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Summary: The aim of this paper to examine a larger set 
of wavelet functions for implementation in a still image 
compression system using Set-Partitioning In  
Hierarchical  Tree (SPIHT) algorithm. This paper 
discusses important features of wavelet transform in 
compression of still images, including the extent to 
which the quality of image is degraded by the process of 
wavelet compression and decompression. Image quality 
is measured objectively using peak signal to noise ratio. 
The effect of different parameters is studied on different 
wavelet functions.  
  
Key words: Wavelet transform, image coding, 
Hierarchical Tree, peak signal to noise ratio. 
 
1   Introduction 
 
An image is a positive function on a plane. The value of 
this function at each point specifies the luminance or 
brightness of the picture at that point. Digital images are 
sampled versions of such functions, where the value of 
the function is specified only at discrete locations on the 
image plane, known as pixels. The value of the 
luminance at each pixel is represented to a pre-defined 
precision M. Eight bits of precision for luminance is 
common in imaging applications. The eight-bit precision 
is motivated by both the existing computer memory 
structures (1 byte = 8 bits) as well as the dynamic range 
of the human eye. 
 
The prevalent custom is that the samples (pixels) reside 
on a rectangular lattice which we will assume for 
convenience to be N × N. The brightness value at each 
pixel is a number between 0 and 2M −1. The simplest 
binary representation of such an image is a list of the 
brightness values at each pixel, a list containingN2M bits. 
Our standard image example in this paper is a square 
image with 512 pixels on a side. Each pixel value ranges 
from 0 to 255, so this canonical representation requires 
5122×8 = 2, 097, 152 bits.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Image coding consists of mapping images to strings of 
binary digits. A good image coder is one that produces 
binary strings whose lengths are on average much 
smaller than the original canonical representation of the 
image. In many imaging applications, exact reproduction 
of the image bits is not necessary. In this case, one can 
perturb the image slightly to obtain a shorter 
representation. If this perturbation is much smaller than 
the blurring and noise introduced in the formation of the 
image in the first place, there is no point in using the 
more accurate representation. Such a coding  procedure, 
where perturbations reduce storage requirements, is 
known as lossy coding. The goal of lossy coding is to 
reproduce a given image with minimum distortion, given 
some constraint on the total number of bits in the coded 
representation. 
 
Wavelet transforms are arguably the most powerful, and 
most widely used tool to arise in the field of signal 
processing .Their inherent capacity for multiresolution 
representation akin to the operation of the human visual 
system (HVS) motivated a quick adoption and 
widespread use of wavelets in image-processing 
applications. Indeed, wavelet based algorithms (EZW, 
SPIHT)[1,2] have dominated image compression for 
over a decade , and wavelet-based source coding is now 
emerging in other domains. Wavelets are increasingly 
used in the source coding of remote-sensing, satellite, 
and other geospatial imagery. 
 
A typical still image contains a large amount of spatial 
redundancy in plain areas where adjacent picture 
elements (pixels) have almost the same values. It means 
that the pixel values are highly correlated [3]. In addition, 
a still image can contain subjective redundancy, which is 
determined by properties of HVS. The redundancy can 
be removed to achieve compression of the image data. A 
basic measure for the performance of a compression 
algorithm is compression ratio (CR). Wavelet 
compression is a lossy compression scheme, the image 
compression algorithm should achieve a tradeoff 
between CR and image quality.  Higher compression 
ratios will produce lower image quality and vice-versa. 
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Quality and compression also vary according to input 
image characteristics and content. 
 
Transform coding is a widely used method of 
compressing image information. In a transform –based 
compression system 2-D images are transformed from 
the spatial domain to the frequency domain. An effective 
transform will concentrate useful information into a few 
of the low-frequency transform coefficients. An HVS is 
more sensitive to energy with low spatial frequency than 
with high spatial frequency. Therefore, compression can 
be achieved by quantizing the coefficients, so that 
important coefficients (low frequency coefficients) are 
transmitted and the remaining coefficients are discarded 
as shown in fig.1. Very effective and popular way to 
achieve compression of image data is based on DWT 
used in JPEG2000 standard.  
 
