four word (16 Bytes) key. In this case, first XOR 
operation of all the bytes of the key is carried out and the 
resulting 8-bit (byte) value is used for shifting the S-Box. 
This shifted S-Box is used to generate 11 subkeys, each of 
4 words in length, totally a linear array of forty four words 
(176 Bytes). This is sufficient to provide a four word 
round key for the initial AddRoundKey stage and each of 
the 10 rounds of cipher. These round keys are also used for 
finding a value for rotating the S-box. The following 
pseudo code describes the expansion. 

 
unsigned char key[16]=1234567890ABCDEF; 
unsigned char temp=0; 
FILE *ky1; 
unsigned int rotate; 
for(i=0;i<16;i++) 
temp=temp^key[i]; 
rotate=temp; 
create_s_box(s_box,rotate); 

 key_expansion(expanded_key,key,s_box);  
// as in original AES 
 for(i=0;i<44;i++) 
 fprintf(ky1,"%lx ",expanded_key[i]); 
 
This expanded key is for first two cases, Case 1 and Case 
2 of encryption procedure described above based on the 
requirements of the user. 
 
Type 2: 
 
Modern cryptography demands lengthy key schedule [11] 
algorithm. So in order to increase the key expansion time 
and to increase the security of the cipher we can make use 
of two sets of sub keys, one set can be used to shift the S-
box, one in each round and the second set of sub keys are 
used as a regular AddRoundKey as in the original 
algorithm to perform add round key. This requires the key 
expansion algorithm to be executed twice, which 
indirectly helps to increase the time for key expansion. 
Use of two sets of keys helps in increasing the security. 
This operation is repeated during the decryption process. 
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During InvSubBytes operation of decryption, the same 
value that is used to rotate the S-box during SubBytes of 
Encryption is subtracted from the resulting InvSubBytes 
operation in order to nullify the effect of rotation of S-box. 
The AES-KDS key expansion algorithm, takes as an input 
a four word (16 Bytes) key. In this case, first XOR 
operation of all the bytes of the key is carried out and the 
resulting 8-bit (byte) value is used for shifting the S-Box. 
This shifted S-Box is used to generate 11 sub keys, each 
of 4 words in length, totally a linear array of forty four 
words (176 Bytes). This forms first set of round keys 
named expanded_key1. The round keys thus generated 
will be used for finding a value that is used to rotate the S-
box in each round. These round keys are also used for 
finding a value for rotating the S-box, which will be used 
in generating second set of round keys named 
expanded_key2. This is sufficient to provide a four word 
round key for the initial AddRoundKey stage and each of 
the 10 rounds of cipher.  The following pseudo code 
describes the expansion.  

 
unsigned char key[16]=1234567890ABCDEF; 
unsigned char temp=0; 
FILE *ky1; 
unsigned int rotate; 
for(i=0;i<16;i++) 
temp=temp^key[i]; 
rotate=temp; 
create_s_box(s_box,rotate); 

 key_expansion(expanded_key1,key,s_box);  
// as in original AES 
 for(i=0;i<44;i++) 
 fprintf(ky1,"%lx ",expanded_key1[i]); 
// First set of round keys 

for(i=0;i<43;i++) 
 { 
 
 expanded_key1[i+1]=expanded_key1[i]^expan
ded_key1[i+1]; 
 } 
 for(i=0;i<=3;i++) 
  for(j=0;j<=3;j++) 
  { 
  
 temp=expanded_key1[44]&mask; 
   temp=temp>>shift1; 
   shift1=shift1+8; 
   mask=mask<<8; 
   shift=shift^temp; 
   } 
 create_s_box(s_box,shift); 
 key_expansion(expanded_key2,key,s_box); 
 for(i=0;i<44;i++) 
 fprintf(ky2,"%lx ",expanded_key2[i]); 
// Second set of round keys. 

