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Summary: The conventional TCP suffers from poor performance 

on high bandwidth delay product links meant for supporting data 

transmission rates of multi Gigabits per seconds (Gbps). This is 

mainly due to the fact that during congestion, the TCP‟s 

congestion control algorithm reduces the congestion window cwnd 

to ½  and enters additive increase mode, which can be slow in 

taking advantage of large amounts of available bandwidth. In this 

paper we have presented a new model and to overcome the 

drawbacks of the TCP protocol and propose to carry out a study of 

the same based on various parameters viz., Throughput, Fairness, 

Stability, Performance and Bandwidth Utilization for supporting 

data transmission across the High Speed Networks. 
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1. Introduction:  

TCP has been the most used transport protocol for the Internet for 

over two decades. The scale of the Internet and its usage has 

increased by several orders of magnitudes. The nature of 

applications has significantly changed. Some of the assumptions 

made during the early design process of TCP are no longer valid. 

And yet, TCP remains the main protocol of the TCP/IP protocol 

stack based on which the Internet runs. The reason TCP enjoys 

this importance is that it constantly evolves to keep up with the 

changing network demands [1], [2], [12]. 

 

However as the application needs changed, newer rate control 

schemes were proposed [2], [3], [4], [6], [8], [9], [10] and [12]. 

As a result we now have an Internet which operates with a 

spectrum of congestion control schemes, even though TCP 

remains the most widely used transport protocol. In [3], [9], [10] 

the authors have argued that these new congestion control schemes 

can lead to a new congestion collapse and pose the problem of 

congestion response conformance (wherein selfish/non-behaving  

 

 

sources get an unfavorable share of bandwidth in comparison to 

TCP). 

 

TCP resides in layer 4 of the 7-layer OSI network model. It 

provides a connection-oriented, reliable, byte-stream service that 

is both flow and congestion controlled to the upper layers 

(application layer), while assuming or expecting little from the 

lower layers (IP layer and below). This is accomplished by a 

complicated set of algorithms. 

The congestion control functionality of TCP is provided by four 

main algorithms namely slowstart, congestion avoidance, fast 

retransmit and fast recovery in conjunction with several different 

timers. Slowstart uses exponential window increase to quickly 

bring a newly starting flow to speed. In steady state, the flow 

mostly uses congestion avoidance in conjunction with fast 

retransmit / recovery.  

 

These algorithms implement the classic Additive 

Increase/Multiplicative Decrease (AIMD) of the congestion 

window. When no losses are observed, the congestion window is 

increased by one for the successful acknowledgment of one 

window of packets. Upon a packet loss, the window is decreased 

to half its earlier value, to clear out the bottleneck link buffers. 

There are several challenges in current networks to this simple 

AIMD policy. 

1.1 Working of TCP:  

TCP is a self-sufficient and reliable transport protocol, in the 

sense that the sender uses information provided by the receiver in 

the form of acknowledgments, to determine the nature of 

congestion in the network. No explicit feedback is expected from 

the routers. This self-sufficiency is based on the assumption that 

anytime packets do not arrive at the receiver in the same order that 

the sender sent them, then it is due to congestion in the network. 

While in most conventional networks, this assumption is true, 

newer network environments challenge it [12]. 
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TCP uses a sliding-window based congestion control algorithm 

proposed by Van Jacobson and others [1]. The slow-start 

algorithm is activated (triggered) at the beginning of a transfer or 

after a Retransmission Timer timeOut (RTO). Slow-start occurs 

until the congestion window (cwnd) reaches the slow-start 

threshold (ssthresh) or if packet loss occurs.  

 

During the slow-start phase, if the receiver buffer size is large 

enough, the number of segments injected into the network is 

doubled every Round Trip Time (RTT). When the cwnd exceeds 

the ssthresh, the congestion avoidance algorithm is used to lower 

the sending rate by increasing the cwnd by at most one segment 

per RTT. 

 

This is the additive increase algorithm of TCP and is used for 

probing the additional network capacity. Upon the arrival of three 

duplicated acknowledgements (ACKs) at the sender‟s end, the fast 

retransmit algorithm is activated, which retransmits that segment 

without waiting for the RTO to expire.  

