
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008 
 

 
 

263

Manuscript received  October 5, 2008 
Manuscript revised  October 20, 2008 

 
On Load Balancing Model for Cluster Computers 

Huajie Zhang 
  

School of Math, Physics and Information Engineering College of Zhejiang Normal University, Jinhua 321004, China 

Summary 
Recently, cluster computers become a viable and less expensive 
alternative to multiprocessor systems. However, a serious 
difficulty in concurrent programming of a cluster computer 
system is how to deal with scheduling and load balancing of such 
a system which may consist of heterogeneous computers. Based 
on the four-tuple DLBM  (dynamic load balancing model) 
which is proposed by other scholars, this paper introduces a 
five-tuple DLBM  to better solve the above problems. The 
five-tuple involves balancing environment, task allotment, load 
estimate, scheduling strategy and scheduling evaluation. The 
five-tuple DLBM  interprets the full aspects of load balancing 
and makes the logical relationship between the five tuples more 
clear by using formalized language. According to the five-tuple 
model and the corresponding solution of each tuple, this paper 
realizes the model under certain experimental conditions in the 
Linux cluster system. Experiments are given testing the five-tuple 
DLBM  based on tasks that are independent, having a little or no 
relativity, uncertain executing time. The result shows that the 
model proposed in this paper can make the load balancing better. 
What’s more, scheduling evaluation shows that the strategies are 
reasonable. 
Key words: 
Parallel, Cluster computers, Load balancing model, Load 
estimate 

1. Introduction 

Today with the scale of scientific computing areas going 
up, an increasing requirement of application’s performance 
is needed. Thus, cluster computing becomes a feasible and 
cheap way to achieve high performance. However the 
approaches to handling scheduling and load balancing 
in homogeneous and heterogeneous cluster system are 
not adequate yet. Usually homogeneous workstations 
may have processors, memory and I/O with identical 
specifications. But it’s also not cheap for some 
researchers to buy large numbers of homogeneous 
computers. Also Moore’s law says that CPU clock 
speeds double every 18 months. Thus, constructing 
heterogeneous workstations is necessary. For improving 
the power of clustered computers, load balancing is the key 
technology of cluster systems [2], [3]. 

The distributed system can conveniently realize lots of 
parallel processes, and it has many advantages such as the 
usability of system’s resource, expansibility of the scale 
and parallelism. How to implement the management and 
scheduling of the distributed system is the critical factor in 

mining system’s potential parallelism sufficiently. In 
general, a distributed system needs to process many tasks 
synchronously and every computing node needs to handle 
many processes. So it is necessary to use scheduling and 
assignment algorithm to optimize the distribution of task, 
which will shorten the response time availably and reduce 
extra overhead in the execution. Thus load balancing is an 
important way to improve the distributed system’s 
performance, and one of its aims is improve the system’s 
performance, cut down the average response time of 
customer’s task, the other aim is to utilize the entire 
system’s resource equally and adequately. These two aims 
are coherent as utilization of the resource gets more 
balanceable, the response time of tasks gets shorter [3–5]. 

In general, there are two scheduling approaches in load 
balancing, static scheduling and dynamic scheduling. 
Static scheduling includes lots of schemes such as 
simulated annealing algorithm [6], genetic algorithm [7], 
heuristic algorithm[8], algorithm based on chart theory [9], 
etc. Dynamic scheduling includes some schemes like 
algorithm based node’s probability of choosing task 
randomly [10], method based on gradient model [11], an 
adaptive nearest neighbor contract algorithm [12], etc. 

There exists many ingredients to affect load balancing, 
and the implement of scheduling schemes are different. 
Many load balancing techniques designed to support 
distributed systems have been proposed and reviewed in 
the literature [13–18]. 

