
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

191

Manuscript received October 5, 2008

Manuscript revised October 20, 2008

Er. Ashish Bansal†, Dr. Sarita Singh Bhadauria††, Dr. Roopam Gupta †††

†IT Department, Mahakal Institute Of Technology , 14-Azad Nagar, Ujjain, Madhya Pradesh, zip:456010, India,

††Electronics Department, Madhav Institute Of Technology and Science, Residency Road , Gwalior, Madhya Pradesh,

zip:474005 ,India
††† IT Department, University Institute Of Technology, Bhopal, Madhya Pradesh, India

Summary— Digital watermarking is a recent technology evolved
to prevent illegal copy or reproduction of digital content. Most of
the techniques developed use spatial and frequency domain for
encoding the watermarks. These techniques fulfill the
watermarking characteristics to varying degrees. There is a trade
off observed between the information content and the fidelity of the
cover image in almost all the works to a varying degree. This paper
discusses a special scheme based on backpropagation neural
network, which depends on small cover image parts to serve as
inputs to a Backpropagation network and train them to produce
corresponding small watermark image fragments. After training,
the trained network weights are supplied with the cover image for
the extraction of watermark. Small fragments of the cover image
are taken to produce small fragments of the watermark image using
trained weight matrix in the watermark extraction stage, which may
be united to produce the original watermark image again. The
watermark image is resistant to various image processing
operations enhancing robustness of watermarking as the weights of
the neural network remain unaffected by these operations.

Key Words — Digital watermark, Neural Net, Backpropagation
network.

I. Introduction
Digital watermarking should provide the qualities like
imperceptibility, robustness and security of cover image. A
large number of techniques have been developed based on
manipulating the bit plane of Least Significant Bit (LSB)[1],
linear addition of watermark to cover image[1], using mid
band coefficients of DCT transformed blocks to hide
watermark[2], maximizing strength of watermark using
Discrete Wavelet Transform(DWT) techniques[3],using
radial basis function(RBF)neural network to achieve
maximum strength watermark[4], transforming color space
of cover image and embedding watermark into saturation
channel [5], Embedding watermark in the DC components of
the transformed blocks [6] etc. Principles of
neuro-computing, and their usage in science and technology
is well explained in [7] .Cox et al. [8] pointed that, in order

for a watermark to be robust to attack, it must be placed in
perceptually significant areas of the image. Schyndel et al.
[9] had generated a watermark using a m-sequence generator.
Bas et al. [9] introduced a watermarking scheme using
fractal codes. Bartolini et al. [10] utilized the properties of
human visual system and generated watermark from DCT
coefficients. Kundur and Hatzinakos [11] embedded the
watermark in the wavelet domain where the strength of
watermark was decided by the contrast sensitivity of the
original image. Delaigle et el. [12] generated binary
m-sequences and then modulated on a random carrier. A
method for casting digital watermarks on images and
analyzing its effectiveness was given by I.Pitas[13] and
immunity to sub sampling was examined. Cox and Kilan
[14] presented a secure algorithm for watermarking images
using spread-spectrum techniques. Craver and Memon [15]
proposed digital watermarks to resolve the copyright
ownership. However, these techniques suffer from the
problems of unsatisfactory value of imperceptibility and
robustness to various attacks as discussed in these papers.
These techniques also have the problems related to security.
 The use of Neural Network for successful watermarking
was effectively done in [16], where Full Counterpropagation
Network (FCNN) was employed for the purpose of coding
the cover image into a watermark image.
Chun –Yu-Chang [16] proposed a wonderful technique of
embedding the watermarks into synapses of FCNN rather
than cover image. This helped to increase robustness and
reduce imperceptibility problems to a great extent. This
paper is an attempt to explore Backpropagation Neural
Network for Digital Watermarking applications. The cover
image fragments are supplied as inputs to the input layer of
Backpropagation Neural Network. The network is trained to
produce fragments of the desired watermark. The robustness,
fidelity and authenticity of the watermark generated is tested
in later sections.

