
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

276

Manuscript received October 5, 2008
Manuscript revised October 20, 2008

NetFlow-Based Approach to Compare the Load Balancing Algorithms

Chin-Yu Yang1, 2 and Jian-Bo Chen3

1Dept. Computer Sci. & Information Eng., National Central University, Chung-Li, Taiwan, ROC
2Vanung University, Chung-Li, Taiwan, ROC

3Ming Chuan University, Taipei, Taiwan, ROC

Summary
The load balancing architecture is the most popular method to
improve the performance of the server. The selection of the load
balancing algorithms is one of the most important issues. In this
paper, we use NetFlow to collect traffic for six load balancing
algorithms, including least connections, round robin, minimum
misses, hash, response time, and bandwidth. We compared their
flow counts and packet counts separately. Both the WAN link
load balancing and server load balancing are implemented. In
addition, we also collected the burst traffic for server load
balancing. The results for the performance of the algorithms are
analyzed and compared.
Key words:
NetFlow, load balancing, cluster

1. Introduction

Clustering technologies enable incremental scaling of
Internet server sites at modest cost. It is increasingly
common in cluster-based service architectures to distribute
incoming request traffic amount servers by using redirect
switch. These server switches are called by various names
including request distributors, front ends, redirectors, load
balancers, network dispatchers, L4-L7 switches,
interception switches, Web switches, content switches,
and so on[1].

No matter which server switch we use, the most important
issue is which load balancing algorithm are adopted.
Different algorithms for load balancing architecture can be
used to balance the load on a multi-server system based on
the topology of the system[2]. The WAN link load
balancing is used to balance the Internet connection for
enterprise such as proxy server. The server load balancing
is used to balance the load of server inside the enterprise
such as web server. The purpose of these two systems is to
alleviate the load of single server, but their topologies are
quite different. In this paper, we use six different
algorithms to analyze the behavior of the load balancing
system. The six algorithms include least connections,
round robin, minimum misses, hash, response time, and
bandwidth. In order to avoid the influence of evaluating
processes for the load balancing system, we use the port
mirror function of the switch to export the traffic. We also
use a probe to collect the traffic, then transfer the collected

traffic into NetFlow format[3]. At last, we insert these data
into SQL server for analyzing. Meanwhile, we also
analyze some of the access logs from web servers and
proxy servers[4, 5].

The rest of the paper is organized as follows. In section 2,
we present the six load balancing algorithms. In section 3,
we describe the system architecture. The experimental
result is shown in section 4. The conclusion is described in
section 5.

2 Load Balancing Algorithms

The load balancing architecture makes decisions regarding
which server of a virtual server group to assign the new
connection is based on the load balancing algorithms. The
different algorithms operations available are as follows[6].

2.1 Least Connections

With the least connections algorithm, the number of
connections currently opened on each backend server is
measured in real-time. The backend server with least
active connections is considered to be the best choice for
the next client connection request. This algorithm is the
most self-regulating, with the fastest servers typically
getting the most connections over time.

2.2 Round Robin

With the Round-Robin algorithm, new connections are
issued to each backend server in turn. That is, the first
backend server in the group gets the first connection, the
second backend server gets the next connection, followed
by the third backend server, and so on. When all the
backend servers in this group have received at least one
connection, the process starts over with the first backend
server.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

277

2.3 Minimum Misses

The minimum misses algorithm is optimized for WAN
link load balancing. It uses IP address information in the
client request to select a server. The specific IP address
information used depends on the application.

For WAN link load balancing, the client destination IP
address is used. All requests for a specific IP destination
address are sent to the same server. This algorithm is
particularly useful in caching applications, helping to
maximize successful cache hits. Best statistical load
balancing is achieved when the client IP addresses are
spread across a broad range of IP subnets.

For server load balancing, the client source IP address and
backend server IP address are used. All requests from a
specific client are sent to the same backend server. This
algorithm is useful for applications where client
information must be retained on the server between
sessions. With this algorithm, backend server loading
becomes most evenly balanced as the number of active
clients with different source or destination addresses
increases.

