
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008 
 

 
 

152 

Manuscript received  October 5, 2008 

Manuscript revised  October 20, 2008 

Load Balancing in Internet Using Adaptive Packet Scheduling and 
Bursty Traffic Splitting 

M. Azath 
Research Scholar, Anna University,  

Coimbatore, India 
  

Dr.R.S.D.Wahida Banu 
Research Supervisor, Anna University,  

Coimbatore, India 
  

 
Summary 
In this paper, we propose an architecture for load balancing, 
which contains an adaptive packet scheduler with a bursty traffic 
splitting algorithm. The scheduler has one classifier which 
classifies the flows into aggressive and normal flow. Aggressive 
flows are treated as high priority flows. Based on the buffer 
occupancy threshold, a trigger handler checks for load un-
balance of the network and automatically triggers the load 
adapter. The load adapter reroutes the high-priority aggressive 
flows into the least loaded best path, using the bursty traffic 
splitter algorithm. The bursty traffic splitting algorithm splits the 
aggressive flows over multiple parallel paths, based on a split 
vector. In this algorithm, instead of switching packets or flows, it 
switches packet bursts. Since the packet bursts are smaller in size, 
the algorithm splits the traffic dynamically and accurately. At the 
same time, the condition forced on their latency difference, 
ensures that no packets are reordered. To achieve fair bandwidth 
allocations, load balancing is attained in the system since the 
high-rate aggressive traffic flows are splitted along multiple 
parallel paths. The proposed switching technique is executed in 
the edge and core routers. We will show by simulations that our 
adaptive packet scheduler performs better than the standard fair-
queuing techniques. 
Keywords:  
Load Balancing, Splitting, Bursty Traffic, Aggressive Flows, 
Scheduler 

1. Introduction 

The performance optimization of operational networks is 
referred to as Traffic engineering. Traffic presented 
between origin and destination nodes, loads the network in 
one way and alternatively, this traffic has to be carried in 
the network in a way that performance intentions are 
satisfied. 

So as to obtain optimal resource utilization, throughput, or 
response time [1], load balancing is a method in computer 
networking to spread work between two or more 
computers, network links, CPUs, hard drives, or other 
resources. Rather than a single component, multiple 
components with load balancing are utilized to enhance 
reliability through redundancy. A devoted program or 
hardware device will provide the balancing service. 

In ISP networks, load balancing is common. It is a key 
constituent of traffic engineering, link bundling, and equal 
cost multi-path routing [2]. Moving traffic from 
overcrowded links to other parts of the network in a well-
controlled way is the initiative of load balancing. The load 
balancing can be devised as an optimization problem, if 
the traffic stipulates are recognized. Though, knowledge of 
traffic stipulates is frequently deficient Current trends in 
load balancing are pointing towards dynamic protocols. 
The traffic of an ingress-egress router pair onto multiple 
paths is mapped by these protocols and to evade hot-spots, 
they acclimatize the share of each path in real-time and 
deal with failures. The schemes ripping traffic across 
multiple paths at a well granularity has been required by 
the dynamic load balancing. 

However, to divide the traffic and their capability in 
shunning packet reorganizing, recent traffic splitting 
schemes display a fight among the granularities. The 
preferred load share to each path has been rapidly 
allocated through packet-based splitting. However, 
splitting at packet granularity can reorganize a huge 
number of packets at what time paths vary in delay. TCP 
mystifies this reordering as a sign of congestion and 
ensuing in degraded performance. Some UDP-based 
applications, like VoIP, are sensitive to packet reordering. 
Conversely, flow-based splitting pins every flow to a 
particular path and shirks packet reordering. However, 
flows vary extensively in their sizes and rates. A flow 
continues on the path all through its existence, if it is once 
assigned. Therefore, flow-based splitting may not succeed 
to rapidly re-balance the load in the face of altering 
demands [6] or allot erroneous amounts of traffic to every 
path. This lack of ability speedily respond to traffic spikes 
congests links and diminishes network good put. 

To distribute load in network systems, hashing is a 
fashionable means. On the contrary to round-robin or 
minimum-load mapping, hashing is used in parallel IP 
forwarding systems due to its capability in sustaining the 
packet order of individual TCP connections. Hashing 
operates at flow level. Hashing only is not competent to 
balance workload under extremely changeable Internet 
traffic [6]. To accommodate the burstiness and the 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008 
 

153

presence of enormously large flows, adaptive schemes are 
required.  