Application of Backpropagation Neural Network to generate
fragmented watermarks and Full Watermark by Union

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

192

Section II discusses the approach for using backpropagation
Neural Network with fragmented cover image and
fragmented target watermark image.
Section III provides the detailed algorithm for embedding
and extraction. Section IV gives experimental results.
Conclusion is given in Section V followed by references.

II. Approach For Using Backpropagation Neural
Network With Fragmented Cover Image And
Fragmented Target Watemark Image

The approach used for the proposed work is described as
given below:

Embedding:

(1) The target watermark image is taken and divided into
small fragments with 2 rows and 4 columns (2×4 size).
(2) The cover image is also fragmented into 2×4 parts.
(3) Backpropagation Neural Network is chosen with 1 input,
1 hidden and 1 output layer.
(4) The fragmented cover image parts are supplied as inputs
to the input layer of the network respectively and weights are
adjusted to produce the corresponding target image parts at
the output layer.using Backpropagation algorithm.
(5) The trained network weights are stored in files.The cover
image with the trained weights of the network is supplied for
the purpose of extracting the watermark.

Extraction:

1) The watermarked image is taken, corrected by the image

corrector network and fragmented into 2×4 parts.
2) The weights are extracted from the files and the trained

neural network in the embedded stage is reconstructed.
3) The watermarked image parts are supplied at the input

layer neurons and the target watermark fragments are
produced at the output layer.

4) The output fragments so obtained are combined together
to form the original complete output watermark image.

III. Algorithm

The following conventions apply to the embedding
algorithm as well as extraction algorithms given below.

1) rand (‘state’, s) sets a random number generator to state s.
2) s= sign(M) generates a matrix s with same dimensions as
matrix M and contains signs of the elements of matrix M.
s(i,j) = 1 , if M(i,j) > 0 for 1<=i<mc,1<=j<=nc
s(i,j) = -1, if M(I,J)<0 for 1<=i<mc,1<=j<=nc
where,

mc=Number of rows of matrix M.
nc= Number of columns of matrix M.
3) M= abs(M) generates a matrix M containing absolute
values of the elements of M.
4) M= rand (m,c) generates a random matrix M containing m
rows and n columns .
5) M =zeros (m,c) generates a matrix of m rows and c
columns containing all zeros.
M (i,j) = 0 for 1<=i<=m,1<=j<=c.
6) M = binsig(M) generates a matrix containing binary
sigmoid values of each value of the matrix M.
7) M = binsigl(M) generates: (write this)
8) min_threshold_error puts a lower bar on the acceptable
value of error generated.
9) M=M UNION N appends the vector N at the end of
 the vector M.
10) M= reshape (M,mc,nc) reshapes the matrix M now with
mc number of rows and nc number of columns.

A. EMBEDDING
Step 1: Let the target watermark image be given as:
timage= [t11,t12,….tij,……tmc× nc]
 For 1<=i<=mc , 1<=j<=nc (1)
 Where, mc=number of rows in the target image.
 And nc= number of columns in the target image.

And the cover image be given as :
cimage=[c11,c12,….cij,……cmc× nc]
 For 1<=i<=mc, 1<=j<=nc (2)
 Where, mc=number of rows in the cover image.
 And nc= number of columns in the cover image.

Step 2: The random number generator is initiated to original
state Rs and a random matrix ran containing mc no. of rows
and nc number of columns is generated with this state key.
Setting the random number generator state is done by
equation (3).
rand (‘state’,Rs)
ran= rand(mc,nc) (3)
ran= [n1,n2,…nij,….nmc×nc] is now a matrix with mc rows
and nc columns.

Step 3: The target image is normalized to contain pixel
intensity values in the range from 0 and 1 for faster training
and the original signs of the target image are stored in
org_sgn.
timage(i,j) = timage(i,j)/255-ran(i,j)
For 1<=i<=mc, 1<=j<=nc (4)
org_sgn.=sign(timage) (5)
timage = abs(timage) (6)

Step 4: Now, timage is reshaped as a row vector containing

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

193

mc×nc number of columns.
timage[(i-1) ×nc+j]=t[i,j] for 1<=i<=mc,
1<=j<=nc (7)
This produces a row vector timage[t1,t2,….tmc×nc].

