
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008 
 

 
 

44 

Manuscript received  November 5, 2008 

Manuscript revised  November 20, 2008 

 
Abstract— Extensive research has been done on optical 
character recognition in the last few decades. Most of the 
efforts were made to develop OCR systems for foreign 
languages like English, Japanese, Roman and Arabic characters. 
Many commercial OCR systems for these foreign languages 
are available in the market. In the context of Indian languages, 
majority of work is reported on Hindi and Bangla. And very 
few reports are available on South Indian languages. This paper 
describes a character recognition system that can handle 
machine printed text documents in Kannada, which is the 
official language of the South Indian state of Karnataka. 
Initially, the scanned image is preprocessed to remove noise. 
Lines, words and character components are segmented using 
two-stage segmentation technique.  Classification of the 
character components is done in two stages. In the first stage, 
the character components are grouped into small subsets by a 
feature based tree classifier. In the second stage, characters in 
each group are recognized using a nearest neighbor classifier. 
We adopted this hybrid approach instead of using only a tree 
classifier because it is nearly impossible to find a set of stroke 
features that are simple to compute, robust and reliable to 
detect, and are sufficient to classify a large number of basic and 
complex shaped compound characters. The system is tested 
with the data set containing 8400 characters of different font 
and size. On average, the system recognizes characters with an 
accuracy of about 92.68%.  
 
Index Terms— Character recognition, Structural features,  
Direction code, Binary decision tree, k-Nearest Neighbor, 
Multi-stage classifier. 

I.  INTRODUCTION 
   Character recognition is one of the benchmark 
problems of Artificial Intelligence research. Optical 
character recognition (OCR) is a process of automatic 
computer recognition of characters in optically scanned 
and digitized pages of text. OCR is one of the most 
fascinating and challenging areas of pattern recognition 
with various practical application potentials. It can 
contribute immensely to the advancement of an 
automation process and can 

improve the interface between man and machine in many 
applications[3],[4],[5]. 

Some practical application potentials of OCR system 
are: Reading aid for the blind, Automatic text entry into 
the computer for desktop publication, library cataloging, 
ledgering, etc., Automatic reading for sorting of postal 
mail, bank cheques and other documents, Document data 
compression, Language processing, Multi-media system 
design, etc.  
   OCR for Indian languages in general is more difficult 
than for European languages[1] because of the large 
number of vowels, consonants, and 
conjuncts(combination of vowels and consonants). 
Further, most scripts spread over several zones. 
Segmentation has to deal with the positioning of the 
conjuncts and half syllables. These factors coupled with 
the inflectional and agglutinative nature of Indian 
languages make the OCR task quite challenging. 
Language models and computational linguistics as 
pertains to Indian languages is an area of recent research. 
   Traditionally, pattern recognition techniques are 
classification as template- and feature-based approach 
[6],[8],[9]. Early OCR systems employed only template-
based approach, but modern systems combine this with 
feature-based approaches to obtain better results. For 
example, the initial Bangla OCR system [7] employed 
feature-based approach for basic characters, while 
template matching for compound character recognition.  
   Feature-based approaches derive important properties 
(features) from the test patterns and employ them in a 
more sophisticated classification model. The feature-
based approaches can be of two types, namely spatial 
domain and transform domain approaches [10],[11]. In 
the context of Indian script OCR, spatial domain features 
are mostly used for various scripts like Bangla, 
Devnagari, Tamil, Telugu, etc. However, singular value 
decomposition and Cosine transform have also been used.   

Some studies on Hindi, Gurumukhi, Oriya, Punjabi, 
Telugu, Gujrathi, Tamil, Kannada [1] etc are reported. 
To the best of our knowledge OCR development work 

 Hierarchical Recognition System for Machine 
Printed Kannada Characters 

Dinesh Achaya U,  N V Subba Reddy  and Krishnamoorthi
  

Department of Computer Science and Engineering, Manipal Institute of Technology,  
Manipal University, Manipal-576104  India 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008 
 