In this paper, we propose architecture for load balancing 
which contains an Adaptive Packet Scheduler (APS) and 
Bursty Traffic Splitter. The APS contains the following 
components: Classifier, Trigger Handler and Load Adapter. 
The trigger handler checks for load un-balance of the 
network and automatically triggers the load adapter. The 
classifier first classifies the flows into aggressive and 
normal flow.  Aggressive flows are treated as high-priority 
flows and rerouted into the best path, using the bursty 
traffic splitter algorithm. The bursty traffic splitting 
algorithm resides on the router and splits the aggressive 
flows over multiple parallel paths. In this algorithm, 
instead of switching packets or flows, it switches packet 
bursts. In this algorithm, instead of switching packets or 
flows, it switches packet bursts. Since the packet bursts are 
smaller in size, the algorithm splits the traffic dynamically 
and accurately. At the same time, the condition forced on 
their latency difference, ensures that no packets are 
reordered. Since the high-rate flows are splitted along 
multiple parallel paths, load balancing is attained in the 
system, there by achieving fair bandwidth allocations.  The 
proposed switching technique is executed in the edge and 
core routers. 

2. Related Work 

Using a type of weighted round-robin or shortfall round 
robin [3], [4] scheduling, a few proposals for traffic 
splitting forward packets onto multiple paths in datagram 
networks. These schemes are not used actually, since they 
cause considerable packet reorganizing. 

A distributed randomized scheme has been presented in 
[5], which constantly rebalances the lengths of intervals of 
a Distributed Hash Table based on a ring topology.  They 
have confirmed that the scheme works with high 
probability. Moreover, its cost calculated in the number of 
migrated nodes is similar to the best probable. However, 
the appearing constants from the analysis are huge and the 
analysis demands the harmonization of the algorithm. 
Counting of nodes is one more issue mislaid here. 

For resolving the memory performance problem in high-
speed routers, a theoretical foundation has been set in [8]. 
It carries under a general umbrella numerous high-speed 
router architectures and introduces a general principle 
called “constraint sets” to scrutinize them. But this paper 
converses just memory issues which are not bursty 
bursting traffic. 

For distributed data storage in P2P systems, they have 
specified numerous provably competent load balancing 

protocols in [10]. The notion of random load balancing is 
used in this. 

Deeming two typical load balancing approaches - static 
and dynamic, the performance analysis of a variety of load 
balancing algorithms based on dissimilar parameters have 
been presented in [11]. The presence of advantages and 
drawbacks of both static and dynamic types of algorithm 
over each other has been specified through the analysis. 
Based on the type of parallel applications, the 
implementing algorithm types would be chosen to resolve. 
Through learning the behavior of various offered 
algorithms, serving in design of new algorithms in future 
is the major intention of this paper. 

At what time the input traffic is modeled by a Markov-
modulated Poisson process (MMPP), the split traffic 
routed by a probabilistic routing algorithm has been 
characterized in [12].  They have find out that every split 
traffic under such splitting mechanism is also an MMPP 
with a proper parameter modification which is investigated 
in this paper.  They have applied the consequence to 
enable in obtaining network-wise performance procedures, 
continuous sojourn delay and delay variation in networks 
employing probabilistic routing algorithms through an 
estimated approach, later than having characterized the 
split traffic. But this solution is based on Packet-based 
splitting.  So it can root huge amount of packets 
rearranging. 

3. System Model 

We consider a parallel forwarding system where m  
disjoint paths ),....,,( 21 mPPP  concurrently process the 
packets dispatched from the scheduler.   The aggregate 
traffic arriving at a router, at rate r, is composed of a 
number of distinct transport-layer flows of varying rates. 
For the m disjoint paths iP  and a split 

vector ),,.....,,( 21 mffff =   where ]1,0[∈if , find a 

packet-to-path assignment such that the traffic rate on iP is 

equal to the Filter Rfi × .  Let us suppose that the path iP  

contains n nodes ),.....,,( 21 inii NNN  . Then, a packet 

d estined to the node ikN  is processed at once if ikN  is 

idle; otherwise, it is stored in a shared buffer of size B (in 
packets) in front of the node. Logically, the packet is also 
appended to the input queue of the node ikN .  Since the 
buffer size is fixed, the length of an input queue is between 
zero and the buffer size. At any time, the limit of a queue’s 
length depends on the number of packets in other queues.   



