
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

114

Manuscript received October 5, 2008

Manuscript revised October 20, 2008

Enhanced Access Control with Semantic Context Hierarchy Tree for
Ubiquitous Computing

Hyuk Jin Ko1, Woojun Kang2

Department of Computer Engineering, Sungkyunkwan University, Korea1,

College of Management and Information Technology, Korea Christian University, Korea2

Abstracts:
In most ubiquitous applications involving ubiquitous
hospital, security mechanisms supporting the context of
users and systems has becoming a key issue. Access
control systems have to make decisions with users' current
security-relevant context, such as time, location, user
activity, and other environmental information available
when the access requests arrive. In ubiquitous context-
aware access control systems, a query issued by an
authorized user might not be resolved if context specified
by policy does not match that specified in the query, as
though the semantic similarity of both contexts is much
close. In this paper, semantic context-aware access control
(SCAC), is proposed, to solve the problem mentioned
earlier. The proposed system fetches users' context and
ontology from middleware, with which context hierarchies
are built. Using the context hierarchies and reasoning rules
extracted from relevant ontology, the proposed model can
bridging the semantic gap between policy specific context
and query specific context in ubiquitous application
systems such as ubiquitous hospital management systems.

Key words:
Access Control, Context, Context Hierarchy, Ontology.

1. Introduction

In a ubiquitous environment, users typically access
resources using mobile devices [1, 2]. Since the context of
a user is highly dynamic, granting a user access without
considering the user's current context can cause a security
problem, that is, even an authorized user can damage the
system as the system may have different security
requirement within different context. In terms of context-
aware access control, the context information referenced
in design can be different from that specified in query on
execution time. As a result, it seems that the query cannot
be resolved properly when the context specified in access
control policy does not exactly match with the context in

query, even though both context are semantically
equivalent.

In this paper, Semantic Context-aware Access
Control system (SCAC) is proposed to solve the problem
mentioned above. SCAC takes context and ontology from
the context middleware and arranges context according to
the abstraction level to build context hierarchies. Using
these context hierarchies and inference rules extracted
from the ontology, SCAC can overcome the semantic gap
between context specified in the policy and context
collected from highly dynamic context sources in
ubiquitous environments.

The subsequent sections of this paper are organized
as follows. In Section 2, the preliminaries relevant to the
context-aware access control and the ontology are
explained. In Section 3, a summary of related work in the
area of access control is discussed. In Section 4, the design
of the SCAC model and authorization enforcement
algorithm is described. In Section 5, the overall
implementing architecture is explained. Section 6
concludes this paper.

2. Backgrounds

2.1. Representation of Context

Typically, context can be represented as first-order
predicates. The name of the predicates corresponds to the
type of context to be described. This convention allows us
an uniform representation for different kinds of context
[11]. For example, context predicates are like
LocatedIn(Bob, room209), TemperatureOf(get_room#(),
26oC). A predicate consists of many terms. The values of
each term in a predicate are actually constrained by the
domain of context. Some of terms in a context predicate
can be functions that return some value. This logical
model for context using first-order logic is so powerful as
to express a rich variety of context. Complex context
expressions can be represented by combining Boolean
operations such as conjunction, disjunction and negation.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

115

The predicate model also allows both universal and
existential quantification over variables. This allows us a
parameterization of context for representing of a much
richer set of context. For example, an context expression is
like LocatedIn(Bob, room209) ∧ WhileOnDuty(Bob),
which refers to the context "Bob is in room 209 while on
his duty".

2.2 Inference of Context

Generally, an ontology is a description of important
concepts in a domain, crucial properties of each concept
and restrictions on properties such as property cardinality,
property value type, domain and range of a property.
Context ontology gives us a chance to derive new context
from other existing context. The rules extracted from
ontology are used to infer new context from existing
context.

Inference rules used in this paper are adapted from
owl:ObjectProperty [12], which defines the relationship
between many concepts in a specific domain. Table 1,
quoted from [7], presents the inference rules extracted
from the context ontology hierarchy by defining
relationship between concepts. Another similar approach,
CONON [12], also presents a generation of inference rules
with the equivalence of OWL and Description Logic. By
referring each relationship among context concepts in
Table 1, we realize that the instances of high-level
concepts can be inferred from the instances of low-level
concepts.

