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Summary— Digital watermarking is a recent technology evolved 
to prevent illegal copy or reproduction of digital content. Most of 
the techniques developed use spatial and frequency domain for 
encoding the watermarks. These techniques fulfill the 
watermarking characteristics to varying degrees. There is a trade 
off observed between the information content and the fidelity of the 
cover image in almost all the works to a varying degree. This paper 
discusses a special scheme based on backpropagation neural 
network, which depends on small cover image parts to serve as 
inputs to a Backpropagation network and train them to produce 
corresponding small watermark image fragments. After training, 
the trained network weights are supplied with the cover image for 
the extraction of watermark. Small fragments of the cover image 
are taken to produce small fragments of the watermark image using 
trained weight matrix in the watermark extraction stage, which may 
be united to produce the original watermark image again. The 
watermark image is resistant to various image processing 
operations enhancing robustness of watermarking as the weights of 
the neural network remain unaffected by these operations. 
 
Key Words — Digital watermark, Neural Net, Backpropagation 
network. 

I. Introduction 
Digital watermarking should provide the qualities like 
imperceptibility, robustness and security of cover image. A 
large number of techniques have been developed based on 
manipulating the bit plane of Least Significant Bit (LSB)[1], 
linear addition of watermark to cover image[1], using mid 
band coefficients of DCT transformed blocks to hide 
watermark[2], maximizing strength of watermark using 
Discrete Wavelet Transform(DWT) techniques[3],using 
radial basis function(RBF)neural network to achieve 
maximum strength watermark[4], transforming color space 
of cover image and embedding watermark into saturation 
channel [5], Embedding watermark in the DC components of  
the transformed blocks [6] etc. Principles of 
neuro-computing, and their usage in science and technology  
is well explained in [7] .Cox et al. [8] pointed that, in order 

for a watermark to be robust to attack, it must be placed in 
perceptually significant areas of the image. Schyndel et al. 
[9] had generated a watermark using a m-sequence generator. 
Bas et al. [9] introduced a watermarking scheme using 
fractal codes. Bartolini et al. [10] utilized the properties of 
human visual system and generated watermark from DCT 
coefficients. Kundur and Hatzinakos [11] embedded the 
watermark in the wavelet domain where the strength of 
watermark was decided by the contrast sensitivity of the 
original image. Delaigle et el. [12] generated binary 
m-sequences and then modulated on a random carrier. A 
method for casting digital watermarks on images and 
analyzing its effectiveness was given by I.Pitas[13] and 
immunity to sub sampling was examined. Cox and Kilan 
[14] presented a secure algorithm for watermarking images 
using spread-spectrum techniques. Craver and Memon [15] 
proposed digital watermarks to resolve the copyright 
ownership. However, these techniques suffer from the 
problems of unsatisfactory value of imperceptibility and 
robustness to various attacks as discussed in these papers. 
These techniques also have the problems related to security. 
 The use of Neural Network for successful watermarking 
was effectively done in [16], where Full Counterpropagation 
Network (FCNN) was employed for the purpose of coding 
the cover image into a watermark image. 
Chun –Yu-Chang [16] proposed a wonderful technique of 
embedding the watermarks into synapses of FCNN rather 
than cover image. This helped to increase robustness and 
reduce imperceptibility problems to a great extent. This 
paper is an attempt to explore Backpropagation Neural 
Network for Digital Watermarking applications. The cover 
image fragments are supplied as inputs to the input layer of 
Backpropagation Neural Network. The network is trained to 
produce fragments of the desired watermark. The robustness, 
fidelity and authenticity of the watermark generated is tested 
in later sections.  

Application of Backpropagation Neural Network to generate 
fragmented watermarks and Full Watermark by Union 
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Section II discusses the approach for using backpropagation 
Neural Network with fragmented cover image and 
fragmented target watermark image.  
Section III provides the detailed algorithm for embedding 
and extraction.  Section IV gives   experimental results. 
Conclusion is given in Section V followed by references. 

