
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

36

Manuscript received November 5, 2008

Manuscript revised November 20, 2008

A Model for an Efficient Explicit Congestion Reduction in High

Traffic High Speed Networks Through Automated Rate

Controlling

K. Satyanarayan Reddy†
ksatyanreddy@yahoo.com

Dept. of ISE, EPCET*, Bangalore &

Research Scholar, Dept. of CS,

School of Science & Technology,

Dravidian University, Kuppam-517425, A.P., India.

and Lokanatha C. Reddy††
lokanathar@yahoo.com

Professor, Dept. of CS,

School of Science & Technology,

Dravidian University, Kuppam-517425, A.P., India

Summary: The conventional TCP suffers from poor performance

on high bandwidth delay product links meant for supporting data

transmission rates of multi Gigabits per seconds (Gbps). This is

mainly due to the fact that during congestion, the TCP‟s

congestion control algorithm reduces the congestion window cwnd

to ½ and enters additive increase mode, which can be slow in

taking advantage of large amounts of available bandwidth. In this

paper we have presented a new model and to overcome the

drawbacks of the TCP protocol and propose to carry out a study of

the same based on various parameters viz., Throughput, Fairness,

Stability, Performance and Bandwidth Utilization for supporting

data transmission across the High Speed Networks.

Keywords: Congestion Control, High Speed Networks.

1. Introduction:

TCP has been the most used transport protocol for the Internet for

over two decades. The scale of the Internet and its usage has

increased by several orders of magnitudes. The nature of

applications has significantly changed. Some of the assumptions

made during the early design process of TCP are no longer valid.

And yet, TCP remains the main protocol of the TCP/IP protocol

stack based on which the Internet runs. The reason TCP enjoys

this importance is that it constantly evolves to keep up with the

changing network demands [1], [2], [12].

However as the application needs changed, newer rate control

schemes were proposed [2], [3], [4], [6], [8], [9], [10] and [12].

As a result we now have an Internet which operates with a

spectrum of congestion control schemes, even though TCP

remains the most widely used transport protocol. In [3], [9], [10]

the authors have argued that these new congestion control schemes

can lead to a new congestion collapse and pose the problem of

congestion response conformance (wherein selfish/non-behaving

sources get an unfavorable share of bandwidth in comparison to

TCP).

TCP resides in layer 4 of the 7-layer OSI network model. It

provides a connection-oriented, reliable, byte-stream service that

is both flow and congestion controlled to the upper layers

(application layer), while assuming or expecting little from the

lower layers (IP layer and below). This is accomplished by a

complicated set of algorithms.

The congestion control functionality of TCP is provided by four

main algorithms namely slowstart, congestion avoidance, fast

retransmit and fast recovery in conjunction with several different

timers. Slowstart uses exponential window increase to quickly

bring a newly starting flow to speed. In steady state, the flow

mostly uses congestion avoidance in conjunction with fast

retransmit / recovery.

These algorithms implement the classic Additive

Increase/Multiplicative Decrease (AIMD) of the congestion

window. When no losses are observed, the congestion window is

increased by one for the successful acknowledgment of one

window of packets. Upon a packet loss, the window is decreased

to half its earlier value, to clear out the bottleneck link buffers.

There are several challenges in current networks to this simple

AIMD policy.

1.1 Working of TCP:

TCP is a self-sufficient and reliable transport protocol, in the

sense that the sender uses information provided by the receiver in

the form of acknowledgments, to determine the nature of

congestion in the network. No explicit feedback is expected from

the routers. This self-sufficiency is based on the assumption that

anytime packets do not arrive at the receiver in the same order that

the sender sent them, then it is due to congestion in the network.

While in most conventional networks, this assumption is true,

newer network environments challenge it [12].

mailto:ksatyanreddy@yahoo.com
mailto:lokanathar@yahoo.com

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

37

TCP uses a sliding-window based congestion control algorithm

proposed by Van Jacobson and others [1]. The slow-start

algorithm is activated (triggered) at the beginning of a transfer or

after a Retransmission Timer timeOut (RTO). Slow-start occurs

until the congestion window (cwnd) reaches the slow-start

threshold (ssthresh) or if packet loss occurs.

