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Summary 
In this paper we present a new efficient method for fitting 
ellipse to scattered data based on the Legendre moments. 
The least squares method is the most commonly used 
technique for fitting an ellipse. However, it has a low 
breakdown, which means that it performs poorly in the 
presence of outliers. Our new statistical approach is based 
on the expansion of the probability density function (p.d.f) 
in terms of Legendre polynomials which guarantees the 
extraction of an ellipse even for high rate of outliers and 
an important level of noise. Any constraint has been 
required in our approach; this leads to be applied for 
general conic fitting. A comparison is given between our 
approach and Direct Least Squares fitting of ellipses 
approach. Several tests demonstrate that it is preferment in 
terms of accuracy and robustness. 
Key words: 
Ellipse fitting, Legendre moments, Probability density 
function, Maximum Entropy Principal, least squares. 

1. Introduction 

The fitting of the primitive model to image data is a basic 
task in pattern recognition and computer vision. Detection 
and recognition of geometric primitives in images are the 
fundamental tasks of computer vision. A very important 
primitive is an ellipse which is a perspective projection of 
a circle that is exploited in many applications of computer 
vision like 3-D vision and object recognition, medical 
imaging and industrial inspections [1, 2, 3]. Over the years 
much attention has been paid to fitting ellipses to data 
samples, and many variations of the standard method for 
finding the least squares (LS) solution exist [4,5, 6, 7]. 
However, computer vision often requires more robust 
methods that can tolerate large amounts of outliers since 
there is the likelihood that the data will be substantially 
corrupted by faulty feature extraction, segmentation errors, 
etc. While LS is optimal under Gaussian noise it is very 
sensitive to severe non-Gaussian outliers, and is therefore 
unsuitable for many vision applications. 
Hough transform (HT) provides a popular method for 
extracting geometric shapes. Primitives on the HT are 
represented by parametric curves with a number of free 
parameters [8, 9, 10]. 

A fair amount of research work has been accomplished in 
literature on ellipse fitting. The existing ellipse fitting 
techniques can be categorized in to two types: 

• Least square fitting. 
• Clustering.  

Least squares fitting technique [5, 6] focuses on finding a 
set of parameters that minimize some distance measure 
between the data points and the ellipse. These methods are 
computationally better but are very sensitive to outlines. 
Clustering methods focus on mapping sets of points to the 
parameter space, which are appropriately quantized 
depending on the application. Hough transform methods 
are the example of this type of technique [8, 9, 10]. These 
techniques have some advantages, like high robustness to 
occlusion and no requirement for pre-segmentation. But 
they suffer from great shortcomings of high computational 
complexity and non-uniqueness of solutions, which can 
render them unsuitable for real applications. 
In this paper, a novel ellipse fitting approach is developed 
using a statistical method based on the estimation of 
probability density function (pdf) where the ellipse is 
defined as the local maxima of this pdf. The Main goal of 
our work is to compute the ellipse directly from a noisy 
image, without any a priori information and intermediate 
steps (binarization, filtering). 
Our proposed approach is based on the expansion of a 
multivariate probability density function pdf in terms of 
Legendre polynomials by means of Legendre moment [14, 
15, 16, 17]. For this purpose, the pdf is approximated by a 
truncated series of polynomials. As the determination of 
the expansion order is a difficult problem, we propose to 
estimate the pdf for different orders and to select the 
optimal one as the one for which the entropy reaches a 
maximum according to the Maximum Entropy Principal 
MEP [11, 12, 13].  
Having the optimal p.d.f, the detection mode becomes a 
direct task where the true points of the ellipse are the 
maxima of the p.d.f, while the points far away from the 
curve (outliers) will present a low probability density 
value. Extraction of the maxima of the p.d.f is carried out 
using a proposed algorithm.  
The paper is organized as follows: the next section 
describes the basis of our statistical model, using Legendre 
moment. The maximum entropy principal is given in 
section III. The details of our algorithm are presented in 
section IV. Section V presents the main results and 
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performances of our ellipse fitting method. Finally, 
sectionVI deals with the summary of important results and 
conclusion. 