II. Approach For Using Backpropagation Neural 
Network With Fragmented Cover Image And 
Fragmented Target Watemark Image 

 
The approach used for the proposed work is described as 
given below: 

 
Embedding: 
 
(1) The target watermark image is taken and divided into 
small fragments with 2 rows and 4 columns (2×4 size). 
(2) The cover image is also fragmented into 2×4 parts. 
(3)  Backpropagation Neural Network is chosen with 1 input, 
1 hidden and 1 output layer. 
(4) The fragmented cover image parts are supplied as inputs 
to the input layer of the network respectively and weights are 
adjusted to produce the corresponding target image parts at 
the output layer.using Backpropagation algorithm. 
(5) The trained network weights are stored in files.The cover 
image with the trained weights of the network is supplied for 
the purpose of extracting the watermark. 
   
Extraction: 

 
1) The watermarked image is taken, corrected by the image 

corrector network  and fragmented into 2×4 parts. 
2) The weights are extracted from the files and the trained 

neural network in the embedded stage is reconstructed. 
3) The watermarked image parts are supplied at the input 

layer neurons and the target watermark fragments are 
produced at the output layer. 

4) The output fragments so obtained are combined together 
to form the original complete output watermark image. 

 

III. Algorithm  
 
The following conventions apply to the embedding 
algorithm as well as extraction algorithms given below. 
 
1) rand (‘state’, s) sets a random number generator to state s. 
2) s= sign(M) generates a matrix s with same dimensions as 
matrix M and contains signs of the elements of  matrix M. 
s(i,j) = 1 , if M(i,j) > 0  for 1<=i<mc,1<=j<=nc 
s(i,j) = -1, if M(I,J)<0   for 1<=i<mc,1<=j<=nc 
where, 

mc=Number of rows of matrix M. 
nc= Number of columns of matrix M. 
3) M= abs(M) generates a matrix M containing absolute 
values of the elements of M. 
4) M= rand (m,c) generates a random matrix M containing m 
rows and n columns . 
5) M =zeros (m,c) generates a matrix of m rows and  c 
columns containing all zeros. 
M (i,j) = 0 for 1<=i<=m,1<=j<=c. 
6) M = binsig(M) generates a matrix containing binary 
sigmoid values of each value of the matrix M. 
7) M = binsigl(M) generates: (write this) 
8) min_threshold_error puts a lower bar on the acceptable 
value of error generated. 
9) M=M UNION N appends the vector N at the end of 
 the vector M.  
10) M= reshape (M,mc,nc) reshapes the matrix M now with 
mc number of rows and nc number of columns. 
  

A. EMBEDDING 
Step 1: Let the target watermark image be given as: 
timage= [t11,t12,….tij,……tmc× nc] 
 For 1<=i<=mc , 1<=j<=nc                                             (1) 
 Where, mc=number of rows in the target image. 
 And nc= number of columns in the target image. 
 
And the cover image be given as : 
cimage=[c11,c12,….cij,……cmc× nc] 
 For 1<=i<=mc, 1<=j<=nc                                             (2)                            
 Where, mc=number of rows in the cover image. 
 And nc= number of columns in the cover image. 
 
Step 2: The random number generator is initiated to original 
state Rs and a random matrix ran containing mc no. of rows 
and nc number of columns is generated with this state key. 
Setting the random number generator state is done by 
equation (3). 
rand (‘state’,Rs) 
ran= rand(mc,nc)                                                            (3) 
ran= [n1,n2,…nij,….nmc×nc] is now a matrix with mc rows 
and nc columns. 
 
Step 3: The target image is normalized to contain pixel 
intensity values in the range from 0 and 1 for faster training 
and the original signs of the target image are stored in 
org_sgn. 
timage(i,j) =  timage(i,j)/255-ran(i,j)  
For 1<=i<=mc, 1<=j<=nc                                                  (4) 
org_sgn.=sign(timage)                                                       (5) 
timage = abs(timage)                                                         (6) 
 
Step 4: Now, timage is reshaped as a row vector containing 
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mc×nc number of columns. 
timage[(i-1) ×nc+j]=t[i,j]  for 1<=i<=mc, 
1<=j<=nc                                                                          (7) 
This produces a row vector timage[t1,t2,….tmc×nc]. 
 
Step 5: Let the target watermark image be fragmented into L 
number of segments given by: 
L=(mc×nc)/8                                                                      (8) 
(Each segment in L contains 8 elements). 
 
Step 6: Let the remaining number of values in the target 
image matrix after extracting all 8 segments is termed as 
padlength given by  
padlength = mc× nc – L× 8                                              (9) 
 
Step 7: A Backpropagation algorithm based on a neural 
network with 1 input layer, 1 hidden layer and 1 output layer 
is used. 
Let f denotes the fragment location. 
f=0                                                                                   (10) 
 
Step 8: Now, we start a loop to pickup each segment of the 
target image. 
 