During the slow-start phase, if the receiver buffer size is large

enough, the number of segments injected into the network is

doubled every Round Trip Time (RTT). When the cwnd exceeds

the ssthresh, the congestion avoidance algorithm is used to lower

the sending rate by increasing the cwnd by at most one segment

per RTT.

This is the additive increase algorithm of TCP and is used for

probing the additional network capacity. Upon the arrival of three

duplicated acknowledgements (ACKs) at the sender‟s end, the fast

retransmit algorithm is activated, which retransmits that segment

without waiting for the RTO to expire.

Duplicate acknowledgements may occur when a packet is lost yet

three additional packets arrive at the receiver. After the

retransmission of the lost segment, the fast recovery method is

used to adjust the cwnd. As a result ssthresh is set to half the value

of cwnd, and then the cwnd is cut in half plus three segments. At

this point, for each duplicate ACK that is received, the cwnd is

increased by one segment until the ACK of the retransmission

arrives. After that, cwnd is set to sshthresh and the additive

increase algorithm is activated until either is equal to the

advertised receiver window or until loss is detected, indicating

possible congestion.

Since the above fast retransmit method can only fix one lost

segment per RTT, the subsequent lost segments within that RTT

usually have to wait for the RTO to be expired before being resent.

For most variants of TCP that are currently being used including

TCP Reno and TCP SACK, the sending rate is cut in half, each

time a loss occurs. The sending rate is then gradually increased

until another loss occurs.

This process is known as Additive Increase, Multiplicative

Decrease (AIMD) is repeated until all of the data has been

transmitted. This is one of the reasons TCP has difficulty

operating efficiently over long delay and error prone networks.

In these cases, the mis-classification of the cause for out-of-order

packet delivery or packet losses as congestion, forces TCP to use

multiplicative decrease of the congestion window and results in

degraded performance.

2. Current Drawbacks of TCP:

Basic TCP congestion control theory is well-known and in the past

couple of years, a number of studies [2], [3], [4], [6] have been

carried out to analyze it. Many researchers have worked on

improving the TCP congestion control algorithm.

TCP is unable to utilize all the available bandwidth on high-

bandwidth and/or high-delay paths due to its conservative

congestion avoidance algorithm. In fact TCP can become quite

unstable under these conditions. One problem is that the TCP does

not have a mechanism to distinguish between a slowest

(narrow/bottleneck) link and congested (tight) link. This means

that TCP‟s algorithm will continue to increase the congestion

window (assuming tuned large buffers) to increase the sending

rate as long as there is no further packet loss.

This is problematic since packet drop could be caused by

congestion at the narrow link. In either a high-speed and/or long

delay path, when a congestion signal comes back to the sender, the

outstanding data stream will be the average size of congestion

window, which is computed from the acknowledgments during the

last round-trip-time (RTT) period.

Consider a 100ms RTT and 40Gb/s path, TCP needs to send a

burst as large as 500 Mbytes of data during one RTT to detect

congestion trend. This big burst of traffic plus existing cross

traffic will exceed the bottleneck link router queue and cause up to

50% packet loss (more than 160K packets in above example). A

self-clocking system could help to reduce the loss probability

when cross traffic is less bursty, but this may not be the condition

under which the current network is dropping packets.

An examination of the congestion avoidance mechanism shows

that the bursts are in two different phases of the TCP congestion

control algorithm; slow start and congestion avoidance. In the

slow start phase, the algorithm doubles the size of the burst until

packet loss occurs, probing for the ceiling of the congestion

window.

After seeing packet loss, standard TCP congestion control reduces

the congestion window to one half the current window sizes. If

TCP sees more packet loss, it will reduce the window further. This

is called “multiplicative decrease” which prevents further packets

from causing collapse. This slow start algorithm assumes that a

possible best congestion window is between the last burst

(congestion window) and the previous burst (one half of the

congestion window) since the previous burst did not cause packet

loss.

However, this does not efficiently avoid packet loss, especially

when the bandwidth [7] or path latency is high. For example, on a

100ms RTT and 100 Gbps path, the previous burst can be 1 GB,

and doubling it can cause the increased 1GB data loss. Since

acknowledgments are asynchronously fed back to the sender, they

can cause further fluctuations when the cross traffic is more

dynamic. The key issue in the slow start phase is during the last

few window adjustments.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

38

In a better TCP design, the last few probes should be used to

detect the bottleneck router's queue size and its capacity, and

should not use an exponential increase of the burst (window) size

to cause loss. Instead, it should use an adaptive algorithm to

increase its burst size to avoid losing a large number of packets.

