
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

132

Manuscript received October 5, 2008

Manuscript revised October 20, 2008

Application of MATLAB to Create Initial Solution for Tabu Search in
Parallel Assembly Lines Balancing

G.R.Esmaeilian, S.Sulaiman ,N.Ismail, M.M.H.M.Ahmad, M.Hamedi

Department of Mechanical and Manufacturing, Faculty of Engineering, University Putra Malaysia,

 43400, Serdang, Selangor, Malaysia.

Abstract

In comparison with the exact mathematical methods, the
heuristic models are different to provide solutions close to the
optimal one, saving time of processing. With the appearance of
the Tabu Search by Fred Glover in 1986, different applications
have been arisen from the procedure to solve different problems
for the classic problems of assembly line balancing and parallel
mixed model assembly line. Here, an adaptation to an existing
code appears which is applied to the problem of allocating and
assigning mixed model tasks for the reconfiguration of
distributed generation and balance with parallel assembly line.
The model provides optimal or near optimal results in terms of
results obtained from calculations compared to the other methods.

Keywords:
Parallel assembly lines, Heuristic method, MATLAB.

1. Introduction

The assembly line can be defined as the movement of the
work piece from one task to the next. The tasks that must
be performed on the product are divided among workers,
so that each worker performs the same operation on the
product, which was passed before him. The balance of an
assembly line is the assignment of these tasks along a
production line in order to increase the production
efficiency.
Many publications are available concerning the design,
balancing and scheduling for Single, Multi and Mixed-
Product lines. Line balancing was the main design issue in
the early studies of assembly line design and is addressed
in many publications [1]. The focus of this research was
the single product assembly line with deterministic task
times. The lines were assumed to be dedicated and were
mainly balanced for a known cycle time in the simplest
form [2].
The problem of balancing an assembly line is a classic
Industrial Engineering problem. Even though much of the
work in this area goes back to the mid-1950s and early
1960s, the basic structure of the problem is relevant to the
design of production systems today, even in automated

plants [3]. The assembly line balancing problem defined as
assigning tasks to the workstations that minimize the
amount of idle time of the line with satisfied specific
condition. The first condition is that the total task time
assigned to each workstation should be less than or equal
to the cycle time (the time interval between two successive
outputs). The second condition is the task assignments
should follow the sequential processing order of the tasks
[4].
Tabu search is a mathematical optimization method, fitting
to the class of local search techniques that enhances the
performance of a local search method by using memory
structures: once a potential solution has been determined,
it is marked as "tabu" (thus the name) so that the algorithm
does not visit that possibility repeatedly. Tabu search is
generally attributed to Fred Glover. It also has been
applied successfully to maximum satisfying ability
problems[5].
The performed researches in the 70s and 80s focused
almost exclusively on the development of exact methods
to solve the basic assembly line problem. Tabu search is a
"higher level" heuristic procedure for solving optimization
problems, designed to guide other methods (or their
component processes) to escape the trap of local
optimality. Tabu search usually has obtained optimal and
near optimal solutions to a wide varieties of classical and
practical problems.
Tabu search (TS) is a meta-heuristic strategy for solving
combinatorial optimization problems. Tabu search was
introduced by Glover[5, 6] as a technique to overcome
local optimality. The underlying idea is to forbid some
search directions at a present iteration in order to avoid
cycling, but to be able to escape from a local optimal point.
This strategy can make use of any local improvement
technique [7-10]. Furthermore, tabu search is an Adaptive
Memory Programming (AMP) [11] that can be
superimposed on many other methods. The major theme
behind TS is to incorporate flexible memory (short-term
and/or long-term) functions into the search procedure.
Hence, the search process can avoid a move that reinstate
past solutions and prevents being trapped at locally

International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

133

optimized solutions. This method is distinct from the SA
and GA methods in that SA and GA have low memory
capability and are probabilistic random search methods,
while TS takes advantage of the history of the search
process and embeds it into the search process. Many
problems are successfully solved using tabu search.