After considering some of load-balancing mechanism, 
this paper proposed a five-tuple load-balancing model, on 
the base of four-tuple load balancing model proposed by 
literature [1]. Load-balancing ranges over many aspects 
that are physical environment, software environment and 
all kinds of strategies. They are influenced by each other. 
The five-tuple load balancing model involves hardware 
environment, scheduling environment, task allotment, load 
estimate, scheduling strategy and scheduling evaluation. 
They are all expressed through mathematical definition. 
The five-tuple load balancing model interprets the full 
aspects of load balancing and makes the logical 
relationship between the five tuples more clearly by using 
formalized language. We use the five-tuple 

( , , , , )DLBM BE T LE SS EC=  to describe the load 
balancing. 

According to the five-tuple DLBM  and the 
corresponding solution of each tuple, the paper realized the 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008 
 

 

264 

model under a certain experimental conditions based on 
the Linux cluster system. Task allotment is completed by 
transferring array’s index. It’s simple and is no need to 
access kernel files. This paper adapts the max-min method 
which is better than before in the aspect of estimate 
accuracy. Furthermore, the machine states are reduced into 
two states, one is free and the other is overloaded. First of 
all, the former sends a request to the control node. On 
receiving the request from the idle node, control node 
calculates the most overloaded node that is to send the first 
index of tasks to idle node. In this way, all the nodes spend 
less time on scheduling the tasks. Experiments are made 
according to the five-tuple load balancing model based on 
tasks that are independent, having a little or no relativity, 
uncertain executing time. The result shows that the 
strategies proposed in this paper can make the load 
balancing better. What’s more, scheduling evaluation 
shows that the strategies are reasonable. 

The remainder of this paper is organized as follows. All 
five elements are discussed respectively in the section 2. In 
section 3, experimental results are presented, and some 
conclusions and future work are given in section 4. 
2. Theoretical Consideration 
 
2.1 Dynamic load balancing model 
 
Definition 1( DLBM ): Dynamic load balancing model is a 
five-tuple like ( , , , , )B E T L E S S E C  and every element 
indicates its own meaning as follows: 
B E : Balancing Environment; 

1 2 3{ , , ,..., }, ,PT T T T T T p Rφ += ≠ ∈ : Customer’s 

task, p R+∈ , p  denotes computing node; 

1 2 3{ , , ,..., }pLE LE LE LE LE= : Load Estimate, p  
denotes computing node; 
SS : Scheduling Strategy; 
EC : Evaluate Criterion. 
After interpreting every element, the figure which 
describes DLBM  is given as follows:  
   BE  

EC  
          iSS  
 

( ) 1,2,...,k jLE T p=  
 
                            
             
 

 
Fig. 1 Dynamic load balancing model. 

2.2 Balancing environment 
 

Define 2: The cluster's balancing environment B E  is a 
three-tuple, ( , , )BE CS SE SU=  and every element 
respectively denotes: 
CS (Cluster System): the cluster's physical network 
arrangement. Cluster system is a mutual cooperation and 
resource-sharing system composed by a group of 
distributed workstations under the communication protocol 
of physical connection. The dynamic load balancing 
strategy presented in this paper is to use large number of 
idle computer resources of lab or office LAN, also for the 
purpose of fully mining the existing computers' idle period. 
Such environment is connected by ordinary LAN hub or 
switch and is composed of a variety of computer resources, 
such as PC etc. Similarly to COW (Cluster of Workstation), 
it is composed of one main controlling node and other 
computing nodes, called radial topological structure. 
SE (Scheduling Environment): the node's logical topology. 
In the scheduling process of load balancing, the distributed 
system makes up of logical map topology, namely 
scheduling environment, in accordance with the 
cooperation agreement between the nodes, nature of tasks 
and different load balance scheduling strategy. The paper is 
mainly for relative and independent tasks which 
communicate with each other only at the beginning or in 
the end. 
SU (Scheduling Unit): the nodes participated in the 
computing. 1 2 3{ , , ,..., }, 2 1p

qSU SU SU SU SU q= = −  
p  denotes computing node. 