2 . Wavelet Transform Based Image Coding 
 
   
      TRANSFORM         QUANTIZER     
COMPRESSOR 
 
 
         THHIFGU                                        
I/P 
 
 
                                                                              
                                                                     O/P 
                                                                                                                                                                                                
 

Fig.1   Wavelet based Coder 
 
Fig.1 shows the wavelet based coder has three basic 
components: a transformation, a quantizer and data 
compression.   Most existing high performance image 
coders in applications are transform based coders [4]. In 
the transform coder, the image pixels are 
Converted from the spatial domain to the transform 
domain through a linear orthogonal or bi-orthogonal 
transform. A good choice of transform accomplishes a 
decorrelation of the pixels, while simultaneously 
providing a representation in which most of the energy is 
usually restricted to a few (relatively large) coefficients. 
This is the key to achieving an efficient coding (i.e., high 
compression ratio). Indeed, since most of the energy 
rests in a few large transform coefficients, we may adopt 
entropy coding schemes, e.g., run-level coding or bit 
plane coding schemes, that easily locate those 
coefficients and encodes them. Because the transform 
coefficients are highly decorrelated, the subsequent 
quantizer and entropy coder can ignore the correlation 

among the transform coefficients, and model them as 
independent random variables.  
 
The optimal transform (in terms of decorrelation) of an 
image block can be derived through the Karhunen–Loeve 
(K-L) decomposition. Here we model the pixels as a set 
of statistically dependent random variables, and the K-L 
basis is that which achieves a diagonalization of the 
(empirically determined) covariance matrix. However, 
the K-L transform lacks an efficient algorithm, and the 
transform basis is content dependent. 
 
Popular transforms adopted in image coding include 
block-based transforms, such as the DCT, and wavelet 
transforms. The DCT (used in JPEG) has many well-
known efficient implementations and achieves good 
energy compaction as well as coefficient decorrelation. 
However, the DCT is calculated independently in 
spatially disjoint pixel blocks. Therefore, coding errors 
(i.e., lossy compression) can cause discontinuities 
between blocks, which in turn lead to annoying blocking 
artifacts. In contrary, the wavelet transform operates on 
the entire image (or a tile of a component in the case of 
large color image), which both gives better energy 
compaction than the DCT, and no post-coding blocking 
artifact. Moreover, the wavelet transform decomposes 
the image into an L-level dyadic wavelet pyramid. The 
output of an example 5-level dyadic wavelet pyramid is 
shown in Figure 2. 
 
There is an obvious recursive structure generated by the 
following algorithm: low pass and high pass filters 
(explained below, but for the moment, assume that these 
are convolution operators) are applied independently to 
both the rows and columns of the image. The output of 
these filters is then organized into four new 2D arrays of 
one half the size (in each dimension), yielding a LL (low 
pass, low pass) block, LH (low pass, high pass), HL 
block and HH block. The algorithm is then applied 
recursively to the LL block, which is essentially a lower 
resolution or smoothed version of the original.   The 
multiresolution nature of the wavelet transform is ideal 
for resolution scalability. 
 
3. About EZW and SPIHT   
 
The concept of lossy wavelet image coding based on 
trees was initially introduced in embedded zero-tree 
wavelet (EZW) coding [1], by Shapiro in 1993. Based on 
the zero-tree concept, if a wavelet coefficient at a given 
scale is found to be insignificant with respect to a given 
threshold, the 2 × 2 offspring of that coefficient at the 
next finer scale 
is also assumed to be insignificant. Furthermore, the high 
frequency detail sub bands have been shown to have a 
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generalized Gaussian distribution centered on zero. This 
means that most of the coefficients in these sub bands 
have very small magnitudes and thus low energy. The 
zero-tree concept coupled with the fact that the detail sub 
bands contain only a few significant coefficients is 
exploited in EZW to give an efficient coding scheme. 
 