2.4 Hash

The hash algorithm uses IP address information in the
client request to select a backend server. The specific IP
address information used depends on the application. For
WAN link load balancing, the client destination IP address
is used. All requests for a specific IP destination address
will be sent to the same server. This is particularly useful
for maximizing successful cache hits.

For server load balancing, the client IP address is used. All
requests from a specific client will be sent to the same
backend server. This option is useful for applications
where client information must be retained between
sessions.

When selecting a backend server, a mathematical hash of
the relevant IP address information is used as an index into
the list of currently available servers. Any given IP
address information will always have the same hash result,
providing natural persistence, as long as the backend
server list is stable. However, if a server is added to or
leaves the system, then a different backend server might
be assigned to a subsequent session with the same IP
address information even though the original server is still
available. Open connections are not cleared.

The hash algorithm provides more distributed load
balancing than minimum misses at any given instant. It
should be used if the statistical load balancing achieved

using minimum misses is not as optimal as desired. If the
load balancing statistics with minimum misses indicate
that one backend server is processing significantly more
requests over time than other servers, consider using the
hash algorithm.

2.5 Response Time

The response time algorithm uses backend server response
time to assign sessions to servers. The response time
between the servers and the load balancer is used as the
weighting factor. The load balancer monitors and records
the amount of time it takes for each backend server to
reply to a health check to adjust the backend server
weights. The weights are adjusted so they are inversely
proportional to a moving average of response time. In
such a scenario, a server with half the response time as
another server will receive a weight twice as large.

2.6 Bandwidth

The bandwidth algorithm uses backend server octet counts
to assign sessions to a server. The load balancer monitors
the number of octets been sent between the server and
itself. Then, the weights of backend server are adjusted so
they are inversely proportional to the number of octets that
the backend server processed during the last interval.

Backend servers that process more octets are considered to
have less available bandwidth than those that have
processed fewer octets. For example, the backend server
that processes half the amount of octets over the last
interval receives twice the weight of the other backend
servers. The higher the bandwidth used, the smaller the
weight assigned to the server. Based on this weighting, the
subsequent requests go to the backend server with the
highest amount of free bandwidth. These weights are
automatically assigned.

3 System Architecture

3.1 NetFlow Traffic Collections

The architecture of traffic collection is shown in Fig. 3.
The server switch[7] acts as a virtual front-end processor
to clusters of real servers connected via direct attachment
to switch ports or indirectly through hubs and switches.

In network environments, NetFlow is probably the most
useful standard for network traffic accounting. In our
experiment, we use both a NetFlow v5 probe (nProbe) [8]
and collector to monitor the flows within the server switch.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10 October 2008

278

When the nProbe activated, nProbe will collect traffic data
and emit NetFlow v9 flows towards the specified collector.
A set of packets with the same (src ip & port, dst ip & port,
protocol #) is called flow. Every flow, even a very long-
standing ISO CD image download, has a limited lifetime;
this is because the flow collector should periodically
receive flow chunks for accounting traffic precisely. Then
we use a collector to receive the NetFlow v9 flows, and
store all the information into MySQL database.

Figure 1. NetFlow traffic collections

3.2 WAN Link Load Balancing Architecture

The WAN link load balancing architecture is to share the
load for WAN link, especially for the HTTP traffic. In
order to improve the performance, we use four proxy
servers instead of the main proxy server. The IP address of
the main proxy server was configured in the Server switch.
Every time when a client makes a request to the main
proxy server, the Server switch will choose one proxy
server to process the request by its algorithm. The four
proxy servers are all installed with two network interface
cards. One NIC binds the local IP address in our
environments and the other NIC binds the IP address
given by the ADSL ISP provider as shown in Fig. 2.