Scheduling implementation of load balancing needs nodes 
involved in. Each node is a unit that implementing tasks 
and transfer or receive tasks following scheduling strategy. 
The paper is designed as that the main control computer 
generates child process which sees to corresponding node 
to collect and send messages.  
 
2.3 Task Set 
 
Definition 3 (Task Set): The task set is a three-tuple 
like ( , , )T TT TP TR= , and every element is interpreted 
as follows: 

{ },, ,cpu IO cpu IOTT TT TT TT= : The task's type of the 

customer submitted. cpuTT  is a CPU-dependent task that 

requires prolonged occupation of CPU, IOTT  is an 
I/O-dependent task that needs a large number of I/O 
operations, ,cpu IOTT  is also needs CPU and I/O 
resources. 

{ },task dataTP TP TP= : Task divided pattern by customer. 
The task is decomposed in two dimensions. Task 
decomposition dimension sees the problem as an 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008 
 

 

265

instruction stream, and the instructions are decomposed in 
many tasks' sequence, and the tasks can be carried out 
synchronously. Data decomposition dataTP  focuses on 
analyzing the data that task requires, analyzing how to split 
the data into many different blocks. 

{ }1 2 3, ,TR TR TR TR= : The relativity among every 

task. Time correlation 1TR , that is, restraint of tasks' 
executing order. One task's implementation is dependent 
on another task's executing result. When another task is 
completed, the task could be carried out. For 
example, 1 2: ( ) ( ) , : ( ) ( )T A i B i X T C i A i Y= + = +  

while one node is dealing with 1T , the other processes 2T , 

apparently 2T  is dependent on 1T . When a task set is 

required to run at the same time, like 1T  and 2T  is 
executed on the same node, then another type of sequential 
restraint happens, namely 2T . In many parallel programs, 
the initial problem is split into many blocks. These blocks 
should be updated synchronously; otherwise, the parallel 
problem may halt or be in deadlock. In some cases, tasks 
in a group are completely independent, namely 3T . These 
tasks are not bound by the order, so they can be 
implemented in any order, including parallel 
implementation. This article is designed base on 3TR . 
 
2.4 Load Estimate 
 
Definition 4(Load Estimate): Load Estimate is a five-tuple 
like ( , , , , )L LP LF LT LS β= , 

here ( )1 2 3, , ,..., ,p LPLP LP LP LP LP T= , p  denotes 

the number of computing nodes, LP denotes the load 
parameter of p computing nodes at the time LPT . There 
are many common used load parameters, such as the length 
of CPU queue, the average CPU queue in a period time, 
the size of available memory, the frequency of system calls, 
the utilization of CPU and memory, frequency of 
interruption etc. It is found that using different parameters 
for load balancing algorithm has a significant impact on 
performance, and simple parameters are often more 
effective. iLP is defined as follows: 

( , / , , , ), 1, 2,...,iLP CPU I O MEM Q t i p= = ; 

CPU : CPU  utilization in period time         
/I O : Utilization of /I O  resources in period time 

MEM : Memory utilization in period time        
Q : Length of CPU  queue in period time  
t : Length of time for collecting load parameters’ 

information. 
Elements in LP , some have percent value and some 

have specific integral value, so we use weight denoting 
load. The weight is greater, the load is busier. 
LF : Load Function. If the node i  has the parameter 

iLP  , LF is defined as follows: 

( ) | |i iLF LP L= , iL is the current actual load of node i . 

From the above definition, LP only provides a weight 
value and is embodied in a measure that the busy level of 
nodes. However, iLP  can be transformed into 
quantitative load through load function. 
LT : Load Threshold. LT  is an ordered pair 

1 2,γ γ< > , 1 2, Rγ γ ∈ , 1 2, 0γ γ > and 1 2γ γ≤ . 