Step 5: Let the target watermark image be fragmented into L
number of segments given by:
L=(mc×nc)/8 (8)
(Each segment in L contains 8 elements).

Step 6: Let the remaining number of values in the target
image matrix after extracting all 8 segments is termed as
padlength given by
padlength = mc× nc – L× 8 (9)

Step 7: A Backpropagation algorithm based on a neural
network with 1 input layer, 1 hidden layer and 1 output layer
is used.
Let f denotes the fragment location.
f=0 (10)

Step 8: Now, we start a loop to pickup each segment of the
target image.

For each value of outloop from 1 to L repeat the steps from 9
to 22.

Step 9: Pickup image fragments.
The starting location of the image fragment f is given as
f=outloop×8-7 (11)
Pick up image fragment t containing 8 elements.
t = timage[f,f+1,f+2, …., f+7] (12)

Step 10: Reshape the image fragment t into a two dimension
matrix containing 2 rows and 4 columns.
t (1,j) = t(j) for 1<=j<=4 (13)
t (2,j-4) = t(j) for 5<=j<=8 (14)

The equations 13 and 14 produce a two dimension matrix t
with 2 rows and 4 columns..

Step 11:
Pick up image fragment c containing 8 elements.
c = cimage[f,f+1,f+2, …., f+7] (15)
Reshape the cover image fragment c into a two dimension
matrix containing 2 rows and 4 columns.
c(1,j)= c(j) for 1<=j<=4 (16)
c(2,j-4) = c(j) for 5<=j<=8 (17)

Let X denotes the selected 2*4 part of the cover image.

X=c (18)

Step 12: Now, the initial configuration of the
backpropagation network is chosen.
Let,
n= Number of input layer neurons.
m= Number of output layer neurons.
h=Number of hidden layer neurons.
The weight matrix representing the weights connecting from
input layer to hidden layer is represented by:
v=rand (n,h) – 0.5 (19)
The weight matrix representing the weights connecting the
hidden layer neurons to the output layer is represented by:
w= rand (h,m) – 0.5 (20)
The initial bias of hidden layer neurons is set as:
b1 = rand [1,h] – 0.5 (21)
The initial bias of output layer neurons is set as:
b2=rand [1,m]- 0.5
 (22)
Let v1 and w1 are the matrices containing all zeros.
v1 and w1 shall be used to record previous values of v and w
matrix before updation during each cycle of training to
calculate the momentum factor to speed up the learning
process.
v1= zeros (n,h)
 (23)
w1= zeros (h,m) (24)
The learning rate is represented by alpha and the momentum
factor is represented by mf.
The controlling variable for the training of the image
fragment con is initially set to 1.
con= 1 (25)
The total number of epochs to be used in training is stored in
epoch and set to an initial value of 0.
epoch = 0 (26)
Now, the training starts with the image section t as the target
output and random matrix X as random input matrix.

Step 13:
Repeat the steps from 14 to 20 while con=1

Step 14: The error e is used to find difference between the
target output and the output obtained and initialized to a
value of 0.
e=0 (27)

Step 15: Now to pick up each row of X for training, repeat
the steps from 16 to 18 for each value of I from 1 to
2.(representing 2 rows of the image section each with 4
elements).

Now, the output of the hidden layer and output layer neurons

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

194

are calculated in the following steps.