The SPIHT algorithm, developed by Said and Pearlman 
in 1996 [2], is a fast and efficient image compression 
algorithm that works by testing ordered wavelet 
coefficients for significance in a decreasing bit plane 
order, and quantizing only the significant coefficients. 
The high coding efficiency obtained by this algorithm is 
due to a group testing  of the coefficients that belong to a 
wavelet tree. Group testing is advantageous because of 
the inter-band correlation that exists between the 
coefficients belonging to a tree. The SPIHT uses the 
fundamental idea of zero-tree coding from the EZW but 
is able to obtain  more efficient and better compression 
performance in most cases without having to use an 
arithmetic encoder. The SPIHT algorithm groups the 
wavelet coefficients and trees into sets based on their 
significance information. The encoding algorithm 
consists of two main stages, sorting and refinement. In 
the sorting stage, the threshold for significance is set as 
2n, where n is the bit level, and its initial value is 
determined by the number of bits required to represent 
the wavelet coefficient with the maximum absolute value. 
Significance for trees is obtained by checking all the 
member detail coefficients. Approximation coefficients 
are tested as individual entries. The initial listing that 
determines the order in which significance tests are done 
is predetermined for both the approximation coefficients 
as well as the trees. The algorithm searches each tree, 
and partitions the tree into one of three lists: 1) the list of 
significant pixels (LSP) containing the coordinates of 
pixels found to be significant at the current threshold; 2) 
the list of insignificant pixels (LIP), with pixels that are 
not significant at the current threshold; and 3) the list of 
insignificant sets (LIS), which contain information about 
trees that have all the constituent entries to be 
insignificant at the current threshold. 
If a coefficient or a tree is found to be insignificant, a “0” 
bit is sent to the output bit stream and the corresponding 
coordinates are moved to the LIP or LIS respectively, for 
subsequent testing at a lower bit level. When a 
coefficient is found to be significant, a “1” bit and a sign 
bit are sent out and its coordinate is moved to the LSP. If 
an LIS member is found to be significant, a “1” bit is 
sent out and the tree is partitioned into its offspring and 
descendants of offspring. The offspring are moved to the 
end of the LIP and subsequently tested for significance at 
the same bit level. The offspring are also moved to the 
LIS as the roots 
 

 
If a coefficient or a tree is found to be insignificant, a “0” 
bit is sent to the output bit stream and the corresponding 
coordinates are moved to the LIP or LIS respectively, for 
subsequent testing at a lower bit level. When a 
coefficient is found to be significant, a “1” bit and a sign 
bit are sent out and its coordinate is moved to the LSP. If 
an LIS member is found to be significant, a “1” bit is 
sent out and the tree is partitioned into its offspring and 
descendants of offspring. The offspring are moved to the 
end of the LIP and subsequently tested for significance at 
the same bit level. The offspring are also moved to the 
LIS as the roots of their corresponding descendant sets 
that will be subsequently tested for significance at the 
same bit level. The bit level is successively lowered, and 
the precision of every member of the LSP found 
significant at the previous bit level is enhanced by 
sending the next bit from the binary representation of 
their values. This operation is called the refinement stage 
of the algorithm. The refinement allows for successive 
approximation quantization of the significant coefficients. 
When the bit level is decremented, the sorting pass is 
applied in the same manner as before to the remaining 
LIP and LIS constituents. The encoding process 
terminates when the desired bit rate or quality level is 
reached. In the decoder, the output of the significance 
tests are received, and therefore the same lists (LIP, LIS, 
and the LSP) can be built, as in the encoder. As input bits 
are read from the bit stream, the decoder reconstructs the 
magnitude and sign bits of LSP members as seen by the 
encoder. The coefficients of the final LIP and LIS sets, 
corresponding to those coefficients that are insignificant 
with respect to the last bit level, are set to zero. Thus a 
scalar quantizer with a dead zone is effectively 
implemented. 
 
 
4. Image Quality Evaluation 
 
The image quality can be evaluated objectively and 
subjectively. Objective methods are based on computable 
distortion measures. A standard objective measure of 
image quality is  MSE  and PSNR. The reconstruction 
error  E is given by 
 
E= Original image - Reconstruction image           ( 1 ) 
 
MSE= E / size of image ( N x N )                          ( 2 ) 
 
A standard objective measure of coded image quality is 
peak signal to noise ratio (PSNR) and is given by  
 
                                   255 
PSNR =   20 log 10                                                   ( 3 ) 
                                  MSE   
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In this work, we considered only PSNR measure. The 
subjective measure of mean opinion score (MOS)  or by 
picture quality scale ( PQS ) to be analyzed in the future 
work of study.   
 