3. Timing and Security aspects 

AES-KDS requires little extra time for encryption and 
decryption. The added stage in encryption, the Rotate S-
box operation does not contain any calculation like 
multiplication or division. Here the bytes are just rotated 
and hence consume very less time. Decryption process 

does not have any extra stage we compared to AES, but 
one subtraction operation is carried out during the 
InvSubByes operation. The extra time taken for this is also 
negligible. Some time is consumed during the key 
expansion and to compute a value that is used for rotating 
S-box. This is affordable at the gain of security.  
AES-KDS uses S-box whose entries ranging from 00 to 
FF as in the AES S-box. AES S-box was specifically 
designed to be resistant to linear and differential 
cryptanalysis [4], [12], [13] [14], [21]. It is secure against 
linear, differential and algebraic attacks[18]. AES-KDS 
does not even touch Inverse S-box. The aim of the 
algorithm was to make the S-box key dependent without 
changing design and by making minimum modifications to 
the implementation. In each round AES-KDS S-box can 
have 256 possible entries. Totally there are 10 rounds. So 
total number of possible S-boxes is given by, 
 
256 x 256 x 256 x 256 x 256 x 256 x 256 x 256 x256 x 256 = 280 
  
This gives the clear picture of the difficulty involved in the 
Cryptanalysis.  
Moreover sub keys (round keys) are also generated after 
shifting the S-box. We can have 256 possible sub keys 
when only one set of keys are used. When two sets of keys 
are used, first set can have one of the 256 possible sub 
keys and the second set can have one of the 256 x 256 
possible values.   

4. Experimental Results 

 
 Key = ADF278565E262AD1F5DEC94A0BF25B27 
SN Plaintext Ciphertext 
1 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 
B2 43 B5 85 CA DD F4 4E F5 
E6 6E D1 D7 08 B3 0B 

2 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 01 

37 14 10  49  D7 DE 2D 56 CC 
74 66 6B CF  89 4C 95 

3 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 01 01 

64 E2 C1 53  C4  79  78 DF FC 
87 35 15  9F  4C 39 76 

4 10 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 

2F 1D C4 1D DB 52  D6 9D A5 
74 99 69 9B  16 31 9E 

Table.1. Plaintext & Ciphertext samples 
 

 Key = ADF278565E262AD1F5DEC94A0BF25B28 
SN Plaintext Ciphertext 
1 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 
21 55 66 73 D8 BE 4F 9D 98 55 
68 D0 06 DC E6 35 

2 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 01 

32 67 6F 89 15  6E  88 80  D0 82 
07 9A 0E E2 35 07 

3 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 01 01 

25 AE 71 C2 4F E0 7F A3 AD 23 
35 84 31 47 2B 9E 

4 10 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 

C9 89 71 71 A1 F0 9D 4A 80 A9 
6D CF F3 EE 40 4C 

Table.2. Plaintext & Ciphertext samples 
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Fig. 9 Image and is corresponding Cipher-Image 

 
The experimental results shown in Table.1 and Table.2 
above are taken for Case 4 of encryption and posses very 
good avalanche characteristic. Encryption of a bitmap 
image Cman.bmp is also shown. 
 
5.5 Security Analysis 
5.5.1 Avalanche effect: 

In cryptography, the avalanche effect refers to a desirable 
property of cryptographic algorithms, typically block 
ciphers and cryptographic hash functions. The avalanche 
effect is evident if, when an input is changed slightly (for 
example, flipping a single bit) the output changes 
significantly (eg, half the output bits flip). In the case of 
quality block ciphers, such a small change in either the 
key or the plaintext should cause a drastic change in the 
ciphertext.  
         If a block cipher does not exhibit the avalanche 
effect to a significant degree, then it has poor 
randomization, and thus a cryptanalyst can make 
predictions about the input, being given only the output. 
This may be sufficient to partially or completely break the 
algorithm. It is thus not a desirable condition from the 
point of view of the designer of the cryptographic 
algorithm or device. 
        Constructing a cipher or hash to exhibit a substantial 
avalanche effect is one of the primary design 
objectives.We have taken 60000 samples each for the 
original algorithm and modified algorithm and noted down 
the Avalanche effect by changing the plain text by one bit. 
The results observed in security analysis are shown below. 
Tabulation of results observed by changing one bit of 
plaintext/key in the samples: 
 
One bit change in Plaintext (60000 samples), using Key 1 
 

Case Numb
er of 
sampl
es 

Number of 
times 
Original 
algorithm 
gives better 
Avalanche 

Number of 
times 
Modified 
algorithm 
gives better 
Avalanche 

Number of times 
the Original and 
Modified 
algorithms give 
same Avalanche 

Case 1 60000 28630 28329 3041 
Case 2 60000 28478 28558 2964 
Case 3 60000 28298 28699 3003 
Case 4 60000 28322 28541 3137 

Table.3. Avalanche effect for 1 bit change in plaintext  

 
One bit change in key, using Plaintext (60000 samples) 
 