Step 16: Let Zin represents the net input to hidden layer
neurons.
Zin is initialized with bias b1.
Zin(j) = b1(j) for 1<=j<= h (28)
The net input Zin is calculated as:
Zin(j) = Zin(j) + X(I,i) ×v(i,j) for 1<=j<=h, 1<=i<=n (29)
The output of the hidden layer neurons is calculated by
finding the binary sigmoid function of Zin.
Z(j) = binsig(Zin(j)) for 1<=j<=h (30)
Let, Yin represents the net input to the output layer.
Yin is initialized with a bias b2.
Yin(k) = b2(k) for 1<=k<=m (31)
The net input Yin is calculated as:
Yin(k) = Yin(k) + Z(j) × w(j,k) for 1<=j<=h,1<=k<=m (32)
The output Y from the output layer neurons is given by:
Y(k) = binsig(Yin(k)) for 1<=k<=m (33)
This output is stored in a matrix ty.
ty(I,k) = Y(k) for 1<=k<=m (34)

Step 17: Now, the backpropagation of error is done.

The delta values to calculate weight adjustments at the
output layer are given by:
delk(k)= (t(I,k) – Y(k)) × binsigl(Yin(k)) for 1<=k<=m,
Where, t(I,k) – Y(k) is the error at the kth neuron in the output
layer.
The weights at the output layer are adjusted by:
delw(j,k) = alpha× delk(k) × z(j) + mf× (w(j,k)-w1(j,k))
For 1<=k<=m, 1<=j<=h (35)

The modifications in the bias of the output layer is calculated
as: delb2(k)=alpha× delk(k) , for 1<=k<=m (36)

To calculate the delta values to calculate the weight
adjustments at the hidden layer,
First, delinj is calculated and initialized to a value of 0.
delinj(j) = 0 for 1<=j<=h (37)

delinj is modified with the help of delk.

delinj(j) = delinj(j)+delk(k) × w(j,k) for 1<=k<=m,
1<=j<=h (38)

Now, delta value at the hidden layer neurons delj is
calculated using delinj.

delj(j)= delinj[j] × binsigl(zin[j]), for 1<=j<=h (39)
(This is used to calculate the modifications in the weight
matrix v).

The modifications in the weight matrix v are given by:
delv[i,j] = alpha× delj[j] × X[I,i] + mf × (v[i,j]-v1[i,j]),
For 1<=i<=n, 1<=j<=h (40)

The modifications in the biases of the input layer neurons is
given by: delb1 [j] = alpha×delj[j] , for 1<=j<=h (41)

Now, previous weights w and v are stored in w1 and v1
respectively. This is necessary to find the momentum factor
during later stages to speed up training process.

w1 [i,j]=w[i,j] for 1<=i<=h, 1<=j<=m
 and
v1 [i,j]=v[i,j] for 1<=i<=n, 1<=j<=h (42)

Now, weight matrix w is updated.
w[i,j]= w[i,j]+delw[i,j] , for 1<=i<=h, 1<=j<=m (43)
The weight matrix v is updated.
v[i,j] = v[i,j] + delv[i,j], for 1<=i<=n, 1<=j<=h (44)
The bias at the output layer is updated.
b2[k] = b2[k]+ delb2[k], for 1<=k<=m (45)
The bias at the input layer is updated.
b1[j] = b1[j] + delb1[j], for 1<=j<=h (46)

The error e between the desired output and the output
obtained is calculated by repeating equation 43 for each
value of k from 1 to m.

e=e+ (t[I,k]-Y[k])^2 for 1<=k<=m (47)

Step 18: I=I+1, goto step 15 if I<3 (48)

Step 19: Modify the value of the controlling variable
depending on total cumulative error e for the current image
section.

If e<min_threshold_error
then con= 0 (49)
Increment the current no. of epochs.
epoch =epoch+1 (50)

Step 20: If con=1 then go to step 13, else follow step 21.

Step 21: Now, the trained weight matrices are stored in files.

The files wfile, vfile, b1file, b2file are opened in “write”
mode.

The weight matrix w is stored in wfile.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

195

The weight matrix v is stored in vfile.
The bias matrix b1 is stored in b1file.
The bias matrix b2 is stored in b2file

Step 22: Go to step 8 if outloop<=L

Step 22:

Now, all the files are closed.
The random state Rs is stored in higher precision bit of the
fractional value of the pixel value intensity.
Now, this watermarked image is supplied with the trained
weight matrix files for the watermark extraction algorithm.
.