 
5. DWT In Image Coding 
      

5.1 Image Content 
 
 
The fundamental difficulty in testing an image 
compression system is how to decide which test images 
to use for the evaluations. The image content being 
viewed influences the perception of quality irrespective 
of technical parameters of the system. In our simulation 
the main objective to test the larger set of wavelet 
functions, the test image considered is Lena 512x512, 
8bpp. 
Choice of wavelet function is crucial for coding 
performance in image compression. However, this 
choice should be adjusted to image content The best way 
for choosing wavelet function is to select optimal basis 
for images with moderate spectral activity [3].  
 
5.2 Choice of Wavelet Function 
 
Important properties of wavelet functions in image 
compression applications are compact 
support ,symmetry , orthogonality , regularity, and 
degree of smoothness .In our experiment, five  types of 
wavelet families are examined: Haar Wavelet (haarN), 
Daubechies Wavelet (dbN), Coiflet Wavelet (coifN), 
Symlet (symN)and Biorthogonal Wavelet (biorNdNr). 
Each wavelet family can be parameterized by integer that 
determines filter order (N). Biorthogonal wavelets can 
use filters with similar or dissimilar orders for 
decomposition (Nd) and reconstruction ( Nr). In this 
simulation the results of Db1 is corresponds to haar 
transform. 
 
5.3. Filter Order and Filter Length( J ) 
 
The filter length is determined by filter order, but 
relationship between filter order and filter length is 
different for different wavelet families. Higher filter 
orders give wider functions in the time domain with 
higher degree of smoothness. Filter with a high order can 
be designed to have good frequency localization, which 
increases the energy compaction. Wavelet smoothness 
also increases with its order. Filters with lower order 
have a better time localization and preserve important 
edge information. Wavelet-based image compression 
prefers smooth functions (that can be achieved using 

long filters) but complexity of calculating DWT 
increases by increasing the filter length. Therefore, in 
image compression application we have to find balance 
between filter length, degree of smoothness, and 
computational complexity. Inside each wavelet 
family,(Db1-Db9 ), (Bior1.1-Bior6.8 ),  (Sym1-Sym8 ), 
( Coif1-Coif5 ),    we can find wavelet function that 
represents optimal solution related to filter length and 
degree of smoothness, but this solution depends on 
image content. Table- 1  show the test results for L=3, 
bpp=1  for different wavelet functions. 
 
 

 
Table-1   Effect of wavelet filter   order  on PSNR (  L=3, bpp=1 ) 

 
Wavelet 
function 

PSNR Wavelet 
function 

PSNR 

Db1 37.49 Coif1 39.06 
Db2 38.95 Coif2 39.68 
Db3 39.45 Coif3 39.82 
Db4 39.62 Coif4 39.84 
Db5 39.69 Coif5 39.85 
Db6 39.68 Sym1 37.49 
Db7 39.71 Sym2 38.95 
Db8 39.63 Sym3 39.45 
Db9 39.66 Sym4 39.63 
Bior1.1 37.49 Sym5 39.74 
Bior2.2 39.24 Sym6 38.81 
Bior4.4 39.85 Sym7 39.84 
Bior5.5 39.48 Sym8 39.86 
Bior6.8 39.92   
 
 
 
 
5.4. Level of Decompositions (N) 
The quality of compressed image depends on the 
number of decompositions (L). The number of 
decompositions determines the resolution of the lowest 
level in wavelet domain. If we use larger number of 
decompositions, we will be more successful in 
resolving important DWT coefficients from less 
important coefficients. After decomposing the image 
and representing it with wavelet coefficients, 
compression can be performed by ignoring all 
coefficients below some threshold. In our experiment, 
CR is computed. image Lena (512x512 pixels, 8 
bit/pixel) for  2, 3, 4 ,5and 6 decompositions .  
 
The higher the decomposition level , the higher PSNR is 
obtained for a given bpp as shown in Table-2(a) and 2(b). 
As decomposition level increases the computational 
complexity also increases.                                   
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Table-2 Effect of level of decomposition ( L),on CR 

L=3 
   
C
R 

Db7 Db9 Bior2. 
2 

Bior4. Sym5 Coif5

 4 41.54 40.97 41.39 41.62 41.54 41.64
 8 35.66 34.03 35.66 35.78 35.68 35.83
10 33.10 31.00 33.15 33.21 33.15 33.32
20 24.79 21.27 25.95 24.58 24.82 24.88
40 21.39 10.93 17.70 16.25 16.59 16.58
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Fig. 2   PSNR V/S CR ( L=3,FIXED) 