This would also allow the detection of the best rate to pace out the

packet. Window based congestion control mechanisms also lack

the ability to predict congestion on-the-fly and dynamically adjust

their sending rate to reflect the new available bandwidth.

3. Suggested New Model (please see appendix in

full-scale):

Figure 1: New Model for congestion control

4. The Algorithms:

4.1. Network Traffic Classification:

In this model we are assuming that at any point of time „n‟ sources

S1, S2, …, Sn are communicating with the „n‟ destinations D1,

D2, …, Dn (as the model is being developed for Private Network

Service providers supporting High-speed Communications). This

new protocol incorporates few changes in the current

Transmission Control Protocol (TCP) and it works at the router

level.

When the packets are received by the router/switch from the

sources, these packets are forwarded for onward transmission

based on Store and Forward principle i.e. when the outgoing link

is not available for onward transmission of the received packets

then such packets are stored in the in_queue before being

forwarded to the out_queue.

The received packets from the sending sources S1, S2… Sn are

accommodated in individual queues (here we have made

assumption that the in_queue comprises of „n‟ different queues,

one for each transmitting source i.e. the transmission from source

S1 will be accommodated in the q1 of in_queue, the transmission

from source S2 will be accommodated in the q2 of in_queue and

so on).

The packets are forwarded to the out_queue on round-robin basis

i.e. a packet is chosen from each of the „n‟ in_queue‟s i.e. a

packet from q1, a packet from q2 and so on a packet from qn is

chosen. This continues till the time there is no congestion in the

network i.e. no packet loss have been observed.

The moment a packet loss is observed, the sending sources are

informed to reduce their sending rates through the

acknowledgement packets (choke packets) as shown in figure 1

above.

And the router enters in wait mode wherein it performs the above

job as usual for a pre-calculated time duration recorded in the

Que_occupancy table. Once the wait period is over for a source,

and the source fails to comply with the rate reduction then such

source is declared to be a misbehaving source and all the packets

from such a source are dropped from queue containing packets

from the misbehaving sources from the in_queue.

The Bandwidth that was allocated to the misbehaving source is

added to the Total Available Bandwidth, so that new sources

which are willing to communicate can be allocated requisite

bandwidth [14] (subject to the availability of the requested

bandwidth).

Table1: The Que_occupancy table has the following format:

Source

no.

Source

IP

Address

Destination

IP Address

Current

Rate

New

Sending

Rate

Present

Time

Wait-

Time

1

2

:

n

This table is maintained / updated for each customer who is

registered with the High Speed Network connectivity service

provider.

Where the terms in the Que_Occupancy table are defined as

follows:

Source No.: This is an integer field corresponding to the source

numbers viz. 1,2, 3,…., n for the sources S1, S2, …, Sn.

Source IP Address: It is the IP address of the sending source node.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

39

Destination IP Address: It is the IP address of the Destination

node.

CurrentRate: It contains the value of current rate of sending as

agreed upon between sending source and the Highspeed Network

communication service provider.

NewSendingRate: This rate is initially 0 (zero) in the

Que_Occupancy table till the time the congestion is experienced

by the router, but as the intermediate router/switch experiences the

congestion through the packet drops, a new Sending rate is

calculated for all the sending sources based on the number of their

packets present respectively in the in_queue with respect to

overall Que_Occupancy. And it is calculated in terms of overall

percentage as depicted in the following Algorithm 4.2.4.

WaitTime: This time is initially 0 (zero) in the Que_Occupancy

table till the time the congestion is experienced by the router, but

on packet drops, the algorithm Congestion Detection 4.2.2 gets

activated and NewSendingRate for all the sources are calculated.

This NewSendingRate (requests the sources for reducing their

current sending rate) is conveyed to the sending sources through

the choke packets. And the WaitTime is calculated & set for all the

sending sources by updating the Que_Occupancy table. During

this time none of the packets present in the in_queue are dropped.

When WaitTime for a source gets exhausted then all packets from

such source in the in_queue are dropped.