B. EXTRACTION

Step 1: The initial random state key Rs is extracted from the
higher precision bit of the fractional part of the pixel value
intensity of the image and the random number generator is
set to state specified by the random state key Rs.

Step 2: Open all the files wfile, vfile, b1file, b2file in read
mode to read the trained weight matrices of Backpropagation
network corresponding to each image fragment respectively.

Step 3:
Now, for each value of outloop from 1 to L repeat the steps
from 4 to 15. (This is to pickup each image fragment).

Step 4: Pickup the image section X as indicated in the
Embedding algorithm.

Step 5: Read from the trained weight files and populate the
corresponding weight matrices. (Corresponding to the
successive image sections.. one by one.)

w is populated from wfile.
v is populated from vfile.
b1 is populated from b1file.
b2 is populated from b2file.

Step 6: For each value of I from 1 to 2, perform the steps
from
7 to 14

Step 7: Initialize Zin with the bias b1.
Zin(j)= b1(j), for 1<=j<=h (51)

Step 8: Find the net input Zin to hidden layer neurons.
Zin(j)= Zin(j) + X(I,i) × v(I,j), for 1<=i<=n, 1<=j<=h (52)

Step 9: The output of the hidden layer neuron is calculated
as:
Z(j) = binsig(Zin(j)), for 1<=j<=h (53)

Step 10: Initialise Yin with the bias b2.
Yin[k]= b2[k] for 1<=k<=m (54)

Step 11: Now, the net input to the output layer neuron Yin is
calculated as:
Yin[k] = Yin[k] + Z[j] × w[j,k], for 1<=j<=h,1<=k<=m (55)

Step 12: The output from the output layer neuron is
calculated as: Y[k] = binsig(Yin[k]), for 1<=k<=m
(56)

Step 13: This output is stored in ty.
ty[I,k] = Y[k], for 1<=k<=m (57)

Open a file tyfile in “write” mode to and store ty in tyfile.

Step 14: I=I+1
If I<2 goto step 6 else goto step 15.
Step 15: outloop = outloop +1
Goto step 3 if outloop<L+1 else goto step 16.

Step 16: Close all files.
Now, open the tyfile in “read” mode.
Now, each image fragment is read from tyfile and appended
to a matrix obt_image.

Step 17: Initialize obt_image as a null matrix.
obt_image = [] (58)

Step 18: Now read all image sections from tyfile into ty
matrix. For each value of outloop from 1 to L repeat steps
from 19 to 22.

Step 19: Read image section from the tyfile into matrix ty of
dimension 2× 4. (2 rows and 4 columns).

Step 20: Now ty is reshaped into a row vector of dimension
(1× 8).
ty[(i-1)×4+j] = t[i,j] for 1<=i<=2, 1<=j<=4 (59)
This provides a row vector ty= [ty1, ty2,….ty8]

Step 21: Now, the row vector ty is appended to obt_image.
obt_image= obt_image U ty (60)

Step 22: outloop = outloop+1
Goto step 18 if outloop<L+1 else go to step 23.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

196

Step 23: Now, a vector of zeros of length equal to padlength
is appended to the obt_image.
padder = zeros(1,padlength) (61)
obt_image=obt_image U padder (62)

Step 24: Now, reshape the obt_image into a matrix with mc
number of rows and nc number of columns.
obt_image[1,j]= obt_image[j], for 1<=j<=nc, i=1 (63)
obt_image[i,j-4*(i-1)]= obt_image[j],for
(nc+i-1)<=j<=nc,i>1
 (64)
Step 25: Now to set the random state generate the original
random state Rs to calculate the random matrix ran.
rand (‘state’,Rs)
ran= rand(mc,nc) (65)

Step 26: Now, the original signs from org_sign are included
into obt_image.
obt_image(i,j)=obt_image(i,j) × org_sign(i,j)
For 1<=i<=mc, 1<=j<=nc (66)

Step 27: Now, to reverse the effect of normalization done in
step 3 during embedding.
obt_image[i,j]=obt_image[i,j]+ran[i,j], for
1<=i<=mc, 1<=j<=nc (67)
And
obt_image[i,j] = obt_image[i,j] × 255, for 1<=i<=mc,
1<=j<=nc (68)

Step 28: Now obt_image is displayed.
This is the target watermark image reconstructed from the
watermarked image fragments and available as network
output.