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008 
 
154 

A chief constituent of the load balancing problem is the 
traffic splitting. Balancing the load across multiple paths 
needs a mechanism to find the splitting vector F as well 
as a traffic splitter.  In case of balancing the load across a 
link bundle linking two routers, the splitting vector is static 
usually. Since decided by the adaptive packet scheduler, it 
will dynamically adopt to the congestion state along each 
path.  

4. Adaptive Packet Scheduling 

4. 1 Flow Classifier 

Our system contains a flow classifier which divides 
internet flows into two categories: the aggressive and the 
normal. By applying different forwarding policies to the 
two classes of flows, the adaptive packet scheduler 
achieves load balancing effectively and efficiently.  

We define aggressive flows as high-rate flows. Flows that 
are both large and fast are the source of long-term load 
imbalance and are most effective when shifted to balance 
load. These flows are similar to the alpha flows in [12]. In 
addition, taking the bursty nature of Internet traffic into 
consideration, we also classify flows that are smaller in 
size but are fast enough to cause short-term load imbalance 
or buffer-overflow as aggressive flows. 

The incoming IP traffic is considered as a sequence of 
windows ,......,, 21 WW  each containing w packets.  For a 

receiving window iW , we find the largest flows and form a 

set iFL  .  Let F be the size of the set iFL . At the end of 

the window iW , the flows stored in the flow table are 

replaced by the flows of iFL  .Due to the packet train [24] 
behavior of network flows, it is possible that some of the 
flows of iFL  may appear in 1+iFL  

ie. {}1 ≠+ii FLFL I  

Let 1+= iii FLFL Iπ  

Then we define
n

F
n

i
i∑

== 1

π
φ  

Where, wNoPn =  and NoP is the number of packets 
forwarded during the measurement.  Thus, larger the value 
ofφ , the better flow information collected in the current 
window predicts aggressive flows for the next window. 

4.2 Load Adapter 

When the system is in a balanced state, packets flows are 
mapped to the normal path as per the bursty splitter 
algorithm. When the system is unbalanced,   the triggering 
policy invokes the load adapter. The load adapter becomes 
active and may decide to override the decisions of the 
splitter. It checks each passing packet to see whether it 
belongs to one of the high-rate flows identified by the 
classifier. If the packet belongs to one of these flows, the 
load adapter reroutes these flows into the congestion free 
least loaded path.  

An important design parameter is F , the size of the 
balancer’s flow table. Generally, shifting more aggressive 
flows, i.e., having more flows in the table, is more 
effective as far as load balancing is concerned. 

4.3. Triggering Policy 

There are multiple choices for deciding when the system is 
unbalanced and the adapter should be activated to redirect 
packets. We use the Buffer Occupancy Threshold (BOT) 
for measuring the load unbalance.  The adapter is invoked 
if the buffer is filled above some percentage.  
 
 Eliminate users whose queues are empty. Only active 
users, who have packets for transmission, are taken into 
the selection procedure.  Check queue occupancies of the 
active users. If the queue sizes of these users exceed their 
buffer occupancy threshold, it signifies the cause of load 
unbalance and the load adapter is invoked. A fixed buffer 
allocation strategy is exploited which has the queuing 
threshold as 70% of total buffer spaces allocated to each 
flow. 

5. Traffic Splitting Algorithm 

5.1 Bursty Splitting  

To avoid packet reordering, our bursty splitting algorithm 
combines the effectiveness of both packet-based and flow-
based splitting.  

A packet-burst is a burst of packets from a given transport 
layer flow. 