2. Statistical model using Legendre Moments  

Moment functions have been used as shape descriptors in 
a variety of applications in image analysis. In this section, 
Legendre moments are defined and their properties are 
briefly summarized. 

2.1 Legendre Moments 

The Legendre moments of order ( )qp+  is defined for a 

given real image intensity function ( )y,xf  as [16]: 

dxdy)y,x(f  (y)P  x)(P4
)1q2)(1p2(

q
RR

pq,p ∫ ∫
++=λ  

      (1) 
where ( )y,xf  is assumed to have bounded support. 

The Legendre polynomials )x(Pp  are a complete 

orthogonal basis set on the interval [-1, 1], for an order p , 
they are defined as [15]: 
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The orthogonality property is guaranteed by the equality: 
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where q,pδ  is the Kronecker function.  

The aforementioned properties of the Legendre moments 
are valid as long as one uses a true analog image function. 
In practice, the Legendre moments have to be computed 
from sampled data, i.e., the rectangular sampling of the 
original image function )y,x(f , producing the set of 

samples )y,x(f ji  with an )N,M(  array of pixels. 

The piecewise constant approximation of )y,x(f in (1), 
proposed recently by Liao and Pawlak [15] yields the 

following approximation of q,pλ : 
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represents the integration of the polynomial )y(P)x(P qp  

around the )y,x( ji  pixel. 

2.2 Estimation of the Probability density function 

By taking the orthogonality principle into consideration, 
the image function )y,x(f  can be written as an infinite 
series expansion in terms of the Legendre polynomials 
over the square [-1, 1]× [-1,1]: 

 )()(),(
0 0

, yPxPyxf qp
p q

qp∑∑
∞

=

∞

=

= λ  (6) 

where the Legendre moments q,pλ  are computed over 

the same square. 
If only Legendre moments of order θ≤  are given, the 

image function reconstructed from qp,
∧
λ  can be 

approximated by a truncated series: 
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The estimated probability density function (pdf) for a 

given order θ  denoted ),( ji yxp
∧

θ  is obtained by 

normalizing ),( ji yxf
∧

θ  [17]:  
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Where: 

1),(
,

=∑
Ω∈

∧

ji yx
ji yxpθ and 1),(0 ≤≤

∧

ji yxpθ , Ω  is the 

image plane. 
The estimated pdf depends only on the expansion orderθ , 
a criterion for choosing this order is explained in the next 
section according to the maximum entropy principal MEP. 
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3. Optimal Order Moments Selection using 
MEP 

The determination of the expansion order is a difficult 
problem and computationally expansive, because we 
ignore the order of the truncated expansion of )y,x(f  
which gives a good quality of the estimated input image 
function. 
For this purpose, we introduce the maximum entropy 
principle MEP for the search of this optimal order. This 
automatic technique can estimate the optimal number of 
moments directly from the available data and does not 
require any a priori image information especially for noisy 
images. 
Let wG  be a set of estimated underlying probability 
density function for various Legendre moment ordersθ :  

}........1/{ ωθθ ==
∧
pGw   (9) 

 By applying the maximum entropy principle for noisy 
images, we deduce that among these estimates of the 
probability density function, there is one and only one 

probability density function denoted ),( ji yxp
∗∧

θ  whose 

entropy is maximum [12, 13], and which represents the 
optimal probability density function, and then gives the 
optimal order of moments. 

The Shannon entropy of ),( ji yxp
∗∧

θ  is defined as: 
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 and the optimal 
∗∧
θp  is such that :  
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The process of determination the optimal order θ  
consists in estimating the pdf for different orders and 
selecting the optimal one as the one for which the entropy 
reaches maximum. The following is basic algorithm which 
consists in an exhaustive search to determine the optimal 

order which maximises )( θ

∧
pS : 

a- Initialize θ  

b- Compute the pdf θ
∧
p  and its corresponding 

Shannon entropy )( θ

∧
pS  

c- If )( θ

∧
pS  is maximum, then θ  is optimal and 

θ

∧
p =

∗∧

θp , else 1+= θθ  and go to b. 