2. MATHEMATICAL MODEL

Here, the adaptation of a TS code will be introduced,
designed for ALB to find the balancing solution. This
research studies the problem of assembly line design,
focusing on lines paralleling and job distributing. Three
problems are focused including model formulations, cycle
time minimizing by the given number of stations, the
productivity maximizing with determining parallel lines
and scheduling mixed model parallel assembly lines by
using Tabu search. The latter formulation can be
demonstrated by several examples and compare with
another research method that uses some numerical
example, for other kinds of assembly system, which try to
reduce their required cycle time. It is shown that the
problem of Mixed-Model assembly line can be treated as a
special case of parallel assembly lines problem. The
algorithm is designed to investigate and demonstrate the
influence of system parameters, such as number of product
in mixed-model and different cycle time, on the balancing
improvement due to line paralleling. Using an NP-hard
formulation developed for the combined problem of
parallel line with equipment selection; the approach
presented here is quite different from [4, 12]approaches
and the goal is to balance mixed-model assembly line
together with parallel specification. A newly developed
programming model for the balancing mixed-model
parallel line is hereby presented. It is known that all the
assembly line balancing problems have an NP-hard nature,
and an optimal solution for middle or large-scale problems
is not sufficient. Therefore, it is not suitable for practical
applications, it has been developed by using MATLAB
software to calculate and compare the result. The
mathematical model of the problem is given as follows:

1 1

hNSH

kh imhk im
h k

ST x t
= =

= ×∑ ∑

1

max{ }
H

kh
h

S ST k
=

= →∀U

, ,
i jkh khST ST

i j S i j

=∅

∈ ≠

I

{ }max
: min

C S
objective C
=

Objective function:
1 1

min max
HKH

imhk im
h k

x t
= =

⎛ ⎞⎛ ⎞
×⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑

(1)

Constraints:

1 1

1
hNSh H

imhk
h k

X
=

= =

=∑ ∑ for 1,..., mi N=

1,..., .m M= (2)

1 1 1

h mM NS N

imkh im h
m k i

X t C
= = =

× ≤∑ ∑ ∑ for 1,..., .h H=

(3)

{ }0,1imkhX ∈ for , , , .i m h k

() /h im m
T

NS t C
+

⎡ ⎤= ⎢ ⎥⎢ ⎥
∑ (4)

The first step consists of reading data from excel sheet and
categorized them in to different matrix for each line and
followed by calculating the primary number of
workstations according to equation 4 to each line
considering the present line. The algorithm will start from
the initial number of workstation.
 The second step categorizes tasks. For each line a task
will be selected which is the number of all tasks which
must precede task before selected i must be zero. So, this
section will be repeated to find i . After that the algorithm
starts to calculate iE and iL considering to equation
number 5 and 6.

() /
im

ih im im m
i P

E t t C
+

∈

⎡ ⎤
= +⎢ ⎥
⎢ ⎥

∑ (5)

() /
im

ih h ih im m
i F

L NS t t C
−

∈

⎡ ⎤
= − +⎢ ⎥

⎢ ⎥
∑ (6)

International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

134

Once the minimum khST is selected, the position of the

minimum khST in the selected line is k. Task k should be
assigned to other workstations which are not outside of

iE and iL in a way the khST should not be bigger than the
cycle time .

In continue, after assigning task i , this task will be
dropped from the set of tasks and one will less from each
of remaining task in NP. In addition, this circle continues
until all tasks for all lines completed and assigned to the
best place. The heuristic method coding is shown as
continues:

E = zeros(NSmax,M);
L = zeros(NSmax,M);
X = zeros(NSmax,M,M,NSmax);
ST = zeros(NSmax,M);
ST1 = zeros(NSmax,M);
h=1;
NS0=0;
NS1=0;
while h<=M
 m = h;
 t = T(m:m,:);
 t = t(1:NS(m));
 Im = I(m:m, :);
 Im = Im(1:NS(m))';
 NSh = floor(sum(t)/C(m))+1;
 NS0=NS1+NS0;
 NS1 = NS(m);
 if m ~= 1
 np = NP((NS0+1):(NS0+NS1),:);
 else
 np = NP(1:NS1);
 end
 a1 = numel(np);
 while a1 > 0
 a2 = sum(np == 0);
 while a2 > 0
 b=find(np == 0);
 c=b(1,1);
 U=Im(b);
 i=U(1,1);
 z=find(Im == i);
 np(c)= [];
 Im(z)= [];
 stpi=0;
 a3=NS0+i;
 if NP(a3) > 0
 for j=1:NP(a3)
 s=P(a3,j);
 stpi=stpi+T(h,s);
 end
 else
 stpi=0;
 end
 E(i,h)=floor((T(h,i)+stpi)/C(h))+1;