 
 
 
    
 

Fig.1 Packet flow on parallel paths 

Consider the scenario in Fig.1 where a set of parallel paths 
diverge at a particular point and converge later. Each path 

2

TCP flow 

Diverging 
Point 

Converging 
Point 

1



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008 
 

155

contains some number of hops. Given two consecutive 
packets in a flow, if the first packet leaves the convergence 
point before the second packet reaches the divergence 
point, one can route the second packet and subsequent 
packets from this flow on to any available path without of 
reordering. Let T be the maximum latency difference of 
the parallel paths. So if we choose the timeout value of the 
packet-burst such that Tti > , consecutive packet-bursts 
can be switched independently without reordering.  

5.2 Load Splitting and Routing 

The bursty splitting algorithm is a traffic splitting 
mechanism executed on a router which accepts multiple 
parallel paths.  When a packet is received, the algorithm 
forwards the packet to the best path, by accepting a split 
vector as input.  The mechanism is based on abstraction to 
dynamically and accurately split traffic along multiple 
paths without reordering. The main functions of the 
algorithm are: 

(a) Estimating Latency Difference: To estimate the 
latency difference between the traffic splitted parallel 
paths, the algorithm uses periodic pings.  It sets the packet-
burst timeout value it  to T , where T  is the maximum 
latency difference between the parallel paths. So if we 
choose Tti > , packet-bursts of the same flow can be 
switched independently without packet reordering.  

 (b) Path Assignment: It uses a hash table that maps 
packet-bursts to paths. On packet arrival, the algorithm 
computes the 16-bit hash value as 

Hash ( src_ip, dest_ip , src_port, dest_port) 

This hash is used as the key into the packet-burst table. 
The table contains the following two fields:  idP  and tL , 

where idP  is the path id and tL  is the last seen time. Let 

tC  is the current time. A token itc  is maintained for each 

path iP  , to estimate the load deviation of the path. The 
following algorithm illustrates the path assignment process. 

1.    If )( itt tLC +< , then, 

1.1 Send packet through the path )( idi PP  

1.2 tt CL = . 
2.     Otherwise, 
2.1  Find the path maxP  , with )max( ii tctc =   

2.2 )()( max ididi PPPP =  

2.3 tt CL = . 

2.4  Send packet through the path )(max idPP  

(c)  Token-counting algorithm: To estimate the load 
deviation of the path, a token itc  is maintained for each 

path iP  of the parallel paths. 

 For every packet of size bw  bytes, all tokens are updated 
as follows: 

1,2,......i,         =×+= bwBtctc iii  

Where iB  is the fraction of the load to be sent on path iP . 

 The packet is assigned to a path according to the path 
assignment algorithm. Once the packet has been assigned 
to a particular path iP  , the corresponding token is 
decremented by the size of the packet: 

bwtctc ii −=  

The tokens successfully track the load assigned to a path. 
When a path gets a share 1B which is less than the desired 
load B , then the token is calculated as, 

BBtci −= 1  

Whenever a new packet-burst arrives, it is assigned to the 
path with the maximum number of remaining tokens. The 
tokens are reset for every measurement interval mt . 

6. Experimental Results 

6.1 Simulation Setup  

We simulated the design of our markers with the ns-2 [14] 
network simulator 1. The topology used in our 
experiments is depicted in Figure 2. 

 

 Fig.2 Simulation Topology 

 The topology consists of 3 senders S1, S2, S3 and 3 
receivers R1, R2, R3. The senders are connected to a 
router DP, which is a divergent point. The receivers are 
connected to a router CP, which is a convergent point. 
There are 3 parallel paths }7,8,4,3{1 =P , 

}7,6,3{2 =P and }7,9,5,3{3 =P . The requested 
bandwidth of the senders S1, S2, S3 are 10Mb,8Mb and 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008 
 
156 

5Mb, respectively. Different link bandwidth and delay are 
set for the 3 paths.  

6.2 Simulation Parameters 

We have taken the metrics received bandwidth and packet 
loss for evaluation. We compared our results with the 
standard queuing techniques CSFQ [4] and RED [15]. In 
our experiments, we vary the buffer size, traffic rate and 
packet size. The results are described in the next section. 

6.3 Results 

A. Buffer Size  
In the first experiment, we set the buffer size of the router 
as 50, and measure the received bandwidth. Figure 3, gives 
the result of 3 schemes in various time intervals. From the 
figure, we can see that, our APS algorithm has more 
received bandwidth than the CSFQ and RED schemes. 
Similar result is achieved in figure 4 for buffer size 100.  