For each value of outloop from 1 to L repeat the steps from 9 
to 22. 
 
Step 9: Pickup image fragments. 
The starting location of the image fragment f is given as 
f=outloop×8-7                                                                 (11) 
Pick up image fragment t containing 8 elements. 
t = timage[f,f+1,f+2, …., f+7]                                           (12) 
 
Step 10: Reshape the image fragment t into a two dimension 
matrix containing 2 rows and 4 columns. 
t (1,j) = t(j)  for 1<=j<=4                                                  (13) 
t (2,j-4) = t(j) for 5<=j<=8                                                (14) 
 
The equations 13 and 14 produce a two dimension matrix t 
with 2 rows and 4 columns.. 
 
Step 11:  
Pick up image fragment c containing 8 elements. 
c = cimage[f,f+1,f+2, …., f+7]                                         (15)                                  
Reshape the cover image fragment c into a two dimension 
matrix containing 2 rows and 4 columns. 
c(1,j)= c(j)  for 1<=j<=4                                                  (16)                          
c(2,j-4) = c(j) for 5<=j<=8                                               (17)                    
 
 
Let X denotes the selected 2*4 part of the cover image. 

X=c                                                                                 (18)                          
 
Step 12: Now, the initial configuration of the 
backpropagation network is chosen. 
Let, 
n= Number of input layer neurons. 
m= Number of output layer neurons. 
h=Number of hidden layer neurons. 
The weight matrix representing the weights connecting from 
input layer to hidden layer is represented by: 
v=rand (n,h) – 0.5                                                            (19)  
The weight matrix representing the weights connecting the 
hidden layer neurons to the output layer is represented by: 
w= rand (h,m) – 0.5                                                          (20) 
The initial bias of hidden layer neurons is set as: 
b1 = rand [1,h] – 0.5                                                  (21) 
The initial bias of output layer neurons is set as: 
b2=rand [1,m]- 0.5                                                       
 (22)  
Let v1 and w1 are the matrices containing all zeros. 
v1 and w1 shall be used to record previous values of v and w 
matrix before updation during each cycle of training to 
calculate the momentum factor to speed up the learning 
process. 
v1= zeros (n,h)                                                          
 (23) 
w1= zeros (h,m)                                                               (24) 
The learning rate is represented by alpha and the momentum 
factor is represented by mf.  
The controlling variable for the training of the image 
fragment con is initially set to 1. 
con= 1                                                                              (25) 
The total number of epochs to be used in training is stored in 
epoch and set to an initial value of 0. 
epoch = 0                                                                         (26) 
Now, the training starts with the image section t as the target 
output and random matrix X as random input matrix. 
 
Step 13: 
Repeat the steps from 14 to 20 while con=1 
 
Step 14: The error e is used to find difference between the 
target output and the output obtained and initialized to a 
value of 0. 
e=0                                                                                   (27) 
 
Step 15: Now to pick up each row of X for training, repeat 
the steps from 16 to 18 for each value of I from 1 to 
2.(representing 2 rows of the image section each with 4 
elements). 
 
Now, the output of the hidden layer and output layer neurons 
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are calculated in the following steps. 
 
Step 16: Let Zin represents the net input to hidden layer 
neurons.  
Zin is initialized with bias b1. 
Zin(j) = b1(j) for 1<=j<= h                                               (28) 
The net input Zin is calculated as: 
Zin(j) = Zin(j) + X(I,i) ×v(i,j) for 1<=j<=h, 1<=i<=n       (29) 
The output of the hidden layer neurons is calculated by 
finding the binary sigmoid function of Zin. 
Z(j) = binsig(Zin(j)) for 1<=j<=h                                      (30) 
Let, Yin represents the net input to the output layer. 
Yin is initialized with a bias b2. 
Yin(k) = b2(k) for 1<=k<=m                                              (31) 
The net input Yin is calculated as: 
Yin(k) = Yin(k) + Z(j) × w(j,k) for 1<=j<=h,1<=k<=m     (32) 
The output Y from the output layer neurons is given by: 
Y(k) = binsig(Yin(k)) for 1<=k<=m                                  (33) 
This output is stored in a matrix ty. 
ty(I,k) = Y(k) for 1<=k<=m                                              (34) 
 
Step 17: Now, the backpropagation of error is done. 
 