45

on Kannada scripts are at its infancy and a very few 
standard work has been reported for Kannada documents 
[12],[13]. A font and size independent OCR system for 
printed Kannada documents is reported by Ashwin and 
Sastry [12]. The system first extracts words from the 
document image and then segments these into sub-
character level pieces.     The segmentation algorithm is 
motivated by the structures of the script. A set of zoning 
features is extracted after normalization of the characters 
for recognition. The final recognition is achieved by 
employing a number of 2-class classifiers based on the 
support vector machines (SVM). An on-line system for 
Kannada characters is described by Rao and Samuel [13]. 
The described system extracts Wavelet features from the 
contour of the characters. The convolutional feed-
forward multi-layer neural network is used as the 
classifier.  
   In this paper, a character recognition system for 
machine printed Kannada characters is presented. 
Initially, the scanned image is preprocessed to remove 
noise. Lines, words and character components are 
segmented using two-stage segmentation technique.  
Classification of the character components is done in 
two stages. In the first stage, the character components 
are grouped into small subsets by a feature based tree 
classifier. In the second stage, characters in each group 
are recognized using a nearest neighbor classifier. A 
lexicon will combine the proper sequence of character 
components into a complete character. 

II.  KANNADA SCRIPT 
   Kannada script[2] is the visual form of Kannada 
language. It is a south Indian language spoken in 
Karnataka state of India.  It originated from southern 
Bramhi lipi of Ashoka period. It underwent 
modifications periodically in the reign of Sathavahanas, 
Kadambas, Gangas, Rastrakutas, and Hoysalas. Even 
before seventh-Century, the Telugu-Kannada script was 
used in the inscriptions of the Kadambas of Banavasi and 
the early Chalukya of Badami in the west. From the 
middle of the seventh century the archaic variety of the 
Telugu-Kannada script developed a middle variety. The 
modern Kannada and Telugu scripts emerged in the 
thirteenth Century. Kannada script is also used to write 
Tulu, Konkani and Kodava languages. 
   Kannada along with other Indian language scripts 
shares a large number of structural features. The writing 
system of Kannada script encompasses the principles 
governing the phonetics and a syllabic writing systems, 
and phonemic writing systems (alphabets).  
   The Kannada block of Unicode Standard (0C80 to 
0CFF) is based on ISCII-1988 (Indian Standard Code 
for Information Interchange). The Unicode Standard 

(Version 3) encodes Kannada characters in the same 
relative positions as those coded in the ISCII-1988 
standard. 
   We describe here some of the properties of Kannada 
Script that are useful for building the recognition 
system[12].  
   The Kannada alphabet is classified into two main 
categories: vowels and consonants. There are 16 vowels 
and 35 consonants as shown in Fig. 1 and Fig. 2. 
   Words in Kannada are composed of aksharas which 
are analogous to characters in an English word. While 
vowels and consonants are aksharas, the vast majority of 
aksharas are composed of combinations of these in a 
manner similar to most other Indian scripts. An akshara 
can be one of the following, (1) A stand alone vowel or a 
consonant (i.e. symbols appearing in Fig. 1 and Fig. 2). 
(2) A consonant modified by a vowel. (3) A consonant 
modified by one or more consonants and a vowel.  
   When a vowel constitutes the whole akshara, the 
vowel normally appears at the beginning of a word.  
   A consonant can also form the whole akshara and can 
come anywhere in the word. These aksharas appear in 
the middle region of the line and are represented by the 
same glyph as shown in Fig. 1 and Fig. 2.  
    

 
Fig.  1  Vowels in Kannada 

                   

 
Fig. 2  Consonants in Kannada 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008 
 
46 

 
   A consonant C and a vowel V can combine to form an 
akshara. Here the akshara is composed by retaining 
most of the consonant glyph (Fig. 2) and by attaching to 
it the glyph corresponding to the vowel modifier. The 
vowel modifier glyphs are different from those of the 
vowels and are shown in Fig. 3. The glyph of the vowel 
modifier for a particular vowel is attached to all 
consonants mostly in the same way, though, in a few 
cases the glyphs of the vowel modifier may change 
depending on the consonant. Fig. 3 shows two of the 
consonants modified by all the 16 vowels. In this figure, 
the second row shows the vowels, the third row shows 
the glyphs of the vowel modifiers, the fourth and fifth 
rows show the consonant–vowel(C–V ) combinations for 
two consonants which phonetically correspond to c as in 
cat and y as in yacht. As can be seen from the figure, the 
vowel modifier glyphs attach to the consonant glyphs at 
up to three places corresponding to the top, right and 
bottom positions of the consonant. It can be observed 
that the widths of the C–V combinations vary widely and 
also that the image of a single akshara may be composed 
of two or more disconnected components. 
   In the third form of akshara composition, consonants 
C1;C2 : : :Cj and a vowel V can combine to form an 
akshara. In practice j is limited to 3. The consonant C1 
forms the base consonant and the modifier for the vowel 
V attaches to it.  