4.1.1 Traffic from Behaving sources:

All the Sender nodes that transmit the packets as per the agreed

terms of Quality of Service (QoS) [13], [15] & [16] and during

congestion, the nodes which reduce their current sending rates

accordingly after receiving the choke packets from congested

node are called the Behaving sources.

4.1.2 Traffic from Non-Behaving sources:

All Sender nodes that do NOT transmit the packets as per the

agreed terms of QoS even after receiving the RM or Choke

packets from the congested node for reducing their current

sending rate are called the non-Behaving sources such UDP traffic.

Such non-behaving nodes keep on transmitting more and more

packets which may lead to worsening of network congestion due

to high percentage of queue occupancy and bandwidth

requirements thus not allowing the genuine users to get connected

to the Network.

4.2 Algorithm which will work at intermediate

Router/Switch level:

4.2.1 Algorithm for “Main Module”:

 1. Receive the incoming packets from source.

 2. Check the source and destination address.

 3. if (a packet has been dropped){

4. Call Congestion-Detection

 5. Go to step1.}

 6. Move the packets into the Priority in_queue.

 7. if (outgoing link free){

 8.Move the packets from in_queue to

out_queue}

 9. else

 10. Call Wait-Mode.

 11. Go to step 1.

4.2.3 Algorithm for “Congestion Detection”:

 1. Check for queue occupancy.

 2. if (que_occupancy >= 65%){

 3. Call Control Module

 4. Call Wait Module

 5. Call Packet-Drop Mode

 6. Call Scale-up Mode.}

 7. Return to “Main Module”.

4.2.4 Algorithm for “Control Module”:

 1. set i = 1.

 2. if (i > n)

 3. Return to Congestion Detection Module.

 4. else

 5.percent_occu = No. of packets from ith source in the in_queue.

 Total no. of packets in the whole in_queue

 6. if (percent_occu > 65)

 7. newSendingRate = 1/2 * CurrentRate

 8. else if (percent_occu > 60)

 9. newSendingRate = 1/4 * CurrentRate

 10. else if (percent_occu > 55)

 11. newSendingRate = 1/8 * CurrentRate

 12. else if (percent_occu > 50)

 13. newSendingRate = 1/16 * CurrentRate

 14. else if (percent_occu > 45)

 15. newSendingRate = 1/32 * CurrentRate

 16. else if (percent_occu > 40)

 17. newSendingRate = 1/64 * CurrentRate

 18. else if (percent_occu > 35)

 19. newSendingRate = 1/128 * Current Rate

 20. else

 21. newSendingRate = CurrentRate.

 23. send a choke packet to i
th

 node with newSendingRate

 24. i = i + 1.

 25. Go to step 2.

4.2.5.0 Algorithm for “Wait Module”:

 1. set i = 1

 2. while (i < = n) {

 3. TimeGiven = CurrentSystemTime –

PresentTime

 4. if (TimeGiven > WaitTime)

 5. Drop[i] = 1

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

40

 6. else

 7. Drop[i] = 0

 8. i = i + 1}

 9. Return to “Congestion Detection” Module.

Where Drop[] is an array of flags which is used as an

indication for dropping the packets from the in_queue

and subsequently the details of such misbehaving source

are to be removed from the Que_occupancy table. If the

flag value of Drop[i] = 1 then the packets of the source

„i‟ are removed from the in_queue otherwise the packets

are not removed from the in_queue.

4.2.5.1 Algorithm for “Wait Module”:

 1. Accept incoming packets

2. check in_queue status

3. while (in_queue not free) {

 drop the packets}

4. Return to “Main Module”

4.2.6.0 Algorithm for “Packet-Drop Mode”:

 1. set i =1

 2. while (i < = n) {

 3. if (Drop[i] = = 1)

 4. if (ReceivingRate < = NewSendingRate)

 5. go to step 8

6. else

 7. Call DropInQuePackets (i)

 8. i = i + 1

 9. go to step 2 }

 10. Return to “Congestion Detection Module”.

4.2.6.1 Algorithm for “DropInQuePackets”:

 1. delete all the packets from i
th

 source in i
th

 queue of

 in_queue

2. Update QueOccupancy Table by deleting all the

column values except Source IP Address

3. add bandwidth “Bi” of ith source to Total Available

Bandwidth

 4. Return to “Drop Module”

4.2.7 Algorithm for “Scale-up Mode”:

1. if (new connection requests pending) // (if any)