IV. Experiments conducted WITH AND THE results:

a) In this experiment, variation of PSNR is shown with
respect to change in threshold value. The threshold is varied
from 0.4 to 0.0001 as shown in table – I. With the reduction
in the threshold value, the PSNR goes on increasing. There is
also an increment seen in training time and number of epochs
required for training. The values of α is kept at 4 and the
value of mf is also kept constant at 0.8. The PSNR varies
from 16.21 to 40.66. The best PSNR value is obtained at
threshold value of 0.0001 with a training time of 322.85
seconds and number of epochs as 223499. Fig. 1 to Fig. 4
show the extracted watermark image corresponding to
threshold values of 0.1, 0.01, 0.001 and 0.0001 respectively.

TABLE- I
(Variation of PSNR with threshold)

 (α =4, mf= 0.8)

α mf Threshold PSNR Training
time

Epochs

4 0.8 0.4 16.21 18.91 6445
4 0.8 0.3 17.28 21.42 8412
4 0.8 0.2 18.81 24.79 11345
4 0.8 0.1 20.89 32.20 16900
4 0.8 0.01 29.72 66.71 38835
4 0.8 0.001 35.73 128.43 83438
4 0.8 0.0001 40.66 322.85 223499

 FIG 1 (Threshold=0.1)

FIG.2 (Threshold = 0.01)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

197

FIG. 3 (Threshold = 0.001)

FIG. 4 (Threshold = 0.0001)

b) In the second experiment, the variation of training time
with respect to mf is seen. mf is used to accelerate the
training time and pushing the training in the direction of
previous weight changes. For this experiment, α is kept
at a constant value of 0.9 and threshold is kept constant at
0.5. The training time reduces with the increase in mf from
0.1 to 0.9 in steps of 0.1. The training time varies from
41.96 sec. to 22.40 seconds and the number of epochs
used to train the network reduces from 22800 to 9126 with
the variation in mf from 0.1 to 0.9 respectively. The chart
presented in Fig. 5 represents the variation in training time
with respect to mf. The reducing trend of training time
with increase in mf is clearly visible from this chart.

TABLE – II
(Variation of Training time with mf)

(α =0.9, threshold=0.5)

Threshold mf α Training time Epochs
0.5 0.1 0.9 41.96 22800
0.5 0.2 0.9 38.77 22780
0.5 0.3 0.9 34.14 16547
0.5 0.4 0.9 28.88 14003
0.5 0.5 0.9 25.95 11591
0.5 0.6 0.9 22.29 9683
0.5 0.7 0.9 20.99 8219
0.5 0.8 0.9 20.23 7599
0.5 0.9 0.9 22.40 9126

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

25

30

35

40

45
Variation of Training Time with mf for alpha=.9,threshold=0.5

mf

Tr
ai

ni
ng

 T
im

e
TRAINING TIME

 Fig. 5 (Variation of training time with mf)

c) In the third experiment, the variation of training time is
plotted with respect toα , keeping threshold constant at
0.5 and mf constant at 0.3. α represents the learning rate
of the neural network. With the reduction inα , the
training time and number of epochs increase gradually.
With the variation of α from 4 to 0.4, the training time
increases from 22.50 sec. to 53.26 sec. and the epochs
used to train the network increase from 10038 to 29668
respectively. Fig. 8 shows the chart showing the variation
of training time withα . The reduction in training time
with increased value of α is clearly seen from the chart.
Fig. 9 shows the chart showing the reduction in number of
training epochs required with increase in the value ofα .