Table 1. Inference rule extracted from ontology (quoted from [7])

Relationship Inference rule
EQUIVALENCE if i jC C≡ then i jC C⇒

IS-PART-OF if { }j iC C∈ then i jC C⇒

IS-A if i jC C⊂ then i jC C⇒

UNION if 1 2 ...j kC C C C= ∪ ∪ ∪

then i jC C⇒ , i = 1,...,k

INTERSECTION if 1 2 ...i kC C C C= ∩ ∩ ∩

then i jC C⇒ , j = 1,...,k

3. Related Works

Role-Based Access Control (RBAC) [8, 9, 10] is
proposed to restrict the actions that legitimate users can
perform based on the set of authorizations applicable to a
group of users. A major benefit of RBAC is the ease of
administration of the security policy and its scalability. In
Generalized RBAC model [3, 4], RBAC is extended by

applying the roles to all entities in a system. By defining
three types of roles, i.e., subject roles, environment roles,
and object roles, it uses context information for making
access decisions. A Content-based RBAC [5] supports an
flexible specification of authorization based on the
qualification and characteristics of users, called credentials.
A CS-RBAC [6] extends RBAC to make it sensitive to the
context of both user and the target object. A concept-level
access control model [7] for a semantic web is proposed
for specifying authorizations over concept ontology and
enforcing them upon data instances with support for
propagations based on the relationship among concepts.

A major drawback of the previous approaches
mentioned above does not exploit the semantic
information of context, which provide various advantages
to the context-aware access control systems. Our approach
using inference rules extracted from context ontology can
overcome semantic gap between static context information
and dynamic context information. It also guarantees that
the context-aware access control system can have
scalability against context evolution by using mature
ontology integration technologies.

4. Semantic Context-aware Access Control
(SCAC)

4.1. Motivating Example

To illustrate our motivating example, let us consider
an intelligent hospital in a ubiquitous environment. We
assume that the sensors in this building can capture,
process and store a variety of context information
regarding location, time, and user activities, etc. In this
case, access privilege rules are already specified in the
access control policy. For instance, the privilege of doctors
to access patient information could be constrained in some
context like the following:

Full-time doctor can do all operations on the patient
records at any time.
Part-time doctor can do all operations on the patient
records only on duty.
Nurse can only retrieve the patient records on duty.

The innate property of ubiquitous computing is so
dynamic that the collected context from sensors could be
different from those specified in access control policy. In a
situation, for example, that a doctor Bob wants to access
the medicine information about parents of his patient, the
following case can happen:

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

116

Policy authorization: "A doctor Bob in a pediatrics ward
could have privilege to access the information of infants'
parents."
Collected context from sensor: "Doctor Bob is in room
209"

At this time, even if room 209 belongs to a pediatrics
ward, the access was not permitted because the specified
context "is in a pediatrics ward" and collected context "is
in room 209" are not explicitly matched with each other
even though both context have equal meaning implicitly.
It is consequently natural that access should be permitted.
Previous context access control approaches did not
mention this problem. To handle this problem, we propose
a semantic context access system based on inference of
concept ontology.

4.2. Semantic Context-aware Access Control (SCAC)
Model

Our SCAC model is an extension of the RBAC model
[10]. The SCAC model is composed of the following
entities and relationships.

Definition 1. SCAC Entities
An authorization au is represented as a 4-tuple <S,R,P,C>.
Subject S is a subject of the system. Role R is a grouping
primitive for users. Permission P is an access privilege to
data object which is defined as a triple <sign, mode,
object>, where sign={+,-}, mode={create, delete, read,
write }. Context C is an expression by Boolean operations
over context predicates.

Definition 2. SCAC Relationships
Access control policy, ACP, is a set of authorizations.
AR(S) denotes an authorized role set of subject S. AP(R)
denotes an authorized permission set of role R. The
function basic_eval(S,P) is true if and only if there exist
any role R: R∈AR(S) and P∈AP(R). The function bas(au)
and cxt(au) extract <S,R,P>, called basic authorization,
and <C>, called context constraints, from a SCAC
authorization au <S,R,P,C>. The function context_eval(C)
is true if and only if the context constraints C on the basic
authorization <S,R,P> are satisfied. An authorization
query is expressed as "?<S,P,C>".

Example 1: Authorization "Doctor Bob has write access to
the record of patient Jane only in pediatrics ward" can be
specified as au = <Bob, Doctor, <+, write, Jane's
Record>, LocatedIn(Bob, pediatricsWard)>, where
bas(au)=<Bob, Doctor, <+, write, Jane's Record>> and
cxt(au)=<LocatedIn(Bob, pediatricsWard)>.

Fig. 1. Hospital Ontology

In example 1, the URIs of specified concepts in the

domain-specific hospital ontology are omitted to make it
simple. An example of hospital ontology and its OWL
serialization are shown in Figure 1 and Figure 2,
respectively.