 

Duplicate acknowledgements may occur when a packet is lost yet 

three additional packets arrive at the receiver. After the 

retransmission of the lost segment, the fast recovery method is 

used to adjust the cwnd. As a result ssthresh is set to half the value 

of cwnd, and then the cwnd is cut in half plus three segments. At 

this point, for each duplicate ACK that is received, the cwnd is 

increased by one segment until the ACK of the retransmission 

arrives. After that, cwnd is set to sshthresh and the additive 

increase algorithm is activated until either is equal to the 

advertised receiver window or until loss is detected, indicating 

possible congestion. 

 

Since the above fast retransmit method can only fix one lost 

segment per RTT, the subsequent lost segments within that RTT 

usually have to wait for the RTO to be expired before being resent. 

For most variants of TCP that are currently being used including 

TCP Reno and TCP SACK, the sending rate is cut in half, each 

time a loss occurs. The sending rate is then gradually increased 

until another loss occurs.  

 

This process is known as Additive Increase, Multiplicative 

Decrease (AIMD) is repeated until all of the data has been 

transmitted. This is one of the reasons TCP has difficulty 

operating efficiently over long delay and error prone networks. 

In these cases, the mis-classification of the cause for out-of-order 

packet delivery or packet losses as congestion, forces TCP to use 

multiplicative decrease of the congestion window and results in 

degraded performance. 

2. Current Drawbacks of TCP: 

Basic TCP congestion control theory is well-known and in the past 

couple of years, a number of studies [2], [3], [4], [6] have been 

carried out to analyze it. Many researchers have worked on 

improving the TCP congestion control algorithm. 

  

TCP is unable to utilize all the available bandwidth on high-

bandwidth and/or high-delay paths due to its conservative 

congestion avoidance algorithm. In fact TCP can become quite 

unstable under these conditions. One problem is that the TCP does 

not have a mechanism to distinguish between a slowest 

(narrow/bottleneck) link and congested (tight) link. This means 

that TCP‟s algorithm will continue to increase the congestion 

window (assuming tuned large buffers) to increase the sending 

rate as long as there is no further packet loss.  

  

This is problematic since packet drop could be caused by 

congestion at the narrow link. In either a high-speed and/or long 

delay path, when a congestion signal comes back to the sender, the 

outstanding data stream will be the average size of congestion 

window, which is computed from the acknowledgments during the 

last round-trip-time (RTT) period.  

Consider a 100ms RTT and 40Gb/s path, TCP needs to send a 

burst as large as 500 Mbytes of data during one RTT to detect 

congestion trend. This big burst of traffic plus existing cross 

traffic will exceed the bottleneck link router queue and cause up to 

50% packet loss (more than 160K packets in above example). A 

self-clocking system could help to reduce the loss probability 

when cross traffic is less bursty, but this may not be the condition 

under which the current network is dropping packets. 

 

An examination of the congestion avoidance mechanism shows 

that the bursts are in two different phases of the TCP congestion 

control algorithm; slow start and congestion avoidance. In the 

slow start phase, the algorithm doubles the size of the burst until 

packet loss occurs, probing for the ceiling of the congestion 

window. 

 

After seeing packet loss, standard TCP congestion control reduces 

the congestion window to one half the current window sizes. If 

TCP sees more packet loss, it will reduce the window further. This 

is called “multiplicative decrease” which prevents further packets 

from causing collapse. This slow start algorithm assumes that a 

possible best congestion window is between the last burst 

(congestion window) and the previous burst (one half of the 

congestion window) since the previous burst did not cause packet 

loss.  

 

However, this does not efficiently avoid packet loss, especially 

when the bandwidth [7] or path latency is high. For example, on a 

100ms RTT and 100 Gbps path, the previous burst can be 1 GB, 

and doubling it can cause the increased 1GB data loss. Since 

acknowledgments are asynchronously fed back to the sender, they 

can cause further fluctuations when the cross traffic is more 

dynamic. The key issue in the slow start phase is during the last 

few window adjustments.  
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In a better TCP design, the last few probes should be used to 

detect the bottleneck router's queue size and its capacity, and 

should not use an exponential increase of the burst (window) size 

to cause loss. Instead, it should use an adaptive algorithm to 

increase its burst size to avoid losing a large number of packets. 

