
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

102

Manuscript received October 5, 2008

Manuscript revised October 20, 2008

TERNARY TREE & A CODING TECHNIQUE

Dr. Pushpa R.Suri † and Madhu Goel ††,

Department of Computer Science & Applications, Kurukshetra University, Kurukshetra, India

Summary

In this paper, the focus is on the use of Ternary Trees over
Binary Tress. First of all, we give the memory representation
for Ternary Trees. Huffman coding technique is developed
using ternary trees, which benefits in computer implementation,
efficient memory, compression, fast searching and error
detecting & error correcting.

Keywords:

 Memory Representation, path length, Huffman’s Algorithm,
coding, prefix codes, compression ratio, error detecting &
correcting

1. Introduction:

Ternary Tree or 3-ary-tree is a Tree in which each
node has either 0 or 3 children (labeled as LEFT
Child, MID Child, RIGHT Child).

In Computer Science & Information Theory [7],
Huffman coding is entropy Encoding algorithm used
for loss less data compression. The term refers here
to use of a variable length code table for encoding a
source symbol (such as a character in a file). Where
the variable length code table has been derived in a
particular way based on the estimated probability of
occurrence for each possible value of the Source
symbol. It was developed by David A Huffman [2]
and published in the 1952 paper "A Method for the
Construction of Minimum - Redundancy Code."

 David A Huffman [1] discovered Huffman Concept.
He uses Huffman Codes for binary tree. In this
paper now we extend the Huffman algorithm for
Ternary Tree, which benefits in computer
implementation, compression, efficient memory, fast
searching, error detecting & error correcting. Here,
we discussed various different sections for
describing it. First of all, computer implementation
of Ternary Tree is presented. Then Huffman
algorithm for Ternary Tree reducing path length [5]
is described. After that coding technique using
ternary tree is given, and at last we conclude the
benefits of the application of ternary tree over binary
tree.

2. Computer Implementation of Ternary
Tree:

 2.1 Sequential List Representation of
Ternary Tree.

 2.2 Linked List Representation of Ternary
Tree.

2.1 Sequential List Representation of Ternary
Tree:

This representation uses only a singly linear array Tree
as follows: -

2.1.1 The root R of Ternary tree is stored in Tree [1]

2.1.2 If a node N occupies TREE [K}, then its left child
is stored in tree [3*k-1], Mid Child is stored in TREE
[3*K] and rights child is stored in TREE [3*K+1]

EXAMPLE 2.1:

Suppose A, B, C, D, E, F, G, H and I are 9 data items
and suppose they are assigned weights as follows:

Data
Item

A B C D E F G H I

Weight 22 5 11 19 2 11 25 5 6
 22

A
5
B

11
C

19
D

2
E

11
F

25
G

5
H

6
I

Table – 1

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

103

 Fig. 1 The Sequential list representation for Example 2.1
can be represented as follows: -

 TREE

1 106

2 G-25

3 28

4 53

5

6

8 I-6

9 C-11

10 F-11

11 12

12 D-19

13 A-22

32 E-2

33 B-5

34 H-5

Table – 2

A Ternary Tree that is complete or nearly complete
where efficient way of maintaining Ternary tree in
memory called the sequential representation

2.2 Linked List Representation of Ternary Tree

Ternary Tree can be maintained in memory by means of
Linked representation which uses four parallel arrays,
INFO, LEFT, MID and RIGHT and pointer variable
ROOT.

1. INFO (K) contains the data at Node N.

2. LEFT (K) contains the location of the left child

3. MID (K) contains the location of the mid child of
node N.

4. RIGHT (k) contains the location of the right child of
Node N.

The Linked list representation for Example 2.1 can be
represented as follows: -

 INFO LEFT MID RIGHT

1. 25-G 0 0 0

2. 28 7 8 9

3. 53 10 11 12

ROOT 4. E-2 0 0 0

5 　 5. 106 1 2 3

6. B-5 0 0 0

7. I-6 0 0 0

8. C-11 0 0 0

 9. F-11 0 0 0

 10. 12 4 6 13

 11. D-19 0 0 0

 12. A-22 0 0 0

 13. H-5 0 0 0

Table - 3

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

104

3 Coding Technique:

3.1 Static Huffman Coding Using Ternary Tree:

Static Huffman's Algorithm [3] uses binary tree, is
extended to ternary tree as follows. Construct a full
ternary Tree (A tree in which every node has either zero
or three children's) whose leaves are labeled with the
weights

HUFFMAN'S ALGORITHM: -.