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

198

TABLE – III
(Variation of Training time withα)

(Threshold=0.5, mf=0.3)
Threshold mf α Training time Epochs
0.5 0.3 4 22.50 10038
0.5 0.3 3 25.00 10877
0.5 0.3 2 25.78 11484
0.5 0.3 1 32.44 15669
0.5 0.3 0.8 36.00 17855
0.5 0.3 0.7 38.33 19654
0.5 0.3 0.6 38.92 21862
0.5 0.3 0.5 46.97 24955
0.5 0.3 0.4 53.26 29668
0.5 0.3 0.3 64.21 37456
0.5 0.3 0.2 86.22 51992

0 0.5 1 1.5 2 2.5 3 3.5 4
20

30

40

50

60

70

80

90
Variation of Training Time with alpha for mf=.3,threshold=0.5

alpha

Tr
ai

ni
ng

 T
im

e

TRAINING TIME

 FIG.6 (Training time v/s alpha)

d) In this experiment, the robustness of the watermarking
scheme is shown. The cover image of Lena shown in fig. 7
contains only the random generator key embedded in the
higher precision bits of the intensity value of the first pixel of
the image. As the various attacks failed to disturb this key
and the information was embedded in the weights of the
neural network derived from the files and there is an image
corrector applied before extracting the final watermark
which restores the fidelity of the un-attacked image, there
was no visual deterioration of the watermark image obtained.
The various attacks used were blurring, cropping, and
sharpening, rotation, and scaling and JPEG compression. In
each case, PSNR value of the watermark image was obtained
for the threshold values varying from 0.1 to 0.0001
respectively. The table IV shows the obtained values of
PSNR for each of these attacks. It is seen that these values
are exactly same as shown in table I. This is possible only

because the watermarked image of Lena does not contain the
actual information. In fact, the actual information is derived
from the weights of the neural network already saved in files
during the training step. Only, the random state key was
embedded in the cover image of Lena and it was also saved
with the files. This key is being embedded in the cover image
mainly for the purpose of authentication as discussed in later
experiments.

TABLE – IV
Threshold values Attack

0.1 0.01 0.001 0.0001
 (PSNR) (PSNR) (PSNR) (PSNR)
Blurred 20.89 29.72 35.73 40.66
Cropped 20.89 29.72 35.73 40.66
Sharpen 20.89 29.72 35.73 40.66
Rotation 20.89 29.72 35.73 40.66
Scaling 20.89 29.72 35.73 40.66
JPEG 20.89 29.72 35.73 40.66

e) In this experiment, the test of imperceptibility is done. The
cover image taken was Lena’s image. The random state key
was hidden in the higher precision of first pixel value. Let
the cover image (Lena’s image) is given as:
Y= [y11, y12,….yij,……ymc× nc] (Fig. 8)
The first pixel value Y (1, 1) = 136 is changed to
Y (1,1) = 136.0010. (Fig. 7)
The last 2 bits represent the hidden state key. This value is
extracted and used testing authenticity of the watermarked
image. The PSNR value of the watermarked image of Lena
after the insertion of the random state key, with respect to the
original picture of Lena is calculated as 145.5371.This high
value of PSNR indicates that, there is a very little
deterioration in the quality of cover image by insertion of the
random state key. Thus, the property of imperceptibility is
highly preserved under this scheme

FIG.7 (Lena’s cover image containing random
generator key)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

199

 FIG. 8 (Original Lena’s image)

when only a small state key is inserted .However, if the
encoding matrix of 4*8 size is inserted by DCT encoding
method, the PSNR of watermarked image comes to 48.68.

This is because the payload inside the image increases
and thus reduces the fidelity. In practical situations, there
is a likelihood of having bigger payload for the sake of
authentication.

f) Authenticity test:

The random state key is derived from the high precision
bits of the first pixel of the cover image of Lena and then
compared with the value of random state key stored in the
file during the algorithm. If the two values match,
authenticity is preserved, otherwise, the authenticity is
suspected. Thus, authenticity feature is also well
preserved in this scheme. Also, when random numbers are
generated with a wrong key of 1000, the output obtained
is not as expected .Thus, authenticity is preserved.