This would also allow the detection of the best rate to pace out the 

packet. Window based congestion control mechanisms also lack 

the ability to predict congestion on-the-fly and dynamically adjust 

their sending rate to reflect the new available bandwidth.  

3. Suggested New Model (please see appendix in 

full-scale): 

  
 

 

Figure 1: New Model for congestion control 

4. The Algorithms:  

4.1. Network Traffic Classification: 

In this model we are assuming that at any point of time „n‟ sources 

S1, S2, …, Sn are communicating with the „n‟ destinations D1, 

D2, …, Dn (as the model is being developed for Private Network 

Service providers supporting High-speed Communications). This 

new protocol incorporates few changes in the current 

Transmission Control Protocol (TCP) and it works at the router 

level. 

 

When the packets are received by the router/switch from the 

sources, these packets are forwarded for onward transmission 

based on Store and Forward principle i.e. when the outgoing link 

is not available for onward transmission of the received packets 

then such packets are stored in the in_queue before being 

forwarded to the out_queue.  

 

The received packets from the sending sources S1, S2… Sn are 

accommodated in individual queues (here we have made 

assumption that the in_queue comprises of „n‟ different queues, 

one for each transmitting source i.e. the transmission from source 

S1 will be accommodated in the q1 of in_queue,  the transmission 

from source S2 will be accommodated in the q2 of in_queue and 

so on). 

  

The packets are forwarded to the out_queue on round-robin basis 

i.e. a packet is chosen from each of the „n‟ in_queue‟s  i.e. a 

packet from q1, a packet from q2 and so on a packet from qn is 

chosen. This continues till the time there is no congestion in the 

network i.e. no packet loss have been observed.  

The moment a packet loss is observed, the sending sources are 

informed to reduce their sending rates through the 

acknowledgement packets (choke packets) as shown in figure 1 

above.  

 

And the router enters in wait mode wherein it performs the above 

job as usual for a pre-calculated time duration recorded in the 

Que_occupancy table. Once the wait period is over for a source, 

and the source fails to comply with the rate reduction then such 

source is declared to be a misbehaving source and all the packets 

from such a source are dropped from queue containing packets 

from the misbehaving sources from the in_queue. 

 

The Bandwidth that was allocated to the misbehaving source is 

added to the Total Available Bandwidth, so that new sources 

which are willing to communicate can be allocated requisite 

bandwidth [14] (subject to the availability of the requested 

bandwidth). 

 

Table1: The Que_occupancy table has the following format: 

 
Source 

no. 

Source 

IP 

Address 

Destination 

IP Address 

Current 

Rate 

New 

Sending 

Rate 

Present 

Time 

Wait-

Time 

1       

2       

: 

 

      

n       

 

This table is maintained / updated for each customer who is 

registered with the High Speed Network connectivity service 

provider.  

 

Where the terms in the Que_Occupancy table are defined as 

follows: 

Source No.: This is an integer field corresponding to the source 

numbers viz. 1,2, 3,…., n for the sources S1, S2, …, Sn.  

Source IP Address: It is the IP address of the sending source node. 
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Destination IP Address: It is the IP address of the Destination 

node. 

CurrentRate: It contains the value of current rate of sending as 

agreed upon between sending source and the Highspeed Network 

communication service provider. 

NewSendingRate: This rate is initially 0 (zero) in the 

Que_Occupancy table till the time the congestion is experienced 

by the router, but as the intermediate router/switch experiences the 

congestion through the packet drops, a new Sending rate is 

calculated for all the sending sources based on the number of their 

packets present respectively in the in_queue with respect to 

overall Que_Occupancy. And it is calculated in terms of overall 

percentage as depicted in the following Algorithm 4.2.4.   

WaitTime: This time is initially 0 (zero) in the Que_Occupancy 

table till the time the congestion is experienced by the router, but 

on packet drops, the algorithm Congestion Detection 4.2.2 gets 

activated and NewSendingRate for all the sources are calculated. 

