
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

121

Manuscript received October 5, 2008

Manuscript revised October 20, 2008

A Power-Aware Low-Latency Cache Management Architecture for
Mobile Computing Environments

G. Anandharaj

Lecturer, Sengunthar Engineering College, Tiruchengode
 Tamil Nadu, India

Dr. R. Anitha

Professor and Director, K.S. Rangasamy College of
Technology, Tiruchengode

 Tamil Nadu, India

Summary
Caching frequently accessed data items on the client side is an
effective technique to improve performance in a mobile
environment. Classical cache management strategies may not be
suitable for mobile environments due to the disconnection and
mobility of the mobile clients. In this paper, we propose a novel
Cache Management Architecture (CMA) for mobile hosts. The
goal of our architecture is to reduce the caching overhead and
provide optimal replacement policy. It aims to improve the
network utilization, reduce the search latency, bandwidth and
energy consumption. The architecture comprises of the following
algorithms: cache placement algorithm, cache discovery
algorithm and, cache replacement algorithm. By simulation
results, we will show that our proposed architecture achieves
lower latency and packet loss, reduced network bandwidth
consumption, reduced data server workload.
Keyworks

1. Introduction

In a mobile computing system, the geographical area is
divided into small regions, called cells. Each cell has a
base station (BS) and a number of mobile terminals (MTs).
Inter cell and intra-cell communications are managed by
the BSs. The MTs communicate with the BS by wireless
links. An MT can move within a cell or between cells
while retaining its network connection. An MT can either
connect to a BS through a wireless communication
channel or disconnect from the BS by operating in the
doze (power save) mode. [1]

The mobile computing platform can be effectively
described under the client/server paradigm. A data item is
the basic unit for update and query. MTs only issue simple
requests to read the most recent copy of a data item. There
may be one or more processes running on an MT. These
processes are referred to as clients. In order to serve a
request sent from a client, the BS needs to communicate
with the database server to retrieve the data items.

Caching frequently accessed data items on the client side
is an effective technique to improve performance in a
mobile environment. Classical cache management

strategies may not be suitable for mobile environments due
to the disconnection and mobility of the mobile clients. In
general caching results in

1. Enhanced QoS at the clients – i.e., lower jitter,
latency and packet loss,

2. Reduced network bandwidth consumption, and
3. Reduced data server/source workload.

Caching plays a key role in mobile computing because of,
its ability to alleviate the performance and availability
limitations of weakly-connected and disconnected
operation. But evaluating alternative caching strategies for
mobile computing is problematic. Cache management in
mobile environment, in general, includes the following
issues to be addressed: [5]

1. The cache discovery algorithm that is used to efficiently
discover, select, and deliver the requested data item(s)
from neighboring nodes.

2. Cache admission control – this is to decide on what data
items can be cached to improve the performance of the
caching system.

3. The design of cache replacement algorithm – when the
cache space is sufficient for storing one new item, the
client places the item in the cache. Otherwise, the
possibility of replacing other cached item(s) with the new
item is considered.

4. The cache consistency algorithm which ensures that
updates are propagated to the copies elsewhere, and no
stale data items are present.

None of the existing works give a combined and complete
solution for efficient cache placement, discovery and
replacement.

We propose a novel Cache Management Architecture
(CMA) for mobile hosts. The goal of our architecture is to
reduce the caching overhead and provide optimal
replacement policy. It aims to improve the network
utilization, reduce the search latency, bandwidth and

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

122

energy consumption. The architecture comprises of the
following algorithms:

 Cache placement algorithm
 Cache discovery algorithm and
 Cache replacement algorithm

This paper is organized as follows. Section 2 gives the
detailed related work done. Section 3 presents the system
model for our architecture. Section 4 presents the cache
placement algorithm, followed by the cache discovery and
cache replacement algorithms in section 5 and section 6
respectively. Section 7 gives the experimental results and
section 8 concludes the paper.

2. Related Work

Barbara and Imielinski [2] proposed a cache solution
which is suitable for mobile environments. In this
approach, the server periodically broadcasts an
invalidation report (IR) in which the changed data items
are indicated. Rather than querying the server directly
regarding the validation of cached copies, the clients can
listen to these IRs over the wireless channel, and use them
to validate their local cache. The IR-based solution is
attractive because it can scale to any number of clients
who listen to the IR. However, the IR-based solution has
some major drawbacks such as long query latency and low
bandwidth utilization.