Conclusions:

In this paper, Backpropagation Neural Network is being
used for training cover image fragments into
corresponding target watermark image fragments.
Encoding the watermark using the weights of
Backpropagation network has reduced the chances of
watermark destruction with image processing operations.
The watermark image needs to be supplied with the
trained network weights to produce the watermark output.
As the target watermark image is normalized with the help
of random state key Rs which is stored in the image itself,

this is used for the authenticity purpose. Results have
revealed that a Backpropagation Neural Network may be
successfully employed to provide a successful
watermarking scheme by training the cover image
fragments for the corresponding target watermark image
fragments.

REFERENCES
[1] R.G.Van Schyndel,A. Z.Tirkel and CF. Osborene, “A Digital

Watermark” in Proc. IEEE International Conf. Image
processing,1994,vol.2 pp 86-92.

[2] Ahmidi N. Safabaksh R. “A Novel DCT Based Approach for Secure
Color Image Watermarking” in Proc. ITCC 2004 International
Conference Information Technology: Coding and computing,
2004,vol 2,pp 709-713.

[3] K.J.Davis and K.Najarian “Maximizing Strength of Digital
Watermarks Using Neural Networks”, in Proc. International Joint
Conf. Neural Network, 2001, vol 4, pp. 2893-2898.

[4] Zhang Zhi Ming,Li Rong-Yan,Wang Lei, “Adaptive Watermark
Scheme with RBF Neural Networks”, in Proc. 2003 International Conf.
Neural Networks and Signal Processing, 2003,vol 2. pp. 1517-1520.

[5] Ren –Junn Hwand,Chuan-Ho Kao and Rong-Chi Chang, “Watermark
in Color Image” in Proc. First International symposium on cyber
worlds, 2002, pp 225-229.

[6] Fengsen Deng and Bingxi Wang,“A Novel Technique for Robust
Image Watermarking in the DCT Domain” in Proc. Of the 2003
International Conf. Neural Networks and Signal Processing, 2003,
vol.2, pp.1525-1528.

[7] Fredric M.Ham and Ivica Kostanic, “Principles of Neurocomputing
for Science & Engineering”, Mc.GrawHill, Singapore, 2001, pp,
136-140.

[8] J.Cox,J.Kilian , “A Secure Robust Watermark for Multimedia” in
Proc. First International Workshop, vol 1174 of Lecture notes in
computer science, pp. 185-206.

[9] R.Schyndel, A.Tirkel, and C.Osborne, “A Digital Watermark” in Proc.
IEEE Int. Conf. on Image Processing, Nov. 1994 ,vol II, pp.86-90.

 [10] F.Bartolini,M.Barni,V.Cappellini ad A.Piva, “Mask Building for
Perceptually Hiding Frequency Embedded Watermarks”, in Proc.
Int.Conference on Image Processing ,Oct. 1998,vol. I, pp. 450-454.

 [11] D.Kundur and D. Hatzinakos, “A Robust Digital Image Watermarking
Method using Wavelet – Based Fusion”, in Proc, IEEE Int. Conf. on
Image Processing , Oct. 1997, vol. I, pp. 544-547.

 [12] J.Delaigle,C.De Vleeschouwer, and B. Macq, “Psychovisual Approach
to Digital Picture Watermarking”, Journal of Electronic Imaging,
vol.7,No.3,pp.628-640,July 1998.

 [13] I.Pitas, “A Method for Signature Casting on Digital Images”, in Proc,
IEEE Int. Conf. on Image Processing ,Sept 1996,vol.III,pp.215-218.

[14] I.Cox,J Kilan,“Secure Spread Spectrum Watermarking for Images,
Audio and Video” , in Proc. IEEE International Conference on Image
Processing ,1996,vol 3,pp. 243-246.

[15] S. Craver, N. Memon, “Resolving Rightful Ownership with Invisible
Watermarking Techniques: Limitations, Attacks and Implications”,
IEEE Trans., vol 16, No. 4,pp. 573-586,1998.

[16] Chun-Yu-Chang, “The Application of a Full Counterpropagation Neural
Network to Image Watermarking”, 2005, IEEE