LS : The set of Load State. ( , , , )LS NL LL SL HL= , 
NL denotes empty load, LL denotes light load, SL  
denotes suitable load and HL  denotes high load or 
overload. According to 1 2,γ γ , load state of workstation 

can be partitioned , , ,NL LL SL HL . 
β : Load state modifying factor. β  is used to revise 
LT , showing autonomy of working node. It can adjust the 
value of load threshold and denotes a self-adaptive load 
balance scheduling strategy, Rβ ∈ , 0β ≠ . If 

1 2,LF γ γ< > is used, β  is used to modify as follows: 

1 1 1{ , | { , , }x y x r r rβ βΩ = < > ∈ − +  

2 2 2{ , , } 0 }y r r r x yβ β∧ ∈ − + ∧ < ≤  

LT should be chosen in this range but β  is 
unnecessarily the same to modify up threshold and down 
threshold. It needs be revised according to the fact.  
 
2.5 Scheduling Strategy 
 
Definition 5(Scheduling Strategy): Scheduling strategy is a 
four-tuple like ( , , , )SS SD ST SF SC= , here 

SD : Scheduling Domain. In the distributed network 
environment, workstation that participates in load 
balancing work and provides users network computing 
services is transparent. In general, only some workstation 
resources provide services for users through load balancing 
strategy, for the purpose of balancing resources and 
responding users in the shortest time. These workstations 
are called scheduling domain. 
ST : Scheduling Type. Form different point of view, job 
scheduling has different classification method. This paper 
uses the structure of scheduling program or the scope of 
scheduling information to partition, namely centralized 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008 
 

 

266 

scheduling shown in figure2 and distributed scheduling 
given in figure3. The former is used in this paper. 

Fig.2 Centralized scheduling 
 
 

Fig.3 Distributed scheduling 
 
SF : Scheduling Framework. Scheduling framework 
contains four components: transfer strategy, selection 
strategy, positioning strategy and information strategy. 
They form the entire life cycle of load balancing 
scheduling activities. In the phase of transferring, the 
master node and slave nodes for task migration are 
determined. The main control processor is notified of the 
quantity and slave node of tasks for load balancing. In the 
phase of selection, main control processors select the most 
suitable tasks for efficient and effective load balancing and 
send them to the appropriate slave nodes. In the third phase, 
tasks' receivers are determined. In static scheduling 
algorithm, the server is responsible for positioning and 
collecting system information and the sender gets 

information from the server to determine which node to 
receive. In dynamic scheduling, polling algorithm is 
widely used [19], namely the sender asks each of the other 
nodes in order to determine whether load can be shared. 
The last phase decides how to collect information, where 
to collect and which kind of nodes' status messages to 
collect, etc. There are three familiar information strategies 
such as demand driven strategy, cycle strategy and status 
change driven strategy. 
SC : Scheduling Constraint. Different scheduling 
framework has different scheduling constraint, and 
different SC  determines different scheduling algorithms. 
Because the parallel scheduling is a typical NP-complete 
problem, different scheduling algorithms are adopted 
according to problems' characteristic such as task divide 
pattern. 

The paper is mainly for relative and independent tasks 
which communicate with each other only at the beginning 
or in the end. 
 
2.6 Scheduling Evaluate Criterion 
   
As is known to everyone, most experiments always use 
some criteria to evaluate, and then this paper is no 
exception. 
Definition6 (Scheduling Evaluate Criterion): The evaluate 
criterion is a three-tuple like ( , , )SE LE AL SDL= . 

LE  (Load Efficiency): 1T denotes the time of 

completing all the tasks without DLB , 2T denotes the 

time of completing all the tasks with DLB . 
 

       1 2

1

T T
T

η −
=                        (1) 

 
AL  (Average Load): The average load at every moment,  

and its computing formula is as follows: 
 

,
1

1 tN

avg avg t
tt

Load Load
N =

= ∑              (2) 

 

,i tLoad denotes the load of node i  at time t , pN  
denotes the number of the nodes executing 
tasks, tN denotes the time interval of collecting info in the 
execution, and its value is always an average one. 
Generally speaking, high efficiency load balancing makes 
the average load avgLoad monotone increasing in fixed 
percentage along with the increase of task. 