 %disp(sprintf('E(%d,%d) = %0.0g', i, h, E(i,h)));
 stfi=0;
 a4=NS0+i;
 if NF(a4) > 0
 for j=1:NF(a4)
 s=F(a4,j);
 stfi=stfi+T(h,s);
 end
 else
 stfi = 0;
 end
 L(i,h) = NSh-floor((T(h,i)+stfi)/C(h));
 %disp(sprintf('L(%d,%d) = %0.0f', i, h, L(i,h)));
 k=E(i,h);
 a5 = X(i,m,h,k);
 while a5 ~= 1
 ST(k,h) = T(h,i)*X(i,m,h,k)+ST(k,h);
 ST1(k,h) = ST(k,h)+T(h,i);
 if k <= L(i,h)
 if ST1(k,h) <= C(h);
 ST(k,h)=ST1(k,h);
 X(i,m,h,k)=1;
 else
 k=k+1;
 end
 else
 NSh = NSh+1;
 L(i,h) = k;
 if ST1(k,h) <= C(h)
 X(i,m,h,k) = 1;
 ST(k,h)=ST1(k,h);
 L(i,h) = k;
 end
 end
 a5 = X(i,m,h,k);
 if a5 == 1
 disp(sprintf('E(%d,%d) = %0.0g', i, h, E(i,h)));
 disp(sprintf('L(%d,%d) = %0.0f', i, h, L(i,h)));
 disp(sprintf('X(%d,%d,%d,%d) = %0.0f', i, m, h, k,
X(i,m,h,k)))
 disp(sprintf('ST(%d,%d) = %0.0f', k, h, ST(k,h)));
 end
 end

3. Numerical example

The precedence diagram and task times are used from the
sample of literature for this numerical example, despite
precedence diagram and relative data of task times of line
one in line number two are repeated.
In the new obtained balance, all products have been
produced for each cycle time in lines 1, 2, and 3,
respectively. Therefore, for Sawyer problem that is shown
in Figure (1) new cycle times required for the new balance
is presented. Consequently, overall line cycle time are
improved by a new balance.
In Figure 2, cycle time improvement for given example
from Tonge are presented. In addition, repeated test and

International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

135

the result are shown in Figure 3 to 5 for Arcuse1, Mertens
and Jaeschke.

30
27

41

29

40

26

1 11

0

5

10

15

20

25

30

35

40

45

 line 1 line 2 line 3

Given cycle t ime

Proposed cycle t ime

Improvement

Figure 1. Sawyer problem for three parallel lines.

160

207

270

159

269

206

1 11

0

50

100

150

200

250

300

 line 1 line 2 line 3

Given cycle t ime

Proposed cycle t ime

Improvement

Figure 2. Tonge problem for three parallel lines.

3786

4206

4732

3784

4713

4183

23 192

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

 line 1 line 2 line 3

Given cycle t ime

Proposed cycle t ime

Improvement

Figure 3. Arcuse 1 problem for three parallel lines.

13

17

9

13

9

13

0 0

4

0

2

4

6

8

10

12

14

16

18

 line 1 line 2 line 3

Given cycle t ime

Proposed cycle t ime

Improvement

Figure 4. Mertens problem for three parallel lines.

11

15

9

11

9

13

2

00

0

2

4

6

8

10

12

14

16

 line 1 line 2 line 3

Given cycle t ime

Proposed cycle t ime

Improvement

Figure 5. Jaeschke problem for three parallel lines.

4. Computational results

The performance of the proposed initial solution
procedure is tested on the five well-known test problems
in the ALB literature. Each problem consists of a number
of tasks, task times, precedence relations and a number of
cycle times. The data of line number 2 and 3 are same with
number 1 by different cycle time and some added or
dropped tasks. The number of stations and obtained cycle
time from the procedure is compared with theoretical
minimum number of stations and the independent balance
of the lines for each of them. The number of stations
obtained from the proposed procedure is generally less
than the results of the independent balance of the lines.
In the future, more efficiently techniques should be
developed to calculate and improved the cycle time in
mixed model that give a better solution than the proposed
procedure parallel assembly line.