 
Table-3 Effect of level of decomposition   ( L), CR=10:1 

W 
F  
L 

Db7 Db9 Bior2 
2 

Bior4 
4 

Sym5 Coif5

2 16.91 16.92 17.88 16.73 16.92 16.93
3 33.10 31.00 33.15 33.21 33.15 33.32
4 37.46 37.38 37.38 37.88 37.70 37.82
5 38.24 38.16 38.13 38.48 38.28 38.37
6 38.35 38.25 38.22 38.65 39.03 38.52
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Fig. 3   PSNR V/S BPP( L=3,FIXED) 

 
The optimal number of decompositions depends on filter 
order. Table-2 and Table-3 show the PSNR values for 
different filter order for fixed CR ( 10:1 )and L=3.The 
response curves shown in fig2 and fig.3.It can be seen 

that as the number of decompositions increases , PSNR 
is increased up to some number of decompositions. 
Beyond that, increasing the number of decompositions 
has a negative effect. For L=5, Db7 gives 38.24db where 
as Db9 gives 38.16db. 
 
 
 5.5 . Computational Complexity 
 
Computational complexity of the wavelet transform for 
an image size of Nx N employing dyadic decomposition 
is approximately [ 3] 
 
C= 16. N2  . L (1 – 4- J ) / 3                              ( 4 ) 
 
 
Where J and L are filter length and number of 
decompositions respectively. Computational complexity 
is represented as million of operations       ( MOP ). 
Table-4 and fig.4 gives the MOP for different wavelet 
functions. 
 
Table-4   Effect of filter order(J) and level of decomposition (L) on 

MOP.(CR=10:1) 
 
W 
F  
L 

Db7 Db9 Bior2. 
2 

Bior4 
4 

Sym5 Coif5 

2 2.795 2.795 2.621 2.785 2.793 2.793 
3 4.193 4.193 3.932 4.177 4.190 4.190 
4 5.591 5.591 5.242 5.570 5.586 5.586 
5 6.989 6.989 6.553 6.962 6.983 6.983 
6 8.387 8.387 7.864 8.355 8.380 8.380 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 MOP V/S LEVEL OF DECOMPOSITION ( CR=10,FIXED) 
 
     6.  DWT Compression Results 
 
The choice of optimal wavelet function in an image 
compression system for different image types can be 
provided. We used Lena test image for our 

MOP v/s LEVEL(CR=10)

0
1
2
3
4
5
6
7
8
9

2 3 4 5 6

LEVEL

M
O

P

db7
db9
bior2.2
bior4.4
sym 5
coif 5



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008 
 

149

simulation .The behavior of different wavelet functions 
and their characteristics have been studied .For each 
filter order in each family , the optimal number of 
decompositions can be found. The optimal number of 
decompositions gives the highest PSNR values in the 
wide range of compression ratios for a given filter order . 
 
Table -4   show the optimal number of decomposition for 
a given bpp for different wavelet functions. Table 5, 6, 7, 
8,9and10 give variation of PSNR with respect to bpp for 
different wavelet functions db7,db9, bior2.2 bior4.4 , 
sym5 and coif5 respectively. Fig.5,6,7,8,9,and10 show 
the response curves corresponds to PSNR V/S BPP for 
different wavelet functions db7,db9, bior2.2 bior4.4 , 
sym5 and coif5 respectively.  
 
Performance Analysis (PSNR db ), Test image Lena 512x512, 8bpp 
 

Table-5 Variation of PSNR v/s BPP  for  Db7 
 
           
L 
bpp 

2 
 

3 4 5 6 

0.2 11.19 21.39 27.15 31.15 31.61 
0.4 11.19 24.79 33.00 34.78 35.00 
0.6 16.91 29.48 35.77 36.92 37.07 
0.8 16.91 33.10 37.46 38.99 38.35 
1.0 21.79 35.66 38.81 39.57 39.69 
2.0 30.56 41.54 43.54 44.06 44.15 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 PSNR V/S BPP(DB7) 
 

Table-6 Variation of PSNR v/s BPP  for Db9 
 
L 
bpp 

2 3 4 5 6 

0.2 11.20 16.93 27.04 31.08 31.51 
0.4 11.20 21.27 32.87 34.61 34.84 
0.6 16.91 26.96 35.61 36.81 36.08 
0.8 16.92 31.00 37.38 38.16 37.67 
1.0 21.77 34.03 38.70 39.51 39.62 
2.0 30.50 40.97 43.52 44.04 44.12 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 PSNR V/S BPP(DB9) 
 