Case Numb
er of 
sampl
es 

Number of 
times 
Original 
algorithm 
gives better 
Avalanche 

Number of 
times 
Modified 
algorithm 
gives better 
Avalanche 

Number of 
times the 
Original and 
Modified 
algorithms 
give same 
Avalanche  

Case 1 60000 28544 28475 2981 
Case 2 60000 28717 27299 2984 
Case 3 60000 28689 28325 2986 
Case 4 60000 28557 28354 3089 

Table.4. Avalanche effect for 1 bit change in key 
 
5.5.1.1 Strict Avalanche Criterion (SAC) 
  
It is a property of boolean functions of relevance in 
cryptography. A function is said to satisfy the strict 
avalanche criterion if, whenever a single input bit is 
complemented, each of the output bits should change with 
a probability of one half. The SAC builds on the concepts 
of completeness and avalanche and was introduced by 
Webster and Tavares in 1985. Following tables (Table. 5 
and Table. 6) show the SAC by changing one bit of 
plaintext/key in the samples: 
 

Case Numb
er of 
sampl
es 

Number of 
times 
Original 
algorithm 
gives better 
Avalanche 

Number of 
times 
Modified 
algorithm 
gives better 
Avalanche 

Number of times 
the Original and 
Modified 
algorithms give 
same Avalanche 

Case 1 60000 27144 27163 5693 
Case 2 60000 27262 28118 5620 
Case 3 60000 27074 27249 5677 
Case 4 60000 27278 26952 5820 

       Table.5. Strict Avalanche Criteria for 1 bit change in plaintext 
 

Case Numb
er of 
sample
s 

Number of 
times 
Original 
algorithm 
gives better 
Avalanche 

Number of 
times 
Modified 
algorithm 
gives better 
Avalanche 

Number of 
times the 
Original and 
Modified 
algorithms 
give same 
Avalanche  

Case 1 60000 27239 27119 5642 
Case 2 60000 27243 27122 5635 
Case 3 60000 26975 27214 5811 
Case 4 60000 27200 27113 5687 

         Table.6. Strict Avalanche Criteria for 1 bit change in key 
 
The above results show that the modification to AES will 
not violate the security and is not vulnerable in any way. 
So the modified algorithm introduces confusion to the 
greater extent without violating diffusion. 
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5.5.2 Security Analysis using Digital Images  

In this section, to evaluate the efficiency of modified AES 
(AES-KDS) cipher for application to digital images and to 
compare with that of AES, some experiments results are 
given to prove the efficiency. AES-KDS and AES ciphers 
are applied to several digital images. Before 
encryption/decryption, we must extract the image header 
for the image to be encrypted / decrypted. So, we must 
study the file format for image to determine all parts of the 
file header and to determine the beginning of the data 
stream to be encrypted. Then, the AES-KDS and AES 
ciphers are applied to the image. We have used bitmap 
grey scale(0-255) images, Lena and Cman as the original 
images (plainimages).  
 
5.5.2.1 Encryption Quality Analysis of AES-KDS Block 
Cipher 
              All previous studies on image encryption were 
based on the visual inspection to judge the effectiveness of 
the encryption technique used in hiding features. Visual 
inspection is insufficient in evaluating the amount of 
information hidden. So, we need to have a mathematical 
measure to evaluate the degree of encryption quantity, 
which we will call the encryption quality. The main goal 
here is to use a mathematical model for the measurement 
of the amount of encryption quantity of AESKDS and to 
compare it with that of AES. In all experiments, we use 
the grey-scale two images-- Lena, and Cman, each of size 
grey-scale (0-255) as the original images (plainimages).  
 
Measurement of Encryption Quality 
With the application of encryption to an image a change 
takes place in pixels values as compared to those values 
before encryption. Such change may be irregular. This 
means that the higher the change in pixels values, the 
more effective will be the image encryption and hence the 
encryption quality. So the encryption quality may be 
expressed in terms of the total changes in pixels values 
between the original image and the encrypted one. A 
measure for encryption quality may be expressed as the 
deviation between the original and encrypted image. The 
quality of image encryption may be determined as follows: 
Let F, F′  denote the original image (plainimage) and the 
encrypted image (cipherimage) respectively, each of size 
M*N pixels with L grey levels. F(x, y),F′ (x, y) Є{0,.., L 
− 1} are the grey levels of the images F , F′  at position 
(x, y) , 0 ≤  x ≤  M − 1, 0 ≤  y ≤  N − 1. We will define 
HL(F) as the number of occurrence for each grey level L in 
the original image (plainimage), and HL(F’) as the number 
of occurrence for each grey level L in the encrypted image 
(cipherimage). The encryption quality represents the 

average number of changes to each grey level L and it can 
be expressed mathematically as  

 
Following table (Table. 7) shows results of Encryption 
quality of AES and its comparison with AES-KDS. From 
the results we can conclude that the modification to AES 
will not affect the Encryption Quality of he cipher in any 
way. 
 