This NewSendingRate (requests the sources for reducing their 

current sending rate) is conveyed to the sending sources through 

the choke packets. And the WaitTime is calculated & set for all the 

sending sources by updating the Que_Occupancy table. During 

this time none of the packets present in the in_queue are dropped. 

When WaitTime for a source gets exhausted then all packets from 

such source in the in_queue are dropped.  

 

4.1.1 Traffic from Behaving sources:  

 

All the Sender nodes that transmit the packets as per the agreed 

terms of Quality of Service (QoS) [13], [15] & [16] and during 

congestion, the nodes which reduce their current sending rates 

accordingly after receiving the choke packets from congested 

node are called the Behaving sources. 

 

4.1.2 Traffic from Non-Behaving sources:  

 

All Sender nodes that do NOT transmit the packets as per the 

agreed terms of QoS even after receiving the RM or Choke 

packets from the congested node for reducing their current 

sending rate are called the non-Behaving sources such UDP traffic. 

Such non-behaving nodes keep on transmitting more and more 

packets which may lead to worsening of network congestion due 

to high percentage of queue occupancy and bandwidth 

requirements thus not allowing the genuine users to get connected 

to the Network. 

4.2 Algorithm which will work at intermediate 

Router/Switch level: 

4.2.1 Algorithm for “Main Module”: 

 

 1. Receive the incoming packets from source. 

 2. Check the source and destination address. 

 3. if (a packet has been dropped){ 

4. Call Congestion-Detection 

 5. Go to step1.} 

 6. Move the packets into the Priority in_queue. 

 7. if (outgoing link free){ 

 8.Move the packets from in_queue to  

out_queue} 

 9. else 

         10. Call Wait-Mode. 

         11. Go to step 1. 

 

4.2.3 Algorithm for “Congestion Detection”: 

 

 1. Check for queue occupancy. 

 2. if (que_occupancy >= 65%){ 

 3. Call Control Module 

 4. Call Wait Module 

 5. Call Packet-Drop Mode 

 6. Call Scale-up Mode.} 

 7. Return to “Main Module”. 

 

4.2.4 Algorithm for “Control Module”: 

 

 1. set i = 1. 

 2. if ( i > n) 

 3. Return to Congestion Detection Module. 

 4. else  

 5.percent_occu = No. of packets from ith source in the in_queue. 

    Total no. of packets in the whole in_queue 

 6. if (percent_occu > 65) 

 7. newSendingRate = 1/2 * CurrentRate 

 8. else if (percent_occu > 60) 

 9. newSendingRate = 1/4 * CurrentRate 

 10. else if (percent_occu > 55) 

 11. newSendingRate = 1/8 * CurrentRate 

 12. else if ( percent_occu > 50) 

 13. newSendingRate = 1/16 * CurrentRate 

 14. else if (percent_occu > 45) 

 15. newSendingRate = 1/32 * CurrentRate 

 16.   else if (percent_occu > 40) 

 17. newSendingRate = 1/64 * CurrentRate 

 18. else if (percent_occu > 35) 

 19. newSendingRate = 1/128 * Current Rate 

 20. else 

 21. newSendingRate = CurrentRate. 

 23. send a choke packet to i
th

 node with newSendingRate 

 24. i = i + 1. 

 25. Go to step 2. 

 

4.2.5.0 Algorithm for “Wait Module”: 

 

 1. set i = 1 

 2. while (i < = n) { 

 3.   TimeGiven = CurrentSystemTime –  

PresentTime 

 4.  if (TimeGiven > WaitTime) 

 5.   Drop[i] = 1 
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 6.  else 

 7.  Drop[i] = 0 

 8.  i = i + 1} 

 9. Return to “Congestion Detection” Module. 

  

Where Drop[ ] is an array of flags which is used as an 

indication for dropping the packets from the in_queue 

and subsequently the details of such misbehaving source 

are to be removed from the Que_occupancy table. If the 

flag value of Drop[i] = 1 then the packets of the source 

„i‟ are removed from the in_queue otherwise the packets 

are not removed from the in_queue. 