4.3. Context Concept Hierarchy

Definition 3. Inference Rule Set (RS)
Given the relationship among context concepts, instances
of one context concept can be inferred from the instances
of another. If the instances of context concept Cj can be
inferred from the instances of Ci, we denote it as Ci →
Cj. An inference rule set extracted from each relationship
is denoted as RS(relationship). A set of all inference rule
set, denoted as RS, is an union set of RS(relationship) for
each relationship in a domain-specific ontology.

Example 2: In Figure 1, for example, RS(IS-A) =
{ InternalMedicine→ Dept , Pediatris→ Dept, Surgery
→ Dept, BuildingA → HospitalBuilding, BuildingB
→ HospitalBuilding} and RS(INTERSECTION) =
{SharingOp.Room → PlasticSurgeryOp.Room,
SharingOp.Room → OrthopedicsOp.Room} and RS = RS
(IS-A)∪ RS (IS-PART-OF) ∪ RS (EQIVALENCE)∪
RS (UNION) ∪ RS (INTERSECTION) .

Definition 4. Inference Chain
An inference chain is built by joining inference rules that
participate in inferring a specific common concept. There
may be many inference chains in a RS. A set of inference
chains of a RS is denoted as IC(RS).

Example 3: Let inference rule set RS = {C1 → C2,
C2 → C3, C3 → C4, Ca → C3, Ca → Cb, Cb → Cc,
Cc → Cd} then inference chain of a RS,
IC(RS)={C1 → C2 → C3 → C4, Ca → C3,
Ca→Cb→Cc→Cd}.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

117

Fig. 2. OWL Serialization of Hospital

Definition 5. Low/High-level concept set
Given a concept C, LLC(C) is defined as a set of low-level
concepts that can infer C. Similarly, HLC(C) is defined as
a set of high-level concepts that can be inferred from C.
Additionally, HGC(RS) is defined as a highest-level
concept set; that means a set of concepts that cannot infer
any other concepts.

Example 4: Let RS={C1 → C2, C2 → C3, C3 → C4,
Ca → C3, Ca → Cb, Cb → Cc, Cc → Cd} then IC(RS) =
{C1 → C2 → C3 → C4, Ca → C3, Ca → Cb → Cc → Cd},
LLC(C3) = { C1, C2, Ca }, HLC(C3) = {C4}, LLC(Ca) = { },
HLC(Ca) = {C3, Cb, Cc, Cd} and HGC(RS) = { C3, C4, Cd}.

Definition 6. Context Concept Hierarchy
A set LLC(C) is regarded as a partial ordered set poset
(LLC(C),p), where p is a concept-level order. If Ci→Cj
then Cip Cj. Cip Cj means that Cj is higher than Ci in
concept-level order. The partial ordered set poset builds a

hierarchy, depicted by Hasse diagram, The context
concept hierarchy can thus be defined as follows;
The context concept hierarchy set in a RS, denoted as
CCH(RS), can be defined as a set of LLC(C), for all C ∈
HGC(RS).

Example 5: From Figure 1, CCH(RS) = { RoomGrp1 →
InternalMedicine → Dept, RoomGrp1 →
InternalMedicine → BuildingA → ClinicCenter, ...,
NeuroSurgery → Surgery → BuildingB →
HospitalBuilding }. Hasse Diagram shown in Figure 3
depicts CCH(RS).

Fig. 3. Hospital Context Concept Hierarchy

4.4. Policy Enforcement

To resolve the query ?<S,P,C>, the function
SCAC_enforcement(S,P,C) is executed. In it, the sub-
function basic_eval(S,P) is firstly evaluated. If the result is
true, the sub-function context_eval(C) is evaluated with
inference rules extracted from context ontology. Our
method can overcome problems that context constraints
specified in policy and those in a query cannot be matched
with each other, even though they both have an implicitly
equal meaning. Table 2 presents the authorization matrix
of function SCAC_enforcement according to the sign of
the query and the relevant authorization.