Proxy

nProbeCollector

Port MirrorNetFlow

Proxy-adsl1 Proxy-adsl2 Proxy-adsl3 Proxy-adsl4

Server Switch

Figure 2. Proxy server architecture

3.3 Server Load Balancing Architecture

The server load balancing architecture is to distribute the
client requests to several WWW servers. In order to

improve the performance, we use eight WWW servers
instead of the main WWW server. The IP address of the
main WWW server was configured in the Server switch.
Every time when a client makes a request to the WWW
server, the Server switch will choose one WWW server to
serve it by the pre-defined algorithm. The eight WWW
servers share the same contents. The architecture is shown
in Fig.3.

Figure 3. WWW server architecture

4. Experimental Results

In our experiments, we collected the NetFlow data for
Proxy servers and WWW servers. The flow counts and
packet counts are presented. We also calculated the
standard derivation for each load balancing algorithm. The
burst traffics for WWW were also collected.

4.1 Proxy server load balancing

We used the six different load balancing algorithms to
collect the traffic data. Each algorithm collects traffic
about 24 hours. The data we collected are shown in Table
1. The standard derivations of the data are shown in Table
2 and Fig. 4 and 5.

Table 1. Proxy server load balancing traffic data

Algorithms Proxy-
adsl1

Proxy-
adsl2

Proxy-
adsl3

Proxy-
adsl4

Flow 256998 248630 233336 237907
Hash

Packet 2983279 1880752 2179256 2082662

Flow 261674 251490 243100 262147 RoundR
obin Packet 3441868 1980849 2226754 2022514

Flow 274839 275487 241918 261488 Least
Conns Packet 3409218 2204512 2537912 2156230

Flow 264197 269308 246870 264323 Min
Misses Packet 3104660 2093349 2351239 2176019

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

279

Flow 253151 340339 312145 275066 Res-
ponse Packet 3876566 2671434 2630859 2050195

Flow 244235 231005 256055 231851 Band-
width

Packet 3190323 1814767 2412468 1828310

Table 2. Proxy server load balancing standard derivations

Algorithms Flow Packet

Hash 10662 484108

Round Robin 9109 690987

Least Conns 15728 580204

Min Misses 9829 461592

Response 38722 767274

Bandwidth 11840 648779

Flow count

0
10000
20000
30000
40000
50000

Has
h

Rou
nd

Rob
in

Lea
stC

on
ns

M
in

M
iss

es

Res
po

ns
e

Ban
dw

id
th

Figure 4. Standard derivations for flow counts

Packet count

0
200000
400000
600000
800000

1000000

Has
h

Rou
nd

Rob
in

Lea
stC

on
ns

M
in
M

iss
es

Res
po

ns
e

Ban
dw

id
th

Figure 5. Standard derivations for packet counts

4.2 WWW server load balancing

For server load balancing, we collected the data and
calculated the standard derivations of the data Table 3 and
Fig. 6 and Fig. 7.

Table 3. WWW server load balancing standard derivations
Algorithms Flow Packet

Hash 3900 19522

RoundRobin 4524 16532
LeastConns 3656 14180

MinMisses 1516 19046
Response 2171 38197
Bandwidth 398 42490

Flow count

0
1000
2000
3000
4000
5000

Has
h

Rou
nd

Rob
in

Lea
stC

on
ns

M
in
M

iss
es

Res
po

ns
e

Ban
dw

id
th

Figure 6. Standard derivations for flow counts

Packet count

0
10000
20000
30000
40000
50000

Has
h

Rou
nd

Rob
in

Lea
stC

on
ns

M
in
M

iss
es

Res
po

ns
e

Ban
dw

id
th

 Figure 7. Standard derivations for packet counts

4.3 Burst traffic of WWW server load balancing

In this experiment, we want to know what happenes when
the burst traffic occurs. We collected three period of time
with burst traffic, and with each period, we collected ten
minutes. But due to the session problems of the WWW

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10 October 2008

280

servers, we only tested the hash algorithm. The data we
collected are shown in Table 4 and Fig. 8 and Fig. 9.