 

Table-7 Variation of PSNR v/s BPP  for  Bior2.2 
 

       
L 
bpp

2 3 4 5 6 

0.2 12.03 17.70 28.48 31.04 31.39
0.4 12.03 25.95 33.23 34.44 34.79
0.6 17.87 30.19 35.89 36.65 36.74
0.8 17.88 33.15 37.38 38.13 38.22
1.0 23.01 35.66 38.65 39.14 39.21
2.0 31.31 41.39 43.17 43.50 43.56
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Fig.7 PSNR V/S BPP(bior2.2) 
 

Table.8 Variation of PSNR v/s BPP  for  Bior4.4 
 
           

L 
bpp 

2 3 4 5 6 

0.2 11.01 16.25 28.41 31.56 32.06 
0.4 11.01 24.58 33.62 35.08 35.39 
0.6 16.73 29.54 36.34 37.16 37.33 
0.8 16.73 33.21 37.88 38.48 38.65 
1.0 21.55 35.78 39.19 39.75 39.83 
2.0 31.31 41.39 43.17 43.50 43.56 
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Fig.8 PSNR V/S BPP(bior4.4) 
 

Table-9   Variation of PSNR v/s BPP  for Sym5 
 
            
L 
bpp 

2 3 4 5 6 

0.2 11.24 16.59 28.38 31.41 31.88 
0.4 11.24 24.82 33.53 34.87 35.08 
0.6 16.92 29.71 36.14 36.98 37.14 
0.8 16.92 33.15 37.70 38.28 39.14 
1.0 21.82 35.68 39.04 39.60 44.18 
2.0 30.58 41.54 43.68 44.09 44.18 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 PSNR V/S BPP(sym5) 
 

Table-10  Variation of PSNR v/s BPP  for  Coif5 
 
 
       
L 
bpp 

2 
 

3 4 5 6 

0.2 11.20 16.58 28.33 31.41 31.88 
0.4 11.20 24.88 33.68 34.99 35.20 
0.6 16.92 29.73 36.31 37.13 37.27 
0.8 16.93 33.32 37.82 38.37 38.52 
1.0 21.79 35.83 39.15 39.72 39.82 
2.0 30.68 41.64 43.76 44.17 44.26 
 

 
 
 
 
 
 
 
 
 
 

Fig. 10  PSNR V/S BPP(coif5) 
 
 
 

Fig.10 PSNR V/S BPP(coif5) 
 
7. Conclusions 
 
Wavelet analysis is very powerful and extremely useful 
for compressing data such as images. Its power comes 
from its  multiresolution. The performance of SPIHT 
compression algorithm is done in Mat lab for different 
types of wavelets. The results proved to be more useful 
in understanding the effects of decomposition levels, 
filter order and different wavelet functions.For a given 
image, it is possible to select a wavelet function, 
decomposition level and bpp to match a required PSNR. 
The results suggests that no particular wavelet function is 
ideal for a given image and bit rate (CR). Even order of 
the filter (J) and level of decomposition ( L ) is also a 
trade-off  parameter for a given input. But it can be 
concluded that L=3 is minimum to meet required PSNR 
and L> 4 no much improvement in PSNR and MOP 
increases.  
 
The decomposition level changes the proportion of detail 
coefficients in the decomposition. Decomposing a signal 
to a greater level provides extra detail that can be 
thresholded in order to obtain higher compression rates. 
However this also leads to energy loses. The best trade-
off. between energy loss and compression is provided by 
decomposing to levels 3 and 4. Decomposing to fewer 
levels means provides better energy retention but not as 
great compression, decomposing to higher levels 
provides better compression but more energy loss. 
 
 
The type of wavelet affects the actual values of the 
coefficients and hence how many detail coefficients are 
zero or close to zero and therefore how much energy and 
zeros can be obtained. Wavelets that work well with an 
image redistribute as much energy as possible into the 
approximation sub signal, while giving a large 
proportion of the coefficient value to describe details 
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Wavelet Bior2.2 gives optimum results at L=3 with 
lowest possible  MOP. 
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