2. {receive new connection requests with its IP

address

3. get the amount of BandwidthRequested

4. if(BandwidthRequested<= Total Available

Bandwidth) {

5. set CurrentRate = BandwidthRequested

6. set WaitTime = 0

7. set NewSendingRate = 0

8. grant connection to this new source

9. Update QueOccupancy Table by inserting all

the above details in it }

10. else {

11. Reject new Connection request

12. go to step 1 }

13. else {

14. look for behaving sources //the ones which have

reduced their rates of sending

15. increase the Bandwidth of such sources by an

amount < = surplus Total Available Bandwidth

16 Update QueOccupancy Table by changing the

CurrentRate of behaving sources}

 17. Return to “Congestion Detection” Module.

5. The Simulation Environment:

We are using the Network Simulator NS 2.31 for creating and

testing the proposed network Model [11]. The structure of the

NS2.31 is depicted in the following figure.

Figure 2: The Structure of NS 2.31

6. Expected Results:

In this model, the rate of transmission for all the sending sources

is not decreased to ½ during the severe congestion (unlike the

conventional TCP which reduces the cwnd to ½ for all the

transmitting sources).

Instead, this model ensures well in advance that congestion is

taken care-off i.e. when the in_queue is 65% full, then based on

the quantum of total percentage of queue occupancy the new data

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

41

transmission rate is calculated for individual sending source

(based on the QoS parameters as agreed upon) and is conveyed by

the router to the respective sending source through the choke

packets and the congested router waits for the sources to reduce

their respective transmission rates.

The model achieves fairness through the fact that the sources

which are sending packets indiscriminately are penalized with

drastic cut in their transmission rates (to ½ the current rate of

transmission) and behaving sources may have to reduce their

sending rates to a low or moderate levels (but not to ½ the current

rate of transmission).

The proposed model based on [8], [9] and [10] is expected to

a. Optimize the Bandwidth and make the bandwidth

available to the Behaving sources under Congestion

situation and also when there is No Congestion.

b. Maximize the Throughput for the Behaving sources

under Congestion situation and also when there is No

Congestion.

c. Meet the QoS demands of the Network Traffic during

Congestion situation and also when there is No

Congestion.

d. Reject / drop all the packets from the Non-behaving

source, during congestion, and packets from the

behaving sources are accepted and accommodated in

queue for onwards transmission.

e. Allow scaling up i.e. allocating Bandwidth to new host

which agrees to behave by sending packets as per

QoS agreement.

Acknowledgements:

The authors thank the authorities of the Dravidian University,

Kuppam - 517425, AP, India, who provided opportunities and

resources for carrying out this research and for the liberal grants

extended for research activities in the Dept. of CS at the

University. The first author further thanks the Management and

also the Principal of the East Point College of Engineering &

Technology, Virgo Nagar Post, Bangalore – 560 049, India for

their support and encouragement extended to him to pursue

research in the chosen field of study.

References:

[1] Jacobson, V. Congestion avoidance and control. In

Proceedings of SIGCOMM '88, Stanford, CA, Aug. 1988.

[2] Sally Floyd, HighSpeed TCP for Large Congestion Windows

and Quick-Start for TCP and IP, Yokohama IETF, July 18,

2002, Available at http://www.icir.org/floyd/hstcp.html

[3] Dina Katabi, Mark Handley, Charlie Rohrs. Congestion

Control for High Bandwidth-Delay Product Networks.

SIGCOMM „02, Pittsburgh, Pa, Aug. 2002.

[4] Tom Kelly, Scalable TCP: Improving Performance in

Highspeed Wide Area Networks, ACM SIGCOMM Computer

Communication Review, Feb‟ 2003.

http://.citeseer.ist.psu.edu/kelly03scalable.html

[5] G. Jin, B. Tierney Netest: A Tool to Measure Maximum Burst

Size, Available Bandwidth and Achievable Throughput,

Proceedings of the 2003 ITRE, Newark, NJ, Aug. 10-13, 2003,

LBNL-48350.

[6] C. Jin, D. Wei, S. H. Low, G. Buhrmaster, J. Bunn, D. H.