Parallel 
 
Tasks 

Global task queue 

Scheduling 
Server 

CPU CPU 

Local task queue Local task queue 

… 

Tasks 

CPU 
Scheduling 

program 

CPU 
CPU

Tasks Tasks 

Scheduling 
Program 

Scheduling 
Program

LAN or WAN 

...…



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008 
 

 

267

 
Master                           
 
 
 

Load    List 

CPU Speed 

 
                
     

Slave 1 

Task Array  
 
 
    

 Slave 2 

 
 
     

Slave n 

Task Array   Task Array 

(1) Load State 
Finish Flag 

(1) (2) 
(1) 

(2) 
(2) 

(1) 

(2) Task Number 
Task Begin Suffix 

…

SDL (Standard Deviation of Load): deviation of node's 
real load and average load at every moment. It is defined 
as: 
 

2
, ,

1 1

1 1 ( )
1

pt NN

std i t avg t
t it p

Load Load Load
N N= =

= −
−∑ ∑   

                                             (3) 
 

Variables in formula (3) are the same as in 
formula avgLoad . In general, high efficiency load 

balancing keeps stdLoad  in a smaller domain along with 
the increase of task. 
 
3. Experimental Consideration  
 
3.1 Experiment Environment 
 
This paper adopted centralized dynamic load balancing 
using Master/Slave mode. The figure is shown as fig.4. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Fig.4 Parallel program structure 

 
The experimental environment in the multiple-cluster 

environment implementation had four computing nodes 
numbered from 1 to 4, forming 2 clusters. Computing 
nodes 1, 2, and 3 formed the relatively homogeneous 
cluster A, with 4 CPUs, as shown in table 1. Computing 
nodes 1, 2, and 4 formed relatively heterogeneous cluster 
B, with 4 CPUs, as shown in table 2. Each cluster system 
had two slave nodes and one master node, computing node 
1, called HPC. 
 
3.2 Experiment Result 
 
This paper constructed a basic testing case characterized 
by independence of task, little communication between  

 

Table 1: Hardware configuration of Cluster A 
Cluster A   Node name   CPU     Memory 

1         HPC     3.06GHZ   521M 
2       Snode1     1.8 GHZ   128M 
3       Snode2     1.8 GHZ   128M 

 
 
 

Table2. Hardware configuration of Cluster B 
Cluster B   Node name   CPU     Memory 

1         HPC     3.06GHZ   521M 
2       Snode1     1.8 GHZ   128M 
4       Snode3     1.7 GHZ   512M 

 
 
tasks and uncertain execution time of task. We use LE  
(load efficiency), AL (average load) and SDL  (standard 
deviation of load) to estimate performance. According to 
the uncertain execution time of task, this paper suppose the 
task as multidimensional matrix, dimension is generated 
randomly and ranges from 50 to 100. Due to uncertain 
dimension, tasks are independent. The testing case 
experimented in three respects. First, the comparative 
result of executing tasks with no-DLB and DLB based on 
homogeneous system. Second, the comparative result of 
executing tasks with no-DLB and DLB based on 
heterogeneous system. Third, according to the proposed 
model, this paper estimates performance based on 
heterogeneous system. Experimental results are shown in 
table 3 and table 4. 
 

Table3.The results of executing tasks with no-DLB and DLB 
based on the homogeneous system 

Total 
Task 

Time with 
no-DLB (s) 

Time with 
DLB (s) 

Load 
Efficien
cy 

30 60.22 65.06 -0.080 
40 67.50 75.7 -0.121 
50 81.31 98.04 -0.206 
60 100.21 120.70 -0.204 
70 116.86 110.22 0.057 
80 130.32 102.28 0.215 
90 162.53 116.85 0.281 