5. CONCLUSIONS

In this paper, the TS technique has been applied to make
exhaustive selecting and analyzing all the possibilities of a

International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

136

configuration in a single iteration. This is important to
fortify the mechanism search. In this study, new
procedures and a mathematical model on the mixed model
assembly line balancing problem with parallel lines are
proposed. The studied procedure was calculated based on
one numerical example. Several well-known test problems
in the ALB literature are solved using the mixed model
parallel assembly line procedure and the mathematical
model. With this computational model, an initial optimal
solution has been achieved. The obtained results from the
procedure are compared with the optimal solutions, the
theoretical minimum number of stations and initial cycle
time calculated for each problem. Comparison of results
shows that the performance of the procedure is sufficient
and the proposed model provides a significant
improvement in assembly line.

6. Acknowledgments

The author wishes to thank University Putra Malaysia for
the financial support, department of mechanical and
manufacturing to conduct the research and the anonymous
referees for their praiseworthy accuracy and readiness in
carrying out the reviews, and for their valuable
suggestions, which led to an improvement of the quality of
the presented work.

References

1. Ghosh, S. and R.J. Gagnon, A comprehensive literature review and

analysis of the design, balancing and scheduling of assembly lines.
International Journal of Production Research, 1989: p. 637-670.

2. Khan, A. and A.J. Day, A Knowledge Based Design Methodology
for manufacturing assembly lines. Computers and Industrial
Engineering, 2002. 41: p. 441-467.

3. Nahmias, S., Production and Operations Analysis. second ed.
1993: Irwin, Homewood, IL

4. Gökçen, H., K. Agpak, and R. Benzer, Balancing of parallel
assembly lines. International Journal of Production Economics,
2006. 103(2): p. 600-609.

5. Glover, F., Tabu Search-Part 1. Operations Research Society of
America journal on Computing, 1989. 1(3): p. 190-206.

6. Glover, F., Tabu search, Part II. Operations Research Society of
America journal on Computing, 1989. 2: p. 4 - 32.

7. Chiang, W.-C. and R. Russell, A reactive tabu search
metaheuristic for the vehicle routing problem with time windows.
INFORMS Journal on Computing, 1997: p. forthcoming.

8. Chiang, W.-C. and P. Kouvelis, An improved tabu search heuristic
for solving facility layout design problems. International Journal of
Production Research 1996. 34: p. 2565 - 2585.

9. Chiang, W.-C. and P. Kouvelis, Simulated annealing and tabu
search approaches for unidirectional flowpath design for
Automated Guided Vehicle systems. Annals of Operations
Research, 1994. 50.

10. Skorin-Kapov, J., Tabu search applied to the quadratic assignment
problem. Operations Research Society of America journal on
Computing, 1990. 2: p. 33- 44.

11. Glover, F., Tabu search and adaptive memory programming -
advances, applications, and challenges, in: Interfaces in Computer

Science and Operations Research, in Kluwer Academic. 1996,
Helgason and Kenningto.

12. Süer, G.A., Designing Parallel Assembly Lines. Computers ind.
Eng, 1998. 35(3--4): p. 467-470.

ABBREVIATIONS

TS: Tabu Search

:mN Number of task in model ihm
:i Index of task,
:h Index of parallel line { }1,...,H M h H= ∈

:k Index of station in parallel line

{ }1,...,K K k K= ∈

:m Index of model { }1,...,M M m M= ∈

:mC Cycle time of model thm

:hC Cycle time of line thh in parallel status

:imt Time of task i in model m

:imP Set of all tasks which must precede task i in model
m

:imF Set of all tasks which must follow task i in model
m

:hNS Number of station in line thh in parallel status

:mI Set of task ID in model ihm

:ihNP Number of all tasks which must precede task thi

(predecessors) in model thm
:ihE Earliest station for task i in line h

:ihL Latest station to which task i can be assigned in line

h

:x +
⎡ ⎤⎢ ⎥ The smallest integer greater than or equal to x

:x −
⎡ ⎤⎢ ⎥ The greatest integer smaller than or equal to x

:khST The sum of total tasks assigned to station thk in

line thh on parallel status
:imhkx 1 if task i from model m in line h is assigned to

station k ; 0 otherwise