Table 2. Authorization Matrix based on Context Concept
Hierarchy

 Sign of relevant au in policy
 Condition + (positive) - (negative)

Cq p Cp Authorized Non AuthorizedQuery ?<
S,P,Cq> Cp p Cq Non Authorized Authorized

 (Cq : context concept in the query, Cp : context concept in the
policy authorization)

<?xml version="1.0"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns="http://dblab.skku.ac.kr/hospital.owl#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-
schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xml:base="http://dblab.skku.ac.kr/hospital.owl
">

 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="Ward"/>
 <owl:Class rdf:ID="Pediatrics">
 <rdfs:subClassOf rdf:resource="#Ward"/>
 </owl:Class>
 <owl:Class rdf:ID="Floor_A_2">
 <rdfs:subClassOf rdf:resource="#Floor"/>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="located_in">
 <rdfs:range rdf:resource="#Floor_A_1"/>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf
 rdf:parseType="Collection">
 <owl:Class rdf:about="#Rgroup_A_1"/>
 <owl:Class rdf:about="#Rgroup_A_2"/>
 <owl:Class rdf:about="#Rgroup_A_3"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 </owl:ObjectProperty>
 …
 <Rgroup_A_2 rdf:ID="ra_203"/>
 <Nurse rdf:ID="Margarette"/>
 <Rgroup_A_3 rdf:ID="ra_304"/>
 <Rgroup_A_2 rdf:ID="ra_204"/>

 ...

</rdf:RDF>

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

118

Example 6: Let Policy ACP={ <Bob, Doctor, <+, write,
InpatientRecord>, LocatedIn(Bob, BuildingA)>}, Query
q ?<Bob, <+, write, InpatientRecord>, LocatedIn(Bob,
Orthopedics)> and Context Concept Hierarchy from
Example 5 then bas(q)=<Bob, Doctor, <+, write,
InpatientRecord>>, cxt(q) = < LocatedIn(Bob,
Orthopedics) > and SCAC_enforcement(q), in which both
basic_eval(bas(q)) and context_eval(cxt(q)) are TRUE,
returns Authorized. In context_eval(cxt(q)),
can_do(LocatedIn(Bob, Orthopedics), LocatedIn(Bob,
BuildingA)) is executed to TRUE.

Algorithm: Policy Enforcement

Input : (s, p, ceq)
subject s,
permission p 3-tuple <sign,mode,object>,
context expression ceq

Output:
enum {Authorized, Non-authorized}

Desc.:
check whether a subject S has an authorization fo
r permission P under ceq

Sub-function findConcept(c):
if c is an instance then return concept of c, els
e return c (when c is a concept itself).

Sub-function can_do(Ci, Cj):
check whether Ci can infer Cj, where Ci,Cj CCH(R∈
S), RS = { a set of reasoning rules extracted fro
m the ontology on a specific domain }

enum SCAC_enforcement(s,p,ceq)
{
 // check firstly basic-authorization
 if(basic_eval(s,p) == FALSE)
 then return(Non-authorized);

 // then, check context constraints
 if(context_eval(ceq) == TRUE)
 then return(Authorized);
 else return(Non-authorized);
}

Algorithm: Context Expression Evaluation

BOOLEAN context_eval(ceq)
{
 // Find a set of context concepts of policy
 // authorizations associated with input query,
 // then store in Cp_set
 Cp_set = { CCp | CCp = findConcept(cp),
 cp = cxt(au), au is a correspondent to
 bas(input),input=<s,p,ceq>, au∈ACP }

 For(each context predicate cq in ceq)
 {
 CCq = findConcept(cq); // find cq’s concept
 resFlag = 0; // flag for temp result

 For(each CCp, CCp∈Cp_set){
 If(sign == positive)
 if(can_do(CCq, CCp))
 then { resflag = 1; break; }
 elseif(sign == negative)
 if(can_do(CCp, CCq))
 then { resflag = 1; break; }
 else return(FALSE);
 }
 if(resFlag == 0) return(FALSE);

 }
 if(resFlag == 1) return(TRUE);
 else return(FALSE);
}

5. Implementing Architecture

The overall architecture of the SCAC System is
presented in Figure 4. On behalf of context consumer
SCAC, COAgent module collects, integrates context and
annotated ontology from context middleware, such as Gaia
[11], through an agent platform, such as JADE [13], and
stores this information into CODB.

Fig. 4. Architecture of SCAC System

COAgent can obtain context and ontology using two
possible methods. The COAgent wanting to obtain context
and ontology immediately upon query request, may use
the on-demand method. Using the subscription method,

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

119

the COAgent can request notification whenever context
and ontology are newly updated.

To resolve the query, in the 'SCAC Enforcement'
module, the 'Basic AC Evaluator' firstly checks basic
authorization against authorization policies in ACP DB. If
the result of it is true, the 'SCCE' evaluates context
constraints with context information and the reasoning
rules in CODB. The reasoning method is implemented
with RACER and its Java API [14].

6 Conclusion

In ubiquitous environments, security and context-
awareness is an interesting and challenging research
subject. The dynamism, ubiquity, and non-intrusiveness of
ubiquitous computing, presents additional challenges and
raises new issues. In this paper, linking context-aware
access control and semantic information of context is
presented, for more efficient security administration. The
SCAC model for semantic context-aware access control in
ubiquitous environments, is proposed.