Table 4. WWW server load balancing with brust data
Time slot 1 Time slot 2 Time slot 3

Servers
Flow Pack

et
Flow Pack

et
Flow Pack

et
WWW1 5473 3617

7
8473 4867

2
6998 6127

2
WWW2 9369 5012

9
1047
5

5421
6

1458
9

8711
3WWW3 5190 4070

5
5737 4402

6
7801 6724

7WWW4 6789 4995
2

5910 4310
0

7333 8382
9

WWW5 1695
3

7971
6

1023
3

5428
7

9540 7059
8

WWW6 8344 4635
8

7364 4705
4

8029 5990
5WWW7 7222 4579

7
9065 5346

9
8625 6393

2WWW8 5954 4517
9

6717 5093
7

6510 5659
0

0

5000

10000

15000

20000

W
W

W
1

W
W

W
2

W
W

W
3

W
W

W
4

W
W

W
5

W
W

W
6

W
W

W
7

W
W

W
8

Time slot 1 Time slot 2 Time slot 3

Figure 8. The flow counts statistics

0

50000

100000

W
W

W
1

W
W

W
2

W
W

W
3

W
W

W
4

W
W

W
5

W
W

W
6

W
W

W
7

W
W

W
8

Time slot 1 Time slot 2 Time slot 3

Figure 9. The packet counts statistics

4.4 Analysis of Experimental Results

It seems that the flow count for each server must be the
same when we use round robin as the load balancing
algorithm. But the results showed that the standard

derivation of round robin is not approximately zero. The
reason is that the NetFlow collector reports the collected
data periodically. When a flow, or a connection, transfers
a large amount of data, NetFlow will spilt this one flow
into several flows, so the statistic data will not be the same
for each server.

The minimum misses algorithm for the WAN link load
balancing, or proxy server, will get the highest
performance because of its high hit rate. The standard
derivation cannot show this advantage because the high hit
rate will reduce the response time, not dispatch the traffic
fairly.

5. Conclusion

In this paper, we used the NetFlow to collect the traffic
data of different load balancing algorithms. We can find
out that each algorithm in the different kinds of traffic
have different performance. We use the flow counts and
packet counts to verify the load balancing of each
algorithm. As far as we know, these algorithms cannot
100% balancing the loads because the unexpected network
conditions and server loads.

References
[1] Jeffery S. Chase, “Server Switching: Yesterday and

Tomorrow,” Proc. The Second IEEE Workshop on Internet
Applications, 2001

[2] Hemant B. More & Jie Wu, “Throughput Improvement
Through Dynamic Load Balance,” Proc. IEEE
SOUTHEASTCON. Bibliographic Details, 1994

[3] NetFlow Services Export Version 9, RFC 3954
[4] Lili Qiu, Venkata N. Padmanabhan, Geoffery M.Voelker,

“On the Placement of Web Server Replicas,” Proc.
Twentieth Annual Joint Conference of the IEEE Computer
and Communications Societies, vol. 3, 2001

[5] Scot Hull, “Content Delivery Networks: Web Switching for
Security, Availability, and Speed, “McGraw Hill, 2002.

[6] Notel Networks, Alteon Link Optimizer Application Guide,
Release 1.0, 2002

[7] http://www.nortelnetworks.com
[8] http://www.ntop.org/nProbe.html

 Chin-Yu Yang received the MS
degree in department of electrical
engineering in Yuan Ze University,
Jhongli, Taiwan, Republic of China,
in 1997, and he is a PhD student in
the department of computer science
and information engineering in
National Central University, Jhongli,

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.10, October 2008

281

Taiwan, Republic of China. He is currently an instructor in
the department of computer science and information
engineering in Vanung University, Jhongli, Taiwan,
Republic of China. His research interests include wireless
network, network security and network management.

Jian-Bo Chen received the MS
degree in the department of electrical
engineering in National Taiwan
University, Taipei, Taiwan, Republic
of China, in 1995, and PhD degree in
the department of computer science
and engineering in Tatung University,
Taipei, Taiwan, Republic of China,
in 2008. He is currently an assistant
professor in the department of

information and telecommunications engineering in Ming
Chuan University, Taoyuan, Taiwan, Republic of China.
His research interests include network management,
network security, and load balance.