In [3], Guohong Cao addressed an UIR-based approach.
In this approach, a small fraction of the essential
information (called updated invalidation report (UIR))
related to cache invalidation is replicated several times
within an IR interval, and hence the client can answer a
query without waiting until the next IR. However, if there
is a cache miss, the client still needs to wait for the data to
be delivered.

To increase the cache hit ratio and reduce the bandwidth
consumption, clients intelligently prefetch the data that are
most likely used in the future. However, prefetch
consumes power. In [4], the client marks some invalid
cache entries as non-prefetch and it will not prefetch these
items. For each cached item, the client records the
prefetch-access ratio (PAR), which is the number of
prefetches divided by the number of accesses. When
power consumption becomes an issue, the client marks
those cache items which have PAR > B as non-prefetch,
where B > 1 is a system tuning factor. With a small B,
more energy can be saved, but the cache hit ratio may be
reduced. On the other hand, with a large B, the cache hit
ratio can be improved, but at a cost of more energy
consumption. Note that when choosing the value of B, the
uplink data request cost should also be considered. The
main drawback of this approach is the appropriate

selection of B, such that cache hit ratio should be
improved and energy consumption should be reduced.

In [6], a new hybrid adaptive caching technique, which
combines page and object caching to reduce the miss rate
in client caches dramatically is presented. HAC, is a novel
technique for managing the client cache in a distributed,
persistent object storage system.

In [7], an overview of a series of web cache replacement
algorithms based on the idea of preserving a history record
for cached Web objects is presented. The number of
references to Web objects over a certain time period is a
critical parameter for the cache content replacement.

In [8], the preliminary design of an adaptive caching
scheme using multiple experts, called ACME is described.
ACME is used to manage the replacement policies within
distributed caches to further improve the hit rates over
static caching techniques.

In [9], developing efficient caching techniques in ad hoc
networks with memory limitations are focused. Research
into data storage, access, and dissemination techniques in
ad hoc networks is not new. In particular, these
mechanisms have been investigated.

In [10], the feasibility of having a global replacement
algorithm is proposed. In that efficient cache hierarchy,
several global replacement policies and their behavior with
several benchmarks using a cycle accurate simulator are
discussed.

3. System Model

3.1. Network model

Consider a mobile environment with n cells nCCC ,...., 21 .

For each cell iC , iDS is the database server that can
keep pieces of information that may be accessed by other
systems. We assume that the database is updated only by
the server. A client is a system, which invokes queries for
data. Each cell iC contains a set of clients mSSS ,...., 21 .

Fig 1 Mobile Network Model

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

123

Each client jS of the cell iC can issue the query through

the base station iBS which is directly connected to the

database server iDS . A database server (simply, server
hereafter) can contain more than one database and can
indirectly communicate with all mobile clients in the same
cell through the Base station iBS . A database can be
cached in one or more clients in a cell. In Figure 1, we
show an example of a network, which include clients, base
station and database servers. The cached clients are
denoted as blue circles.

3.2 Overview of the Architecture

Cache Placement Algorithm: In this algorithm, data
caches are placed into some clients based on their weight
vector which comprise the following parameters:

• Available Bandwidth
• CPU Speed
• Access Latency
• Cache Hit Ratio

Active nodes belonging to the neighborhood of a given
client form a cooperative cache system for this client,
since the cost for communication with them is low both in
terms of energy consumption and message exchanges. For
a data miss in the local cache, the client first searches the
data item in its zone before forwarding the request to the
next client that lies on a path towards server.

Cache Discovery Algorithm: In this algorithm, when a
data request is initiated at a client, it first looks for the data
item in its own cache. If there is a local cache miss, the
client will send broadcasts request packet to the set of
active client. When an active client receives the request
and has the data item in its local cache, it will send an ack
packet to the requester to acknowledge that it has the data
item.

Cache Replacement Algorithm: In the cache
replacement algorithm, we propose to develop a Least
Relevant Value (LRV) based cache replacement policy,
where data with the lowest LRV are removed from the
cache. The LRV is based on the following factors:

• Access probability: It is based on the previous
access rate of a data item for a host

• Distance: It is measured as the number of hops
between the requesting client and the responding
client.