Key K1 = ADF278565E262AD1F5DEC94A0BF25B27 
Key K2 = ADF278565E262AD1F5DEC94A0BF25B28 

Encryption Quality (E.Q) of AES and AES-KDS 
Algorithm type 

AES-KDS 
Image Key

AES 
Case 1 Case 2 Case 3 Case 4 

Cman K1 128.109375 128.773438 128.441406 128.738281 126.714844
Cman K2 126.390625 127.882812 129.136719 128.878906 126.933594
Lena K1 55.515625 56.835938 56.539062 57.703125 56.710938 
Lena K2 56.945312 55.406250 56.226562 56.296875 56.007812 

     Table.7. Encryption quality of AES and AES-KDS 
 
5.5.2.2 Key sensitivity test 
Assume that a 128-bit ciphering key is used. A typical key 
sensitivity test has been performed, according to the 
following steps:  
First, an image is encrypted by using the test key 
K1="ADF278565E262AD1F5DEC94A0BF25B27". 
Then,  the  least  significant  bit  of  the  key  is   changed,  
so that the original key becomes, say 
K2="ADF278565E262AD1F5DEC94A0BF25B28" in this 
example, which is used to encrypt the same image. 
Finally, the above two ciphered images, encrypted by the 
two slightly different keys, are compared. 
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Case 1: 

  
1. Plainimage Cman.bmp                            2.Encrypted with key K1 
 
 
 
 
 
 
 
 
3. Encrypted with key K2  4. Difference of images in 2 & 3 
 
   
             K1= ADF278565E262AD1F5DEC94A0BF25B27 
  
                                               K2= ADF278565E262AD1F5DEC94A0BF25B28 
 
 
 
 
 
5. Encrypted with key K1,  
but decrypted using K2 
 
The above figures show plainimage(Cman.bmp) (1) and 
the encrypted images (2,3) using keys K1 and K2 
respectively. The fourth image is the difference of the 
images encrypted. This cleary shows that even when one 
bit of key is changed, it has its influence on all the pixels. 
Morever when we tried to decrypt the image encrypted 
with K1 using the key K2, we got the image as shown in 5. 
This proves the sensitivity of the key of the modified 
algorithm. Similar results are obtained for Case 2, Case 3 
and Case 4. 
 
5.5.2.3 Correlation of two adjacent pixels 
       To test the correlation between two vertically adjacent 
pixels, two horizontally adjacent pixels, and two 
diagonally adjacent pixels in plainimage/cipherimage, 
respectively, the procedure is as follows: First, randomly 
select 1000 pairs of two adjacent pixels from an image. 
Then, calculate their correlation coefficient using the 
following two formulas: 
 

 
 

where x and y are grey-scale values of two adjacent pixels 
in the image. In numerical computations, the following 
discrete formulas were used: 

 
Figures below show the correlation distribution of two 
horizontally adjacent pixels in the plainimage/cipherimage 
for AES and Case 1 of AES-KDS block ciphers. The 
correlation coefficients are plain and cipher images are far 
apart. Similar results are obtained for AES, other Cases of 
AES-KDS. 

Correlation between adjacet pixels for plainimage 
Cman.bmp
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Correlation Coefficient for encrypted image 

using Case 1 of AES-KDS
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Summary of results for both he ciphers are shown in table 
(Table. 8) below. 

 
AES-KDS 

 
 
Image

 
 
Plainimage

 
 

AES  
Case 1 

 
Case 2 

 
Case 3 

 
Case 4 

Cman 0.452019 0.048484 0.032304  0.040144  0.045481 0.044151

Table.8. Correlation Coefficient for AES and AES-KDS 
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6. Conclusion 

In this paper a new improved version of AES has been 
proposed. AES-KDS doesn’t contradict the security of the 
AES algorithm. We tried to keep all the mathematical 
criteria for AES without change. We have improved the 
security of AES by making its S-box to be key dependent 
and by changing the key expansion procedure. 
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