The delta values to calculate weight adjustments at the 
output layer are given by: 
delk(k)= (t(I,k) – Y(k)) × binsigl(Yin(k)) for 1<=k<=m, 
Where, t(I,k) – Y(k) is the error at the kth neuron in the output 
layer.  
The weights at the output layer are adjusted by: 
delw(j,k) = alpha× delk(k) × z(j) + mf× (w(j,k)-w1(j,k)) 
For 1<=k<=m, 1<=j<=h                                                    (35) 
 
The modifications in the bias of the output layer is calculated 
as: delb2(k)=alpha×  delk(k) , for 1<=k<=m                   (36) 
 
To calculate the delta values to calculate the weight 
adjustments at the hidden layer,  
First, delinj is calculated and initialized to a value of 0. 
delinj(j) = 0 for 1<=j<=h                                                 (37) 
 
delinj is modified with the help of delk. 
 
delinj(j) = delinj(j)+delk(k) × w(j,k) for 1<=k<=m, 
1<=j<=h                                                                           (38) 
 
Now, delta value at the hidden layer neurons delj is 
calculated using delinj. 
 
delj(j)= delinj[j] × binsigl(zin[j]), for 1<=j<=h               (39) 
(This is used to calculate the modifications in the weight 
matrix v). 

 
 
The modifications in the weight matrix v are given by: 
delv[i,j] = alpha× delj[j] × X[I,i] + mf × (v[i,j]-v1[i,j]), 
For 1<=i<=n, 1<=j<=h                                                     (40) 
 
The modifications in the biases of the input layer neurons is 
given by: delb1 [j] = alpha×delj[j] , for 1<=j<=h             (41) 
 
Now, previous weights w and v are stored in w1 and v1 
respectively. This is necessary to find the momentum factor 
during later stages to speed up training process. 
 
w1 [i,j]=w[i,j] for 1<=i<=h, 1<=j<=m  
 and 
v1 [i,j]=v[i,j]  for 1<=i<=n, 1<=j<=h                              (42) 
 
Now, weight matrix w is updated. 
w[i,j]= w[i,j]+delw[i,j] , for 1<=i<=h, 1<=j<=m              (43) 
The weight matrix v is updated. 
v[i,j] = v[i,j] + delv[i,j], for 1<=i<=n, 1<=j<=h               (44) 
The bias at the output layer is updated. 
b2[k] = b2[k]+ delb2[k], for 1<=k<=m                            (45) 
The bias at the input layer is updated. 
b1[j] = b1[j] + delb1[j], for 1<=j<=h                               (46) 
 
The error e between the desired output and the output 
obtained is calculated by repeating equation 43 for each 
value of k from 1 to m. 
 
e=e+ (t[I,k]-Y[k])^2  for 1<=k<=m                                    (47) 
 
Step 18: I=I+1, goto step 15 if I<3                                    (48) 
 
Step 19: Modify the value of the controlling variable 
depending on total cumulative error e for the current image 
section. 
 
If e<min_threshold_error 
then con= 0                                                                      (49) 
Increment the current no. of epochs. 
epoch =epoch+1                                                               (50) 
 
Step 20: If con=1 then go to step 13, else follow step 21. 
 
Step 21: Now, the trained weight matrices are stored in files. 
 
The files wfile, vfile, b1file, b2file are opened in “write” 
mode. 
 
The weight matrix w is stored in wfile. 
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The weight matrix v is stored in vfile. 
The bias matrix b1 is stored in b1file. 
The bias matrix b2 is stored in b2file 
 
Step 22: Go to step 8 if  outloop<=L 
 
Step 22: 
 
Now, all the files are closed. 
The random state Rs is stored in higher precision bit of the 
fractional value of the pixel value intensity. 
Now, this watermarked image is supplied with the trained 
weight matrix files for the watermark extraction algorithm. 
. 

B. EXTRACTION 
 
Step 1: The initial random state key Rs is extracted from the 
higher precision bit of the fractional part of the pixel value 
intensity of the image and the random number generator is 
set to state specified by the random state key Rs.  
 
Step 2: Open all the files wfile, vfile, b1file, b2file in read 
mode to read the trained weight matrices of Backpropagation 
network corresponding to each image fragment respectively. 
 