100 201.54 152.30 0.244 
200 375.22 251.20 0.331 

 
From what is shown, when the number of the task 

decreases, like total task 30, 40 in table 3, the cost time 
margins narrow because task doesn’t migrate in load 
balancing. However, it makes load computing and 
information transfer overhead and hasn’t shown 
dominance. When the number is 50 or 60, the time with 
DLB is still larger than time with no-DLB, that’s because 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008 
 

 

268 

0

50

100

150

200

250

30 40 50 60 70 80 90 100 200

Task  Number

A
ve

ra
ge

 L
oa

d

0

10

20

30

40

50

30 40 50 60 70 80 90 100 200

Task  Number

St
an

da
rd

 D
ev

ia
tio

n 
of

 L
oa

d

deviation of remain load makes the redistribution 
unreasonable and the time of beginning task number 20 or 
30 is so short that it leads to no rebalancing. Meanwhile, 
load Efficiency shown in table 3 is upwardly mobile along 
with the number of task increasing, although arising jolty 
phenomenon. 

 
Table 4. The results of executing tasks with no-DLB and DLB based 

on heterogeneous system 
Total 
Task 

Time with 
no-DLB (s) 

Time with 
DLB (s) 

Load 
Efficien
cy 

30 56.12 60.64 -0.081 
40 70.24 80.30 -0.143 
50 83.55 90.46 -0.082 
60 110.01 90.73 0.175 
70 125.82 145.86 -0.159 
80 146.26 167.01 -0.142 
90 180.13 165.15 0.083 
100 226.22 173.67 0.232 
200 512.45 451.56 0.113 
 
The results based on heterogeneous system is shown in 

table 4. It seems more complicated and costs more time 
than homogeneous system. One of the reasons is the 
performance of node itself is poorer than the one based 
homogeneous system. The other reason is division in term 
of executing speed is not very precise. The last reason is 
task’s reallocation doesn’t consider nodes’ performance 
again leading to the number of transferring task inaccuracy. 
Therefore, it’s suitable for homogeneous system. 

 
3.3 Performance Evaluation 
 
(1) Load Efficiency 
Load efficiency is also shown in table 3 and table 4.When 
Load efficiency is above and beyond 0, Dynamic load 
balancing is efficient, for details see section 3.2. 
(2) Average Load 
According to the formula (2) in section 2.6, we can obtain 
the following line chart as shown in figure 5. 
 

Fig.5 Line chart of average load 
 

(3) Standard Deviation of Load 
We have seen the formula (3) in section 2.6 and figure 6 
shows its line chart. 

Fig.6 Line chart of standard deviation of load 
 

From table 3, we can see that when the number of 
task climbs to 70, average load with DLB is lower than 
that with no-DLB. When the number is 30 or 40, 
average load is similar. That’s because the number is 
too small and no need to transfer task. We see the same 
state arising in table 4. All in all, DLBM proposed by 
this paper really has efficiency on load balancing. 
Although it can’t apply into all environments, it is 
suitable for independent tasks. 
 
4. Conclusion 
 
On the base of four-tuple DLBM (dynamic load balancing 
model) proposed by literature [1], this paper introduces a 
five-tuple DLBM which involves balancing environment, 
task allotment, load estimate, scheduling strategy and 
scheduling evaluation. They are all expressed through 
mathematic definition. The five-tuple DLBM interprets the 
full aspects of load balancing and makes the logical and 
makes the logical relationship between the five tuples more 
clear by using formalized language. In the near future, we 
will solve these problems that how to estimate surplus load 
more accurately and how to make the load transfer more 
self-adaptively. 
 

Acknowledgment 

 
The authors would like to express their cordial thanks to 
my supervisor Dr. Jiuzhen Liang for his valuable advice.   
 
References 
[1] Donghai Li,Haihu Shi Study on general load balancing 

scheduling scheduling model. Computer Engineering and 
Applications, 43(8):121-125, 2007(in Chinese). 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008 
 

 

269

[2] Christopher A. Bohn, Gary B. Lamont. Load balancing for 
heterogeneous clusters of PCs. Future Generation 
Computer Systems, 18:389-400, 2002. 