Suppose W1, W2, and W3 are three minimum weights
among the n given weights W1, W2, ... Wn. Find a tree T
that gives a solution for (n-1) weights.

 W1 + W2 + W3, W4, ... Wn

Then in the tree T', replace the external node

 W1 + W2 + W3 by sub tree

Fig. 2

The new Ternary Tree is the desired solution.

When the Huffman algorithm [8] is used to construct a
code, the weights represent the probabilities associated
with the source letters. At each step in the algorithm the
tree corresponding to the three smallest weights Wi, Wj,
& Wk are merged into a new tree whose weights is Wi +
Wj + Wk and whose root has three children that are the
sub trees represented by Wi, Wj & Wk. The weights Wi,
Wj and Wk are removed from the list and Wi + Wj + Wk
are inserted in the list. This process continues until the
weight list contains the single value. If at any time, there
is more than one way to choose a smallest pair of
weights, any such pair may be chosen. In Huffman's
proper the process begins with a non-increasing list of
weights. Ternary Tree or 3-tree is Tree T in which each
node has either 0 or 3 children. In any 3-Tree,

The number of External node is given by NE = 2NI + 1.

Accordingly, the running time of algorithm may depend
on the length of the paths [4] in the Tree. The formula

 LE = 2LI + 3n

is true for any ternary tree with n internal nodes. Where

 LE =Length of External node

 LI = Length of Internal node

 n = Number of Internal Nodes.

The weighted path length p (External) of a ternary tree is
defined to be the Sum of the weighted path length i.e.

 P = W1L1 + W2L2 +.... + WnLn

Where Wi and Li denote respectively the weight and path
length of an external node Ni.

By applying Huffman Algorithm, we have the Huffman
tree for ternary tree is: -

Fig. 3

3.2. Huffman Encoding:

Static Huffman's Algorithm [3] using binary tree is
extended to ternary tree as follows: -

3.2.1. Order the symbols according to their
probabilities
 Alphabet set: S1, S2, …, SN
 Prob. of occurrence: P1, P2, …, PN
 The symbols are rearranged so that
 P1>=P2>=…>=PN
 3.2.2. Apply a contraction process to the three
symbols with the smallest probabilities
 Replace symbols SN-2,SN-1and SN by

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

105

a “hypothetical” symbol, say SN-1 that has a prob. of
occurrence PN-2+PN-1+PN
 The new set of symbols has N-1
members:
 S1, S2, …, SN-2, SN-1
3.2.3. Repeat the step 2 until the final set has only one
member.

3.3 Coding Technique For Ternary Tree:

In Huffman Coding [6] the main work is to label the
edges. Huffman Coding uses a specific method for
choosing the representation for each symbol, resulting in
a prefix - free code (some times called "Prefix Codes")
i.e. the bit string representing some particular symbol is
never a prefix of the bit string representing any other
symbol that expresses the most common characters using
shorter strings of bits that are used for less common
source symbols. The assignment entails labeling the
edge from each parent to its left child with the digit 00,
and the edge to the mid child with 01 and edge to the
right child with 11. The code word for each source letter
is the sequence of labels among the path from the root to
the leaf node representing that letter. Only Huffman
Coding is able to design efficient compression method of
this type. Huffman Coding is such a widespread method
for creating prefix-free codes that the term "Huffman
Code" is widely used as synonym for "Prefix Free Code".

Now, for example No. 2.1, we will give a coding using
variable length strings that is based on the Huffman Tree
T for weighted data item as follows: -

Fig. 4

The Huffman Code for Ternary Tree assigns to each
external node the sequence of bits from the root to the
node. Thus the above Tree T determines the code for the
external nodes: -

G: 00 I: 0100 C: 0101

F: 0111 D: 1101 A: 1111

E: 110000 B: 110001 H: 110011

Table - 4

This code has "Prefix Property" i.e. the code of any item
is not an initial sub string of the code of any other item.
This means that there cannot be any ambiguity in
decoding any message using a Huffman Code.

3.4 Compression Ratio (Fixed length code
verses Huffman length code):

Average codeword length: -
Lave= l1p1+l2p2……………+lnpn
Lave= is a measure of the compression ratio.

In the above example,
9 symbols =4 bits (fixed length code representation)
Lave (Huffman) = 2.8982 bits
Compression ration = 4/2.8982 = 1.06

3.5 Error detecting & Error Correcting:

When this coding technique is applied in the
message using ternary tree, then the number of
transmitted bits is always even in number that is
very beneficial in error detecting.