 
Step 3: 
Now, for each value of outloop from 1 to L repeat  the steps 
from  4  to 15. (This is to pickup each image fragment).  
 
Step 4: Pickup the image section X as indicated in the 
Embedding algorithm.  
 
Step 5: Read from the trained weight files and populate the 
corresponding weight matrices. (Corresponding to the 
successive image sections.. one by one.) 
 
w is populated from wfile. 
v is populated from vfile. 
b1 is populated from b1file. 
b2 is populated from b2file. 
 
Step 6: For each value of I from 1 to 2, perform the steps 
from  
7 to 14 
 
Step 7: Initialize Zin with the bias b1. 
Zin(j)= b1(j), for 1<=j<=h                                                (51) 
 
Step 8: Find the net input Zin to hidden layer neurons. 
Zin(j)= Zin(j) + X(I,i) × v(I,j), for 1<=i<=n, 1<=j<=h      (52) 

 
Step 9: The output of the hidden layer neuron is calculated 
as: 
Z(j) = binsig(Zin(j)), for  1<=j<=h                                    (53) 
 
Step 10: Initialise Yin with the bias b2. 
Yin[k]= b2[k]  for 1<=k<=m                                              (54) 
 
Step 11: Now, the net input to the output layer neuron Yin is 
calculated as: 
Yin[k] = Yin[k] + Z[j] × w[j,k], for 1<=j<=h,1<=k<=m    (55) 
 
Step 12: The output from the output layer neuron is 
calculated as: Y[k] = binsig(Yin[k]), for 1<=k<=m                        
(56) 
 
Step 13: This output is stored in ty. 
ty[I,k] = Y[k], for 1<=k<=m                                             (57) 
 
Open a file tyfile in “write” mode to and store ty in tyfile. 
 
Step 14: I=I+1 
If I<2 goto step 6 else goto step 15. 
Step 15: outloop = outloop +1 
Goto step 3 if outloop<L+1 else goto step 16. 
 
Step 16: Close all files. 
Now, open the tyfile in “read” mode. 
Now, each image fragment is read from tyfile and appended 
to a matrix obt_image. 
 
Step 17: Initialize obt_image as a null matrix. 
obt_image  = []                                                                (58) 
 
Step 18: Now read all image sections from tyfile into ty 
matrix. For each value of outloop from 1 to L repeat steps 
from 19 to 22. 
 
Step 19: Read image section from the tyfile into matrix ty of 
dimension 2× 4. (2 rows  and 4 columns). 
 
Step 20: Now ty is reshaped into a row vector of dimension 
(1× 8). 
ty[(i-1)×4+j] = t[i,j] for 1<=i<=2, 1<=j<=4                      (59) 
This provides a row vector ty= [ty1, ty2,….ty8] 
 
Step 21: Now, the row vector ty is appended to obt_image. 
obt_image= obt_image U  ty                                             (60) 
 
Step 22: outloop = outloop+1  
Goto step 18 if outloop<L+1 else go to step 23. 
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Step 23: Now, a vector of zeros of length equal to padlength 
is appended to the obt_image. 
padder = zeros(1,padlength)                                             (61) 
obt_image=obt_image U padder                                       (62) 
 
Step 24: Now, reshape the obt_image into a matrix with mc 
number of rows and nc number of columns. 
obt_image[1,j]= obt_image[j], for 1<=j<=nc, i=1             (63) 
obt_image[i,j-4*(i-1)]= obt_image[j],for 
(nc+i-1)<=j<=nc,i>1 
                                                                                         (64) 
Step 25: Now to set the random state generate the original 
random state Rs  to calculate the random matrix ran. 
rand (‘state’,Rs)                                                              
ran= rand(mc,nc)                                                              (65) 
 
Step 26: Now, the original signs from org_sign are included 
into obt_image. 
obt_image(i,j)=obt_image(i,j) × org_sign(i,j) 
For 1<=i<=mc, 1<=j<=nc                                                 (66) 
 
Step 27: Now, to reverse the effect of normalization done in 
step 3 during embedding. 
obt_image[i,j]=obt_image[i,j]+ran[i,j], for  
1<=i<=mc, 1<=j<=nc                                                      (67) 
And 
obt_image[i,j] = obt_image[i,j] × 255, for 1<=i<=mc, 
1<=j<=nc                                                                         (68) 
 
Step 28: Now obt_image is displayed. 
This is the target watermark image reconstructed from the 
watermarked image fragments and available as network 
output. 