[3] Hui Chi-Chung,Chanson S T. Hydrodynamic load balancing. 
IEEE Transactions on Parallel and Distributed System, 
10(11): 1118-1137, November 1999. 

[4] Marc H,Willebeek-L M. Strategies for dynamic load 
balancing on highly parallel computers. IEEE Transactions 
on Parallel and Distributed System, 4(9): 979-993, 
September 1993. 

[5] Chao-Tung Yang and Shun-Chyi Chang. A parallel loop 
self-scheduling on extremely heterogeneous PC clusters. 
Journal of Information Science and Engineering, 20(2): 
263C273, 2004. 

[6] Kyung-Geun Lee, Soo-Young Lee. Efficient parallelization of 
simulated annealing using multiple Markov chains:an 
application to graph partition. Proceedings of the 1992 
International Conference on Parallel Processing, 177-180, 
1992. 

[7] Kwok Y-K,Ahmad I. Efficient scheduling of arbitrary task 
graphs to multiprocessors using a parallel genetic algorithm. 
Journal of Parallel and Distributed Computing,47(1): 
58-77, 1997. 

[8] Efe E. Heuristic models of task assignment scheduling in 
distributed systems. IEEE Computer, 15(6): 50-56, June 
1982. 

[9] Hendrickson B and Leland R. An improved spectral graph 
partitioning algorithm for mapping parallel computations. 
SIAM Journal on Scientific Computing, 16(2): 452-469, 
1995. 

[10] S. Chakrabarti, A. Ranade, and K. Yelick. Randomized load 
balancing for tree-structured computation.IEEE Scalable 
High Performance Computing Conference, 666 -673,May 
1994. 

[11] Lin F C H,Keller R M. The gradient model load 
balancing method. IEEE Transactions on Software 
Engineering, 13(1): 32-38, January 1987. 

[12] Derek L. Eager, Edward D. Lazowska, John 
Zahorjan. Adaptive load sharing in homogeneous 
distributed systems. IEEE Transactions on Software 
Engineering, 12(5): 662-675, May 1986. 

[13] T. L. Casavant and J. G. Kuhl. A taxonomy of scheduling in 
general purpose distributed computing systems. IEEE 
Transactions on Software Engineering, 14(2): 141-154, Feb 
1988. 

[14] Y.-T. Wang and R. J. T. Morris, Load sharing in distributed 
systems. IEEE Transactions on Computers, 34(3): 
204-217,March 1985. 

[15] M. J. Berger and S. H. Bokhari, A partitioning strategy for 
no uniform problems on multiprocessors. IEEE 
Transactions on Computers, 36(5): 570-580, May 1987. 

[16] Fox, Geoffrey C. A review of automatic load balancing and 
decomposition methods for the hypercube. Institute for 
Mathematics and Its Applications, 13: 385, Nov 1988. 

[17] K. Ramamritham, J. A. Stankovic, and W. Zhao. Distributed 
scheduling of tasks with deadlines and resource 
requirements. IEEE Transactions on Computers, 38(8): 
1110-1123, August 1989. 

[18] K. M. Baumgartner, R. M. JSling, and B. W. Wah. 
Implementation of GAMMON: An efficient load balancing 

strategy for a local computer system. International 
Conference on Parallel Processing,2:7- 80,August 1989 

[19] Zhou Songnian, A trace-driven simulation study of dynamic 
load balancing. IEEE Tranctions on Software Engineering, 
14(9): 1327-1340, September 

 
 
 

Huajie Zhang       received 
the Bachelor’s degree of 
Computer Science and 
Technology from HeNan 
Institute of Finance and 
Economics in 2005. Then she 
worked in e-commercial 
company hc360 for one year. 
During 2006-2008, she stayed 
in Zhejiang Normal University 
of China to study Computer 

Software and Theory and will get B.S. degree in 2009. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