Time Vs BandwidthReceived(buff-50)

0
2
4
6
8

10

0.5 1.5 2.5 3.5 4.5

Time(s)

B
an

dw
id

th
(M

b/
s)

APS

CSFQ

RED

 

Fig. 3 Time Vs Bandwidth (for buffer size 50)     

Time Vs Bandwidth Received(buff-100)

0
2
4
6
8

10
12

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Time(s)

B
an

dw
id

th
(M

b/
s)

Series1

Series2

Series3

                  

Fig. 4 Time Vs Bandwidth (for buffersize100) 

B. Packet Size 
In the next experiment, we vary the packet size as 
250,500,750 and 1000 and measure the received 
bandwidth and packet loss. Figure 5 shows that, the packet 
loss is more in RED, followed by CSFQ and is the least in 
APS. Figure 6 shows that the received bandwidth is more 
for APS, than CSFQ and RED. 

PacketSize Vs PacketLoss

0

5

10

15

250 500 750 1000

Size(bytes)

Lo
ss

APS

CSFQ

RED

 

Fig. 5 Packet Size Vs Packet Loss 

PacketSize Vs Bandwidth Received

0
0.02
0.04
0.06
0.08
0.1

0.12

250 500 750 1000

Size(bytes)
B

an
dw

id
th

(M
b/

s)

APS

CSFQ

RED

 

Fig. 6 Packet Size Vs Bandwidth 

C. Traffic Rate 
In the next experiment, we vary the traffic sending rate as 
100,200…500 (kb) and measure the received bandwidth 
and packet loss. From Figure 7, we see that the packet loss 
is more in RED, followed by CSFQ and is least in APS. 
Figure 8 shows that the received bandwidth is more for 
APS, than CSFQ and RED. 

Rate Vs PacketLoss

0
20
40
60
80

100

100 200 300 400 500

Rate(Kb/s)

Lo
ss

APS

CSFQ

RED

 

Fig. 7 Rate Vs Packet Loss    



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008 
 

157

RateVsBandwidthReceived

0

0.2

0.4

0.6

0.8

100 200 300 400 500

Rate(kb/s)

B
an

dw
id

th
(M

b/
s)

APS

CSFQ

RED

 

Fig. 8 Rate Vs Bandwidth 

D. Flows 
Finally, we measure the packet loss for increasing no. of 
flows. From Figure 9, we observe that the packet loss is 
more in RED, followed by CSFQ and is least in APS. 

No.Of Flows Vs PacketLoss

0

5

10

15

20

25

1 2 3 4

flows

lo
ss

APS

CSFQ

RED

 

Fig. 9 Flows Vs Bandwidth 

7. Conclusion 

In this paper, we have designed an adaptive packet 
scheduler with a bursty traffic splitting algorithm for load 
balancing. The scheduler has one classifier which 
classifies the flows into aggressive and normal flow. A 
trigger handler checks for load un-balance of the network 
and automatically triggers the load adapter. The load 
adapter reroutes the high-priority aggressive flows into the 
least loaded best path, using the bursty traffic splitter 
algorithm. The bursty traffic splitting algorithm splits the 
aggressive flows over multiple parallel paths, based on a 
split vector. In this algorithm, instead of switching packets 
or flows, it switches packet bursts. Since the packet bursts 
are small in size, the algorithm split the traffic dynamically 
and accurately. At the same time, the condition forced on 
their latency difference, ensures that no packets are 
reordered. To achieve fair bandwidth allocations, load 
balancing is attained in the system since the high-rate 
aggressive traffic flows are splitted along multiple parallel 
paths.  By simulations, we have shown that our adaptive 
packet scheduler performs better than standard fair-
queuing techniques. 

References 
[1]   Http://En.Wikipedia.Org/Wiki 
[2] Srikanth Kandula, Dina Katabi, Shantanu Sinha, Arthur 

Berger ”Dynamic Load Balancing Without Packet 
Reordering” Acm Sigcomm Computer Communication 
Review, Volume 37, Issue 2 (April 2007). 