IV. Experiments conducted WITH AND THE results: 
 

a) In this experiment, variation of PSNR is shown with 
respect to change in threshold value. The threshold is varied 
from 0.4 to 0.0001 as shown in table – I. With the reduction 
in the threshold value, the PSNR goes on increasing. There is 
also an increment seen in training time and number of epochs 
required for training. The values of α is kept at 4 and the 
value of mf is also kept constant at 0.8. The PSNR varies 
from 16.21 to 40.66. The best PSNR value is obtained at 
threshold value of 0.0001 with a training time of 322.85 
seconds and number of epochs as 223499. Fig. 1 to Fig. 4 
show the extracted watermark image corresponding to 
threshold values of 0.1, 0.01, 0.001 and 0.0001 respectively.  

 
 
 

TABLE- I 
(Variation of PSNR with threshold) 

                                (α =4, mf= 0.8) 
 

α mf Threshold PSNR Training 
time 

Epochs 

4 0.8 0.4 16.21 18.91 6445 
4 0.8 0.3 17.28 21.42 8412 
4 0.8 0.2 18.81 24.79 11345 
4 0.8 0.1 20.89 32.20 16900 
4 0.8 0.01 29.72 66.71 38835 
4 0.8 0.001 35.73 128.43 83438 
4 0.8 0.0001 40.66 322.85 223499 

 

 
                                       FIG 1 (Threshold=0.1) 

 
FIG.2 (Threshold = 0.01) 
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FIG. 3 (Threshold = 0.001) 

 

 
FIG. 4 (Threshold = 0.0001) 

 
b) In the second experiment, the variation of training time 
with respect to mf is seen. mf is used to accelerate the 
training time and pushing the training in the direction of 
previous weight changes. For this experiment, α is kept 
at a constant value of 0.9 and threshold is kept constant at 
0.5. The training time reduces with the increase in mf from 
0.1 to 0.9 in steps of 0.1. The training time varies from 
41.96 sec. to 22.40 seconds and the number of epochs 
used to train the network reduces from 22800 to 9126 with 
the variation in mf from 0.1 to 0.9 respectively. The chart 
presented in Fig. 5 represents the variation in training time 
with respect to mf. The reducing trend of training time 
with increase in mf is clearly visible from this chart. 
 
 
 
 

TABLE – II 
(Variation of Training time with mf) 

(α =0.9, threshold=0.5) 
 

Threshold mf α Training time Epochs 
0.5 0.1 0.9 41.96 22800 
0.5 0.2 0.9 38.77 22780 
0.5 0.3 0.9 34.14 16547 
0.5 0.4 0.9 28.88 14003 
0.5 0.5 0.9 25.95 11591 
0.5 0.6 0.9 22.29 9683 
0.5 0.7 0.9 20.99 8219 
0.5 0.8 0.9 20.23 7599 
0.5 0.9 0.9 22.40 9126 
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              Fig. 5 (Variation of training time with mf) 
   
c) In the third experiment, the variation of training time is 
plotted with respect toα , keeping threshold constant at 
0.5 and mf constant at 0.3. α  represents the learning rate 
of the neural network. With the reduction inα , the 
training time and number of epochs increase gradually. 
With the variation of α from 4 to 0.4, the training time 
increases from 22.50 sec. to 53.26 sec. and the epochs 
used to train the network increase from 10038 to 29668 
respectively. Fig. 8 shows the chart showing the variation 
of training time withα . The reduction in training time 
with increased value of α  is clearly seen from the chart. 
Fig. 9 shows the chart showing the reduction in number of 
training epochs required with increase in the value ofα . 
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TABLE – III 
(Variation of Training time withα ) 

(Threshold=0.5, mf=0.3) 
Threshold mf α  Training time Epochs 
0.5 0.3 4 22.50 10038 
0.5 0.3 3 25.00 10877 
0.5 0.3 2 25.78 11484 
0.5 0.3 1 32.44 15669 
0.5 0.3 0.8 36.00 17855 
0.5 0.3 0.7 38.33 19654 
0.5 0.3 0.6 38.92 21862 
0.5 0.3 0.5 46.97 24955 
0.5 0.3 0.4 53.26 29668 
0.5 0.3 0.3 64.21 37456 
0.5 0.3 0.2 86.22 51992 
 