Choe, R. L. A. Cottrell, J. C. Doyle, W. Feng, O. Martin, H.

Newman, F. Paganini, S. Ravot, S. Singh, FAST TCP: From

Theory to Experiments, Dec. 6, 2003.

http://netlab.caltech.edu/FAST/publications.html

[7] G. Jin, Feedback adaptive control and feedback asymptotic

convergence algorithms for measuring network bandwidth.

LBNL-53165.

[8] K. Satyanarayan Reddy, C. Lokanatha Reddy “A Survey on

Congestion Control Mechanisms in High Speed Networks” has

been published in the International Journal of Computer

Science and Network Security (IJCSNS) Vol. 8 No. 1, pp. 187

– 195, January 2008.

http://paper.ijcsns.org/07_book/200801/20080126.pdf

[9] K. Satyanarayan Reddy, C. Lokanatha Reddy “A Survey on

Congestion Control Protocols for High Speed Networks” has

been published in the International Journal of Computer

Science and Network Security (IJCSNS) Vol. 8 No. 7, pp. 44 –

53, July 2008.

http://paper.ijcsns.org/07_book/200807/20080707.pdf

[10] K. Satyanarayan Reddy, C. Lokanatha Reddy “An Efficient

Explicit Congestion Reduction in High Traffic High Speed

Networks through Automated Rate Controlling” appeared in

the proceedings of International Conference ICSTAORIT –

2006 – XXVI ISPS CONFERENCE with Paper Id : IT-45 held

at Tirupati, India during the period 7
th

 January 2007 to 9th

January 2007.

[11] ns the Network Simulator; http://www.isi.edu/nsnam/ns/.

[12] Sumitha Bhandarkar, PhD thesis submitted to the Office of

Graduate Studies of Texas A & M University (TAMU), 2006.

[13] Weibin Zhao, David Olshefski and Henning Schulzrinne

“Internet Quality of Service: an Overview” Columbia

University.

 [14] G. L. Nemhauser “ Introduction to Dynamic Programming”

John Wiley, New York, 1966.

[15] P. Ferguson and G. Huston. “Quality of Service: Delivering

QoS in the Internet and the Corporate Network” Wiley

Computer Books, New York, NY, 1998.

[16] R. Guerin and V. Peris. “Quality-of-service in packet

networks: Basic mechanisms and directions” Computer

Networks, 31(3):169–189, February 1999.

http://paper.ijcsns.org/07_book/200801/20080126.pdf
http://www.isi.edu/nsnam/ns/

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

42

Authors:

†
K. Satyanarayan Reddy received his M.Sc.

(Mathematics) & M.Phil. (Mathematics) Degrees

from Nagpur University, Maharashtra State, India

and M. Tech. (Computer Applications) from

Indian School of Mines (ISM), Dhanbad,

Jharkhand, India in 1987, 1988 and 2000

respectively. He is currently associated with Information Science

& Engineering department of *East Point College of Engineering

and Technology (EPCET), Bangalore, Karnataka State, India. He

is a Research Scholar in the Dept. of Computer Science, School of

Science & Technology at Dravidian University, Kuppam, AP,

India and is pursuing his Ph.D. Degree in Computer Science. His

current areas of research are Congestion Control in High Speed

Networks and Data Communications.

††

Lokanatha C. Reddy earned M.Sc.(Maths)

from Indian Institute of Technology, New Delhi;

M.Tech.(CS) with Honours from Indian

Statistical Institute, Kolkata; and Ph.D.(CS)

from Sri Krishnadevaraya University,

Anantapur. Earlier worked at KSRM College of

Engineering, Kadapa (1982-87); Indian Space Research

Organization (ISAC) at Bangalore (1987-90). He is the Head of

the Computer Centre (on leave) at the Sri Krishnadevaraya

University, Anantapur (since 1991); and a Professor of Computer

Science and Dean of the School of Science & Technology at the

Dravidian University, Kuppam (since 2005). His active research

interests include Real-time Computation, Distributed Computation,

Device Drivers, Geometric Designs and Shapes, Digital Image

Processing, Pattern Recognition and Computer Networks.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

43

APPENDIX

Where S1, S2… Sn are sending sources and D1, D2… Dn are the Destination nodes.

The acknowledgement packets are the choke packets informing the source about their new packet sending rates.