Error occurring during transmission is detected by
following cases: -

Case 1: -Number of bits changed by addition or
deletion of a bit.

Case 2: - Prefix property is violated

Case 3: - Sequence of bits does not exist as
described in the labeling of edges in the coding
technique.

If one of the cases occurs, accordingly can be
corrected.

While In binary tree, the number of transmitted
bits for a message can be either odd or even;
therefore there is a difficulty in error detecting and
in error correcting.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

106

3.6 Properties Of Huffman Codes:

 3.6.1. Fixed-length symbols ------ variable-
length code words
 : Error propagation

 LAVE=AVERAGE CODE WORD LENGTH
 LAVE= L1+P2L2+…………………..PNLN
 H(s) <=lave < H(s)+2

 3.6.2. The Huffman code-tree can be
constructed both by
 bottom　 -up method (in the above example)
 t　 op-down method

3.6.3. Huffman codes satisfy the prefix-
condition: uniquely decodable: no
codeword is a prefix of another
codeword.

 3.6.4. The complement of a Ternary Huffman
code is also a valid Huffman code.

3.7 Benefits of Ternary Tree Over Binary Tree:

If we will represent the same data item with

same weights in Binary Tree as well as in Ternary
Tree then we can easily point out the comparison
between two representation as follows: -

 In Ternary Tree: -

Memory used using Sequential Representation = 34

Memory used using Linked List Representation = 13

Number of Internal Nodes = 4

Path length = 199

Height of the tree = 4

Total Number of Nodes (Internal + External) = 13

Searching on Node is fast

Length of External Node (LE)= 2LI + 3n

Here Labeling the left edge by 00, mid edge by 01 and right
edge by 11 satisfies prefix Property

While In Binary Tree: -

Memory used using Sequential Representation = 51

Memory used using Linked List Representation = 17

Number of Internal Nodes = 8

Path length = 306

Height of the tree = 6

Total Number of Nodes (Internal + External) = 17

Searching on Node is slow

Length of External Node (LE)= = LI + 2n

Here Labeling the left edge by 0 and right edge by 1

satisfies prefix Property.

4. Conclusion:
We can conclude that representation of Huffman Tree
using Ternary Tree is more beneficial than representation
of Huffman Tree using Binary Tree in terms of number
of internal nodes, Path length, height of the tree, in
memory representation, in fast searching and in error
detection & error correction.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

107

5. Acknowledgements:

The author Madhu Goel would like to thank Kurukshetra
University Kurukshetra for providing me University
Research Scholarship. .

6. References:
[1] DAVID A. HUFFMAN, Sept. 1991, profile

Background story : Scientific American, pp.
54-58

[2] HUFFMAN, D. A., 1952. "A Method for the
Construction of Minimum-Redundancy Codes."
Proc. Inst. Radio Eng. 40, pp 1098-1101

[3] KNUTH, D. E, 1997. The Art of Computer
Programming, Vol. 1: Fundamental Algorithms,
3rd edition. Reading, MA: Addison-Wesley,
pp. 402-406

[4] ROLF KLEIN, DERICK WOOD, 1987, on the
path length of Binary Trees, Albert-Lapwings
University at Freeburg.

[5] ROLF KLEIN, DERICK WOOD, 1988, On the
Maximum Path Length of AVL Trees,
Proceedings of the 13th Colloquium on the Trees
in Algebra and Programming, p. 16-27, March
21-24.

[6] SCHWARZ, E. S., 1964. "An Optimum
Encoding with Minimum Longest Code and
Total Number of Digits." Information and
Control 7, 37-44

[7] TATA MCGRAW HILL, 2002 theory and problems
of data structures, seymour lipshutz, tata mcgraw hill
edition, pp 249-255

[8] THOMAS H. CORMEN, 2001 charles e. leiserson,
ronald l. rivest , and clifford stein. Introduction to
algorithms, second edition. Mit press and
mcgraw-hill. pp 385-392

Dr. Pushpa Suri is a reader in the department of
computer science and applications at Kurukshetra
University Haryana India. She has supervised a number
of PhD students. She has published a number of research
papers in national and international journals and
conference proceedings.

Mrs. Madhu Goel has Master’s
degrees(University Topper) in
Computer Science. At present,
She is pursuing her PhD As
University Research Scholar in
Computer Science. Her area of
research is Algorithms and Data
Structure where she is working
on Ternary search tree structures.