0 0.5 1 1.5 2 2.5 3 3.5 4
20

30

40

50

60

70

80

90
Variation of Training Time  with alpha for mf=.3,threshold=0.5

alpha

Tr
ai

ni
ng

 T
im

e

TRAINING TIME

 
 
                          FIG.6 (Training time v/s alpha) 
 
d) In this experiment, the robustness of the watermarking 
scheme is shown. The cover image of Lena shown in fig. 7 
contains only the random generator key embedded in the 
higher precision bits of the intensity value of the first pixel of 
the image.  As the various attacks failed to disturb this key 
and the information was embedded in the weights of the 
neural network derived from the files and there is an image 
corrector applied before extracting the final watermark 
which restores the fidelity of the un-attacked image, there 
was no visual deterioration of the watermark image obtained. 
The various attacks used were blurring, cropping, and 
sharpening, rotation, and scaling and JPEG compression. In 
each case, PSNR value of the watermark image was obtained 
for the threshold values varying from 0.1 to 0.0001 
respectively. The table IV shows the obtained values of 
PSNR for each of these attacks. It is seen that these values 
are exactly same as shown in table I. This is possible only 

because the watermarked image of Lena does not contain the 
actual information. In fact, the actual information is derived 
from the weights of the neural network already saved in files 
during the training step. Only, the random state key was 
embedded in the cover image of Lena and it was also saved 
with the files. This key is being embedded in the cover image 
mainly for the purpose of authentication as discussed in later 
experiments. 

TABLE – IV 
Threshold values Attack 

0.1 0.01 0.001 0.0001 
 (PSNR) (PSNR) (PSNR) (PSNR) 
Blurred 20.89 29.72 35.73 40.66 
Cropped 20.89 29.72 35.73 40.66 
Sharpen 20.89 29.72 35.73 40.66 
Rotation 20.89 29.72 35.73 40.66 
Scaling 20.89 29.72 35.73 40.66 
JPEG 20.89 29.72 35.73 40.66 

 
e) In this experiment, the test of imperceptibility is done. The 
cover image taken was Lena’s image.  The random state key 
was hidden in the higher precision of first pixel value.    Let 
the cover image (Lena’s image) is given as: 
Y= [y11, y12,….yij,……ymc× nc] (Fig. 8) 
The first pixel value Y (1, 1) = 136 is changed to  
Y (1,1) = 136.0010. (Fig. 7) 
The last 2 bits represent the hidden state key. This value is 
extracted and used testing authenticity of the watermarked 
image. The PSNR value of the watermarked image of Lena 
after the insertion of the random state key, with respect to the 
original picture of Lena is calculated as 145.5371.This high 
value of PSNR indicates that, there is a very little 
deterioration in the quality of cover image by insertion of the 
random state key. Thus, the property of imperceptibility is 
highly preserved under this scheme 

 
FIG.7 (Lena’s cover image containing random     
generator key) 
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                    FIG. 8 (Original Lena’s image) 
 
when only a small state key is inserted .However, if the  
encoding matrix of 4*8 size is inserted by DCT encoding 
method, the PSNR of watermarked image comes to 48.68. 
 
 
This is because  the payload inside the image increases 
and thus reduces the fidelity. In practical situations, there 
is a likelihood of having bigger payload for the sake of 
authentication.  
 
f) Authenticity test: 
 
The random state key is derived from the high precision 
bits of the first pixel of the cover image of Lena and then 
compared with the value of random state key stored in the 
file during the algorithm. If the two values match, 
authenticity is preserved, otherwise, the authenticity is 
suspected. Thus, authenticity feature is also well 
preserved in this scheme. Also, when random numbers are 
generated with a wrong key of 1000, the output obtained 
is not as expected .Thus, authenticity is preserved. 
 
Conclusions: 
 
In this paper, Backpropagation Neural Network is being 
used for training cover image fragments into 
corresponding target watermark image fragments. 
Encoding the watermark using the weights of 
Backpropagation network has reduced the chances of 
watermark destruction with image processing operations.  
The watermark image needs to be supplied with the 
trained network weights to produce the watermark output. 
As the target watermark image is normalized with the help 
of random state key Rs which is stored in the image itself, 

this is used for the authenticity purpose. Results have 
revealed that a Backpropagation Neural Network may be 
successfully employed to provide a successful 
watermarking scheme by training the cover image 
fragments for the corresponding target watermark image 
fragments. 
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