Then, having
∗∧

θp , we assign to each point of the data space, 

the optimal pdf ),( ji yxp
∗∧

θ  defined by (8).  

In this case, the “good data” are the set of points 

belonging to the mode of 
∗∧

θp . By extracting the local 

maxima of 
∗∧

θp , we can determine the exact points of the 
ellipse. In the next section, the details of our ellipse 
extraction algorithm are presented. 

4. Ellipse Extraction Algorithm 

We define the ellipse as the local maxima of the estimated 
probability density function selected in the previous 
section. The extraction of these local maxima allows us to 
determine the ellipse associated to the shape. The general 
idea of this algorithm consists of a successive points 
extraction presenting a local maxima of the selected 
optimal pdf. 
The procedure consists in making a sweep mask of size 
3x3 on the image. A comparison of the central pixel of the 
mask with its close eight neighbours following the eight 
directions (Figure 1), allows confirming whether this 
central pixel is a point of the ellipse or not. 
 

 

Figure 1: The central pixel P(i,j) with its eight close neighbour. 

4.1 Algorithm 

 let ),( ji yxp
∗∧

θ be the optimal pdf : 

If     ),( 11 −−

∗∧

ji yxp θ < ),( ji yxp
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θ  
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Then assign the pixel of coordinate (i,j) to the true ellipse 
points. 

5. Experimental Results 

In this section, simulation results are carried out using two 
test sets. Firstly, our algorithm is applied to different noisy 
binary data and compared with conventional methods. 
Secondly, our algorithm is tested for noisy binary images 
corrupted by a percentage of outliers, where we have 
addressed the noise sensitivity in the case of Gaussian and 
impulsive noise.  
Noisy binary image: 
In this subsection, a comparison study is carried out on 
simulated and real noisy binary images. The proposed 
method is compared to Fitzgibbon method [6].  
The experiments are performed on a sampled ellipse 
corrupted with noise from sigma =0,01 to 10 and adding a 
rate of outliers equal to 2% from data points. The ellipse 
coefficients (Cx,Cy,Rx,Ry,Theta)  were computed from 
extracted data points which corresponding to local 
maxima of estimated p.d.f for an optimal order of 
Legendre moment Figure 4 and compared to the same 
coefficients given by Fitzgibbon approach in the same 
conditions. 
The extracted ellipses given by the two algorithms, and the 
estimated p.d.f are depicted in Figure 3a, 3b and Figure 4 
for four value of noisy variance. 
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Figure 2: Entropy for different moment order . 
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Figure 3(a) Results of the fitting 
ellipse by Fitzgibbon approach for 
different noise levels with rate of 

outliers equal to 2%. 

 

Figure 3(b) Results of the fitting 
ellipse by our proposed approach 
for different noise levels with rate 

of outliers equal to 2%. 
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Figure 4: Optimal Estimated f.d.p for different noise levels with rate  of 
outliers equal to 2%. 

The ellipses extracted by our algorithm Figure 3(b) are 
accuracy and centred as well as original ellipses compared 
to Fitzgibbon algorithm Figure 3(a). 
To compare the performance of the two approaches, we 
draw in Figure 5 the errors of the parameters of fitted 
ellipses to original ellipse parameters(ErrorCx, ErrorCy, 
ErrorRx, ErrorRy, ErrorTheta) for a standard deviation of 
noise varying from sigma = 0, 01 to 10 for the two 
algorithms . 
Figure 5 shows clearly that the parameters ellipse errors 
created by our approach are less than those produced by 
Fitzgibbon method. That is, the parameters of ellipses 
computation by our algorithm are more accurate by the 
Fitzgibbon algorithm. 
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Figure 5 Relative Errors of parameters for ellipse fitted by two 
approaches for different noise levels with rate of outliers equal to 2% . 

Dashed curve represent our approach. 