[3]  S. Ramabhadran and J. Pasquale, "Stratified Round Robin: A 
Low Complexity Packet Scheduler with Bandwidth Fairness 
and Bounded Delay," Proc. Acm Communications 
Architectures and Protocols Conf. (Sigcomm), Karlsruhe, 
Germany, Pp. 239-249, Aug. 2003 

[4]  Yannick Blanpain, Hung-Yun Hsieh, Raghupathy Sivakumar   
“The Incremental Deployability of Core-Stateless Fair 
Queuing” Proceedings of the First International Conference 
on Networking-Part 2, Year of Publication: 2001, ISBN:3-
540-42303-6. 

[5]  Bienkowski, Marcin; Korzeniowski, Miroslaw; Meyer Auf 
Der Heide, Friedhelm: “Dynamic Load Balancing In 
Distributed Hash Tables”, In: Proc. Of The 4th Annual 
International Workshop On Peer-To-Peer Systems (Iptps), 
2005, S. 217-225  

[6] Shi, W.   Macgregor, M.H.   Gburzynski, P.   “Load 
Balancing For Parallel Forwarding” Networking, Ieee/Acm 
Transactions On Publication Date: Aug. 2005. 

[7] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, J. Teresco, 
J. Faik, J. Flaherty, L. Gervasio “New Challenges In 
Dynamic Load Balancing” Applied Numerical Mathematics, 
Vol. 52, Issues 2-3, Pp. 133-152, 2005. 

[8]   Load Balancing and Parallelism for the Internet” Nov 2007, 
Mendocino, CA. 

[9]  “Controlling Burstiness in Fair Queuing Scheduling” Cisco 
Systems, Bangalore, India, Oct 2007. 

[10] David R. Karger And Matthias Ruhl “Simple Efficient Load 
Balancing Algorithms For Peer-To-Peer Systems “Acm 
Symposium On Parallel Algorithms And Architectures, 
Proceedings Of The Sixteenth Annual Acm Symposium On 
Parallelism In Algorithms And Architectures, 2004 . 

[11] Sandeep Sharma, Sarabjit Singh, and Meenakshi Sharma 
“Performance Analysis of Load Balancing Algorithms” 
Proceedings of World Academy of Science, Engineering 
and Technology Volume 28 April 2008 Issn 1307-6884 

[12] Huei-Wen Ferng and Cheng-Ching Peng, “Traffic Splitting 
and Its Application to Network-Wise Performance 
Analysis,” In Proc. Scs International Symposium on 
Performance Evaluation of Computer and 
Telecommunication Systems (Spects) 2003, Montreal, 
Canada, July 2003. 

[13] J. C. N. Clímaco, J. M. F. Craveirinha, M. M. B. Pascoal 
and L. Martins “Traffic Splitting In Mpls Networks - A 
Hierarchical Multicriteria Approach” Journal of 
Telecommunications and Information Technology, 4:3-10, 
2007 

[14] http://www.isi.edu/nsnam 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008 
 
158 

 
 

M.Azath received his Master of 
Computer Science and 
Engineering   degree   from   Anna 
University, on June 2007.  
Currently, he is doing his research 
in the area of Networking under 
Anna University, Coimbatore. 
Earlier   he   completed   his   
B.Tech, in SSM College of 
Engineering from Anna University 

of Information Technology (IT), Chennai on April 2005. Later, 
he joined as Lecturer at VMU University in IT department 
from 2006 and still serves at the same university. His research   
interest   includes Networking, Wireless networks, Mobile 
Computing and Network Security. He   is    a    member    of   the    
Computer society   of India, Salem.  
 

Dr.R.S.D.Wahida Banu obtained 
B.E. degree in 1981 and her M.E. 
degree in Jan ‘85 from GCT, 
Coimbatore, Madras University. 
She got the Ph.D. degree in 1998 
from Anna University, Chennai. 
First lady to acquire Ph.D. in 
Chennai zone and second qualified 
Ph.D. supervisor in the area of 
Computer Science and Engineering 

related areas. As expertise is less it continues in the Directorate 
of Technical Education, Tamilnadu. She is the member of ISOC, 
IAENG, VDAT and life member of ISTE, IE, CSI and SSI. She 
is currently working as Professor and Head of Electronics and 
Communication Engineering, Government College of 
Engineering, Salem. 
 
 
 
 