• Size :A data item with larger data size should be
chosen for replacement, because the cache can
accommodate more data items and satisfy more
access requests

In the subsequent sections, we present the detailed design
of each of these algorithms.

4. Cache Placement Algorithm

The cache placement algorithm is described below:

 let n,1,2.......j ,C cell theofclient each j =For

bandwidth Available - iBW

speed CPU - iSP

Latency Access - iAL

CRi - Cache Hit Ratio 1,2.....mi =where

1. The weight of the client can be calculated as

iiiii ALCRSPBWW ÷++=)((1)

2. Form the vector },{ ii WSW = , which denotes the
client ids and their corresponding weight values, sorted on
the descending order.
3. Denote the set of active nodes m)k (0 , <=<kS ,

which satisfies the following condition β>kW , where

β is the minimum threshold value for the weight .

4. Each database server jDS caches the databases into

the active nodes set kS .

5. Cache Discovery

The mobile clients that belongs to the active node set then
a cooperative cache system for other clients, since the cost
for communicating with them is low both in terms of
energy consumption and message exchange.

 For each request, one of the following three cases holds:
Case 1: Local hit. When a copy of the requested data item
is stored in the cache of the requester. If the data item is
valid, it is retrieved to serve the query and no cooperation
is necessary.

Case 2: Active hit. When the requested data item is stored
in the cache of one or more active node neighbors of the
requester.

Case3: Global hit. Data item is retrieved from the database
server.

5.1. Cache Discovery Algorithm

A cache discovery algorithm is needed to determine if and
where the requested item is cached when the requester
does not have knowledge of the destination.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

124

(i) Once a set of active clients is formed, the server
broadcasts the vector },{ kjk dS to all clients, where kjd ,

......2,1=j is the index of the cached items placed in the
active client 2,1, =kSk

(ii) When a data request is initiated at a client, it first looks
for the data item in its own cache (local hit). If there is a
local cache miss, the client broadcasts request packet to
the set of active clients.

(iii) When an active client receives the request packet and
has the data item in its local cache (i.e., a active hit), it will
send an ack packet to the requester to acknowledge that it
has the data item. The ack packet will contain the
following fields: time stamp Ts and weight value W. The
time stamp field helps to choose the latest copy of the
searched item and the weight value field helps to choose
the best client node.

(iv)When the query client receive ack packets from the
active clients, it selects the best active client Sbest with
max),(WTs and sends a confirm packet to the client
Sbest. The ack packets for the same item received from
other clients are discarded

(v) When the client Sbest receives a confirm packet, it
responds back with the actual data value to the requested
query node.

6. Cache Replacement

A cache replacement policy is required when a client
wants to cache a data item, but the cache is full, and thus it
needs to victimize a suitable subset of data items to evict
from the cache. Cache replacement policies have been
extensively studied in operating systems, virtual memory
management and database buffer management.

• The data item size may not be fixed, the used
replacement policy must handle data items of
varying sizes.

• The data item’s transfer time might depend on the
item’s size and the distance between the
requesting client and the data source (or cache).
Consequently, the cache hit ratio might not be the
most accurate measurement of a cache
replacement policy’s quality.

• The replacement algorithm should also consider
cache consistency, that is, data items that tend to
be inconsistent earlier should be replaced earlier.

6.1 Cache Replacement Algorithm

We have developed Least Relevant Value (LRV) based
cache replacement policy, where data with the lowest LRV
are removed from the cache. The LRV is based on the
following factors

Access probability: It is based on the previous access rate
of a data item for a host. An item with lower access
probability should be chosen for replacement. At a host,
the access probability Ai for data item di is given as

∑
=

÷=
N

k
kii aaA

1

 (2)

Where ia is the mean access rate to data item id . ia can
be estimated by employing sliding window method of last
K access times [29]. Keep a sliding window of K most
recent access timestamps),....,(21

i
k

ii tststs for data item

id in the cache. The access rate is updated using the
following formula:

)(i
k

ci tstKa −÷= (3)

where tc is the current time and ts ik is the timestamp of

oldest access to item id in the sliding window. K can be
as small as two or three to achieve the best performance
[29].

Distance: Distance (dt) is measured as the number of hops
between the requesting client and the responding client
(data source or cache). This policy incorporates the
distance as an important parameter in selecting a victim
for replacement. This is because caching data items which
are further away, save bandwidth and reduce latency for
subsequent requests.