5.1 Outliers Sensibility 

To see the ability of the proposed ellipse fitting approach 
to noisy data with a different rate of outliers, the proposed 
method is experimented with a whole ellipse centred at (50, 
60) of semi axes (40, 18) and rotated by 0 degrees 
corrupted by a Gaussian noise with sigma =1and outliers 
with different rate (2%, 10% 20% and 40%). 
The extracted ellipses obtained by Fitzgibbon method are 
shown in the first column of figure 6. The extracted 
ellipses generated by our algorithm are shown in the 
second column of figure 6. 
Table 1 shows the calculated error of different parameters 
Cx, Cy, Rx, Ry and Theta of the ellipse. The error is 
obtained by taking the difference between the parameter of 
the original ellipse and the extracted one. 
The first, second and third column of Table 2 shows 
respectively the different rate of Outliers, the error 
obtained by the Fitzgibbon method and the error obtained 
by our algorithm. 
The obtained results figure 6 illustrate clearly the high 
insensitivity of the proposed method figure 6b to the 
Outliers compared to the well known Fitzgibbon method 
figure 6a. 
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Figure 6 (a) . Original ellipses and 
extracted ellipses by Fitzgibbon 

method 

 

Figure 6 (b). Original ellipses and 
extracted ellipses by our proposed 

approach 

 

Figure 5. Ellipse fitting of noisy data corrupted by Outliers:  The first 
column shows the noisy images corrupted by different rate of Outliers  
(respectively 2% 10%  20% and 40% ) and the extracted ellipse by the 

Fitzgibbon method. The second column shows the extracted ellipse 
obtained using our proposed approach for optimal orders. 

Table 2.a : Calculated Error of Cx parameter  
 (%) Outliers Fitzgibbon method Proposed method 
2 0,5192 0,1559 
10 0,5837 0,1108 
20 1,972 0,0766 
40 0,8691 0,1607 

 
 

Table 2.b : Calculated Error of Cy parameter 
Outliers rate Fitzgibbon method Proposed method

2 1,634 0,0661 
10 5,3969 0,0955 
20 8,0256 0,0952 
40 8,3261 0,308 

Table 2.c : Calculated Error of Rx parameter 
Outliers rate Fitzgibbon method Proposed method

2 2,6646 0,0743 
10 4,7959 0,55 
20 4,3386 0,348 
40 6,6363 0,0527 

 
Table 2.d : Calculated Error of Ry parameter 

Outliers rate Fitzgibbon method Proposed method
2 2,7081 0,5227 

10 7,1137 0,1038 
20 12,8888 0,1869 
40 18,0147 0,4302 

Table 2.d : Calculated Error of Theta parameter 
Outliers rate Fitzgibbon method Proposed method

2 13,6165 0,966 
10 31,9318 0,2156 
20 0,4807 1,0028 
40 65,8843 4,0705 

Table 2: The calculated error of different parameters Cx, Cy, Rx, Ry and 
Theta (Table 2a, Table 2b, Table 2c and Table 2d) of the ellipse corrupted 

by 2%, 10%, 20% and 40% rate of Outliers (column 1). The error is 
obtained by taking the difference between the parameter of the original 

ellipse and the extracted one by the Fitzgibbon method ( column 2 ) or by  
the proposed method ( column 3). 

6. Conclusion 

In this paper, we have proposed a novel approach to 
robust ellipse fitting, based on a statistical method using 
the Legendre moment theory optimized by Maximum 
Entropy Principle (MEP). This new concept of ellipse 
fitting is based on to three steps. In the first one, an 
estimation of the underlying probability density function 
(pdf) using Legendre moment is carried out. In the second 
step, the choose of the optimal pdf is performed using the 
maximum entropy principal criterion. Finally, the subset 
of local maxima pixels of the optimal pdf are extracted as 
the true points of the ellipse. The advantage of our 
algorithm is that no a priori information and intermediate 
steps about the original data image are needed. Through a 
comparative study with other well established algorithms, 
it performed quite well in experimental tests and 
demonstrates a great robustness against high noise levels 
and high rate of Outliers. 
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