 

4.2.5.1 Algorithm for “Wait  Module”: 

 

 1. Accept incoming packets 

2. check in_queue status 

3. while (in_queue not free) { 

 drop the packets} 

4. Return to “Main Module” 

 

4.2.6.0 Algorithm for “Packet-Drop Mode”: 

 

 1. set i =1 

 2. while (i < = n) { 

 3. if (Drop[i] = = 1) 

 4.  if (ReceivingRate < = NewSendingRate) 

 5.   go to step 8  

6. else  

 7.    Call DropInQuePackets (i) 

 8.  i = i + 1  

 9. go to step 2 } 

 10. Return to “Congestion Detection Module”. 

 

4.2.6.1 Algorithm for “DropInQuePackets”: 

 

 1. delete all the  packets from i
th

  source in i
th

  queue of  

   in_queue 

2. Update QueOccupancy Table by deleting all the  

column values except Source IP Address 

3. add bandwidth “Bi”  of ith source to  Total Available 

Bandwidth 

 4. Return to “Drop Module” 

 

4.2.7 Algorithm for “Scale-up Mode”: 

 

1. if (new connection requests pending) // (if any) 

2.   {receive new connection requests with its IP    

address 

3.  get the amount of BandwidthRequested 

4.  if(BandwidthRequested<=  Total  Available   

Bandwidth) { 

5. set CurrentRate = BandwidthRequested  

6. set WaitTime = 0 

7. set NewSendingRate = 0  

8.  grant connection to this new source 

9. Update QueOccupancy Table by inserting all 

the above details in it } 

10. else { 

11.  Reject new Connection request 

12.   go to step 1 } 

13. else { 

14.  look for behaving sources //the ones which have 

reduced their rates of sending 

15. increase the Bandwidth of such sources by an 

amount < = surplus Total Available Bandwidth  

16  Update QueOccupancy Table by changing the 

CurrentRate of behaving sources} 

 17. Return to “Congestion Detection” Module. 

5. The Simulation Environment:  

We are using the Network Simulator NS 2.31 for creating and 

testing the proposed network Model [11]. The structure of the 

NS2.31 is depicted in the following figure. 

 

 
 

Figure 2: The Structure of NS 2.31 

6. Expected Results: 

In this model, the rate of transmission for all the sending sources 

is not decreased to ½  during the severe congestion (unlike the 

conventional TCP which reduces the cwnd to ½  for all the 

transmitting sources).  

Instead, this model ensures well in advance that congestion is 

taken care-off i.e. when the in_queue is 65% full, then based on 

the quantum of total percentage of queue occupancy the new data 
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transmission rate is calculated for individual sending source 

(based on the QoS parameters as agreed upon) and is conveyed by 

the router to the respective sending source through the choke 

packets and the congested router waits for the sources to reduce 

their respective transmission rates.  

The model achieves fairness through the fact that the sources 

which are sending packets indiscriminately are penalized with 

drastic cut in their transmission rates (to ½   the current rate of 

transmission) and behaving sources may have to reduce their 

sending rates to a low or moderate levels (but not to ½  the current 

rate of transmission).  

 

The proposed model based on [8], [9] and [10] is expected to 

a. Optimize the Bandwidth and make the bandwidth 

available to the Behaving sources under Congestion 

situation and also when there is No Congestion. 

b. Maximize the Throughput for the Behaving sources 

under Congestion situation and also when there is No 

Congestion. 

c. Meet the QoS demands of the Network Traffic during 

Congestion situation and also when there is No 

Congestion. 

d. Reject / drop all the packets from the Non-behaving 

source, during congestion, and packets from the 

behaving sources are accepted and accommodated in 

queue for onwards transmission. 

e. Allow scaling up i.e. allocating Bandwidth to new host 

which agrees to behave by sending packets as per 

QoS agreement. 
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APPENDIX 

 

  

Where S1, S2… Sn are sending sources and D1, D2… Dn are the Destination nodes. 

The acknowledgement packets are the choke packets informing the source about their new packet sending rates. 