Size (sz): A data item with larger data size should be
chosen for replacement, because the cache can
accommodate more data items and satisfy more access
requests.

Based on the above factors, a function Fi for a data item di
is computed using the following expression:

iii szAF ÷=)dt . (i (4)

The idea is to remove the data item with least value of iF

7. Experimental Results

7.1 Simulation Setup

This section deals with the experimental performance
evaluation of our algorithms through simulations. In order
to test our protocol, The NS2 simulation software [13] is
used. NS2 is a general-purpose simulation tool that

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

125

provides discrete event simulation of user defined
networks.

In our simulation, the channel capacity of mobile hosts is
set to the same value: 2 Mbps. The distributed
coordination function (DCF) of IEEE 802.11 for wireless
LANs as the MAC layer protocol is used. It has the
functionality to notify the network layer about link
breakage. In the simulation, mobile nodes move in a 600
meter x 600 meter rectangular region for 50 seconds
simulation time. Initial locations and movements of the
nodes are obtained using the random waypoint (RWP)
model of NS2. All nodes have the same transmission range
of 250 meters. We have the simulation setup as per Fig.1.
We divided the area into 6 cells. Each cell consists of 6
clients.

The simulation parameters are summarized in Table 1.
Number Of Nodes 36
No. of Cells 6
Clients per Cell 6
Slot Duration 2 msec
Routing Protocol AODV
Speed of mobile 5 m/s
Traffic Model CBR

In all the experiments, we have used the following
evaluation criteria and compared our CMA architecture
with the traditional LRU scheme.

7.2 Simulation Results

A. The average downlink traffic under different query
generate time

Downlink Traffic

0

200

400

600

800

5 10 15 20

Mean query gen.time

D
ow

nl
in

k
Tr

af
fic

(b
yt

es
)

CMA

LRU

Fig. 2 Query generation timeVs Downlink
Throughput

Fig. 2 shows the relationship between the downlink traffic
and the query generate time Tquery. As can be seen, the
average downlink traffic increases when Tquery increases.
Note that if several clients request for the same data item
during the same interval, the cached host broadcasts the

data item once. As less broadcasting data is shared, the
average downlink traffic increases. Not surprisingly, CMA
outperforms LRU.

B. The average delay under different query generate
time

Average Query Latency

0
0.1
0.2
0.3
0.4
0.5
0.6

5 10 15 20

Mean query gen.time

Q
ue

ry
 la

te
nc

y(
s)

CMA

LRU

Fig. 3 Query generation timeVs Query Latency

Fig. 3 shows the average query latency as a function of
Tquery. Each client generates queries according to the
mean query generate time. The generated queries are
served one by one. If the queried data is in the local cache,
the client can serve the query locally; otherwise the client
has to request the data from the active clients. As we can
see from Fig.3, the delay of CMA is much less than that of
LRU. This is due to the reason that CMA uses the cache
space more effectively and the number of queries sent to
the server can be reduced

C. End-to-End Delay under different traffic rates

End-to-End Delay

0
0.1
0.2
0.3
0.4
0.5
0.6

250 500 750 1000

Rate(kb)

D
el

ay
(s

) CMA

LRU

Fig. 4 Traffic Rate Vs Delay

Fig 4 shows the average end-to-end delay for different
traffic rates. From the figure we can see that CMA has less
delay , when compared with LRU.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

126

D. The average Throughput under different cache sizes

Throughput

0
100
200
300
400
500
600

25 50 75 100

Cache Size

Pa
ck

et
s CMA

LRU

Fig. 5 Cache Size Vs Throughput

Fig. 5 shows the average throughput received for different
cache sizes. From the figure we can see that CMA has
more through put, when compared with LRU.

8. Conclusion

In this paper, we have developed a novel Cache
Management Architecture (CMA) for mobile hosts, to
reduce the caching overhead and provide optimal
replacement policy. It aims to improve the network
utilization and to reduce the search latency, bandwidth and
energy consumption. The architecture comprises of the
following algorithms: cache placement algorithm, cache
discovery algorithm and, cache replacement algorithm. In
the cache placement algorithm, data caches are placed into
some active clients based on their weight vector. In the
cache discovery algorithm, when a query is initiated at a
client, it will send broadcast request packet to the set of
active clients. The active client which is having the highest
weight value, process this request and send the requested
data to the client. In the cache replacement algorithm, we
have developed a Least Relevant Value (LRV) based cache
replacement policy, where data with the lowest LRV are
removed from the cache. By simulation results, we have
shown that our proposed architecture achieves lower
latency and packet loss, reduced network bandwidth
consumption, reduced data server workload.