This model can simplify policy management by
separating the entities involved in context-aware access
control, into basic access control entities and context
constraints. In addition, it supports making more precise,
flexible decisions regarding authorization, using semantic
information of context and an enforcement algorithm.
Further challenges are to extend SCAC into having the
capability of processing disjunctive context expression,
and the formal proving about conflict-free between
inferred positive constraints and inferred negative
constraints.

References

[1] M.Weiser. Hot Topics: Ubiquitous Computing. in IEEE The
computer, 1993.

[2] P. Bellavista, A. Corradi, C. Stefanelli. The Ubiquitous
Provisioning of Internet Services to Portable Devices. in
IEEE Ubiquitous Computing, Vol. 1, No. 3, 2002.

[3] M.J. Moyer, M.J. Covington, M. Ahamad. Generalized role-
based access control for securing future applications. in
NISSC2000 23rd National Information Systems Security
Conference, 2000.

[4] M.J. Covington, S. Srinivasan, A. Dey, M. Ahamad, W.
Long, G. Abowd. Securing context-aware applications using
environment roles. in SACMAT 2001.

[5] N.R. Adam, V. Atluri. A Content-based Authorization
Model for Digital Libraries. in IEEE Transactions on
knowledge and data engineering, Vol. 14, No. 2, 2002.

[6] A. Kumar, N. Karnik, G. Chafle. Context Sensitivity in Role-
based Access Control. in Operating Systems Review, Vol. 36,
No. 3, IBM Journal, 2002.

[7] Li Qin, V. Atluri. Concept-level Access Control for the
Semantic Web. in ACM Workshop on XML Security, 2003.

[8] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role Based Access Control Models. in IEEE
Computer, Vol. 29, No. 2, February 1996.

[9] R. Sandhu, P. Samarati. Access control: principles and
practice. in IEEE Communication Magazine, vol. 32, 1994.

[10] R. Sandhu, D. Ferraiolo, and R. Kuhm. The NIST Model for
Role-Based Access Control: Towards A Unified Standard.
in Proceedings of the fifth ACM workshop on Role-based
access control, 2000.

[11] A. Ranganathan, R.H. Campbell. An Infrastructure for
context-awareness based on first-order logic. in Personal
and Ubiquitous Computing, Vol. 7, Issue 6, 2003.

[12] X.H. Wang, D.Q. Xhang, T. Gu and H.K. Pung. Ontology
Based Context Modeling and Reasoning using OWL. in
PerCom2004 Annual Conference on Ubiquitous computing
and Communications Workshop, 2004.

[13] F. Bellifemine, A. Poggi, G. Rimassa. Developing multi
agent systems with a FIPA-compliant agent framework. in
Software - Practice & Experience, John Wiley & Sons, Ltd.,
2001.

[14] V. Haarslev and R. Möller. Racer: A Core Inference Engine
for the Semantic Web. in Proceedings of the 2nd
International Workshop on Evaluation of Ontology-based
Tools (EON2003), located at the 2nd International Semantic
Web Conference ISWC 2003, Sanibel Island, Florida, USA,
October 20, 2003.

Authors

Name: Hyukjin Ko

Address: Department of Computer
Engineering, Sungkyunkwan Univ., 300
Chunchun, Jangan, Suwon, Gyeonggi,
Korea.

Education & Work experience: M.S.
Science in Electrical and Computer

Engineering, Sungkyunkwan University 1994, B.S. Science in
Electrical and Computer Engineering, Sungkyunkwan University.
1991, R&D Cententer, LG Electronics, Korea, 1994 - 2002.

Other information: He is a researcher at Database Laboratory
in Sungkyunkwan University. His research interests include
XML Security, Access Control, Distributed Database, Ubiquitous
computing, Ontology Modeling, Database Security.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

120

Name: Woojun Kang
Address: Department of Management
Information System, Korea Christian
Univ., Hwagok 6-Dong, Gangseo-Gu,
Seoul, Korea.
Education & Work experience: Ph.D.
Computer Science in Electrical and
Computer Engineering, Sungkyunkwan

University, 2001, M.S. Computer Science, Yonsei University,
1994, B.S. Electrical Engineering, Yonsei University, 1984
Researcher of Korea Software Development Institute, IBM
Korea, 1984 - 1999.

Other information: He is a Professor in the Department of
Management Information System in Korea Christian University,
Korea. His current research interests include XML/Web Mining,
Access Control, and DRM.