References
[1] Liangzhong Yin Guohong Cao Ying Cai “A generalized

target-driven cache replacement policy for mobile
environments” Applications and the Internet, Symposium on
27-31 Jan. 2003

[2] D. Barbara, T. Imielinski, “Sleepers and workaholics: caching
strategies for mobile environments”, ACM SIGMOD, 1994,
pp. 1–12.

[3] Guohong Cao “A scalable low-latency cache invalidation
strategy for mobile environments”, IEEE Transactions on
Knowledge and Data Engineering, 2003.

[4] Guohong Cao “Adaptive Power Aware Cache Management
for Mobile Computing Systems”Proceedings of
ICCPR2007: International Conference on Comprehensive
Product Realization 2007 June 18-20, 2007, Beijing, China

[5] Narottam Chand, R.C. Joshi and Manoj Misra, “Cooperative
Caching in Mobile Ad Hoc Networks Based on Data
Utility,” International Journal of Mobile Information
Systems, Vol. 3, No. 1, pp. 19-37, 2007

[6] Miguel Castro Atul Adya Barbara Liskov Andrew C. Myers,
"HAC: Hybrid Adaptive Caching for Distributed Storage
Systems". Proceedings of the 16th ACM Symposium on
Operating Systems Principles, Saint-Malo, France, October
1997.

[7] Athena Vakali, "Proxy Cache Replacement Algorithms: A
History-Based Approach". Journal Title: World Wide Web.
Date: 2001. Volume: 4. Issue: 4. p. 277 - 298.

[8] Ismail Ari, Ahmed Amer, Robert B. Gramacy, Ethan L.
Miller, Scott A. Brandt, Darrell D. E. Long, "ACME:
Adaptive Caching Using Multiple Experts", Workshop on
Distributed Data and Structures, DOCIS 2002.

[9] Bin Tang Gupta, H. Das, S.,"Benefit-based Data Caching in
Ad Hoc Networks", Computer Science Department, Stony
Brook University, Stony Brook, NY 11790, Network
Protocols, 2006.

[10] Mohamed Zahran, “Cache Replacement Policy Revisited”.
In. Proceedings of the 6th Workshop on Duplicating,
Deconstructing, and Debunking, San Diego, CA, USA, June
2007.

[11] Hocine Grine et al. “Adaptive Query Processing in Mobile
Environment” ACM International Conference Proceeding
Series, Proceedings of the 3rd international workshop on
Middleware for pervasive and ad-hoc computing table of
contents 2005.

[12] M. Satyanarayanan “Fundamental Challenges in Mobile
Computing” Proceedings of the fifteenth annual ACM
symposium on Principles of distributed computing table of
contents Philadelphia, Pennsylvania, United States Pages: 1
- 7 Year of Publication: 1996 ISBN:0-89791-800-2

[13] http://www.isi.edu/nsnam

G. Anandharaj received the
B.Sc degree in computer
science, M.C.A degree in
computer applications from
Bharathiar University,
Coimbatore, and the M.Phil
degree in computer science
from Bharathidasan University,
Tiruchirappalli ,India, in 1998,
2001 and 2006, respectively. He

is currently pursuing a Ph.D degree in computer
applications at the Anna University of Coimbatore, India.
He is currently working as Assistant Professor in the
Department of Master of Computer Applications,
Sengunthar Engineering College, Tiruchengode,
Tamilnadu, India. His research interests include mobile
computing and wireless network technology. He is life
member of the ISTE.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

127

Dr. R. ANITHA is currently
working as Director in the
Department of Master of
Computer Applications, K. S.
Rangasamy College of
Technology, Tiruchengode –
637 215, Tamilnadu, India. She
has obtained her MCA Degree
from Bharathidasan University,

Tiruchirappalli, and Ph.D from Periyar University, Salem.
She has vast experience in teaching as well as research.
She has presented papers at several International and
National Conferences and has published research articles
in leading Journals. She is an active researcher and is
usually associated with reputed Academic Forums and
Associations of research interest.