 

 
Fig.  3  Example of consonant–vowel combinations 

 

 
Fig.  4  Consonant conjuncts in Kannada 

 
   The rules for this consonant vowel combination are the 
same as described above. The consonants C2 : : :Cj are 
called the consonant conjuncts. The glyphs of many 
consonant conjuncts resemble those of the consonants 
though there are a sizeable number of exceptions. Some 
of the consonant conjunct glyphs are shown in fig. 4. 
The consonant conjunct glyphs always appear below the 
C–V combination formed by C1 and V . A few examples 
showing aksharas formed by a consonant, a consonant 
conjunct and a vowel are shown in Fig. 5. 

 

 
Fig. 5  Some examples of consonant-consonant-

vowel combinations. 

III.  PREPROCESSING 
   The developed system comprises two main processes: 
(i) Preprocessing and (ii) Classification.  The 
preprocessor is developed to address complexity issue of 
the problem domain by incorporating the segmentation 
mechanism. The samples to be classified are segmented 
to generate a set of components for each sample. Further 
a rule generator is used to process the information of 
each component of the sample mapped to obtain input in 
the form of decision rules. The classification of the 
system has been devised based on decision tree model in 
the first phase and k-nearest neighbor classifier in the 
second phase. 
  The preprocessing[3]-[5] process of the developed 
system further comprises (i) Text digitization and noise 
removal, (ii) Segmentation and (iii) Feature Extraction. 

 
A. Text Digitization and Noise Removal  
The input image is digitized using a flatbed scanner 

with 300 dpi. The digitized image is binarized using 
histogram-based thresholding approach. The threshold 
value is chosen as the midpoint between two histogram 
peaks.  
Median filtering is used to remove the noise in the 
binarized image. In median filtering an output pixel is 
determined by the median of the neighborhood pixels. 
The median is much less sensitive to extreme values 
(called outliers). Median filtering is therefore better able 
to remove these outliers without reducing the sharpness 
of the image. It is a smoothing technique that causes 
minimal edge blurring. 
 
  B. Segmentation 
  Aksharas in Kannada are formed by graphically 
combining symbols corresponding to consonants, 
consonant conjuncts and vowel modifiers using well-
defined rules of combination. This general structure of 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008 
 

47

forming characters of a word is a feature common to 
many other Indian scripts. It also necessitates some 
special ways of segmenting a word into its constituent 
symbols while designing OCRs for Kannada[12].  
   In a language like English (written in the standard 
Roman script), each word consists of a linear sequence 
of characters written next to each other in a line. There 
are only fifty two possible character symbols. Since there 
is always some space between characters of a word, a 
general strategy for handling such scripts would be to 
segment a word into individual characters and then 
recognize each character separately. However, such a 
strategy is not feasible for Kannada script.                     
   As in English script, in Kannada also the glyphs of 
aksharas are placed next to each other; but the aksharas 
themselves are quite complicated with considerable 
variation in widths and heights (Fig. 5). The number of 
possible consonant–vowel combinations is 35 X 16=560. 
The number of possible consonant–consonant–vowel 
combinations is 35 X 35 X 16=19600. Thus, if we 
consider each akshara as a separate category to be 
recognized, building a classifier to handle these many 
classes is very difficult. Also, such an approach does not 
exploit the fact that the aksharas are formed through 
well-defined geometric combination of individual 
symbols. Many of the letters or aksharas are very similar 
and differ only in having an additional stroke or an 
attachment. Structure of the script is such that it is 
feasible to break the aksharas into their constituents and 
recognize these components independently. This has 
been the chosen approach for most Indian scripts and we 
have considered this approach in developing the 
recognition system. 
   As can be seen from Fig. 5, the image of an akshara 
may not be a single connected component. Hence 
correctly segmenting the image of a word into those 
corresponding to individual aksharas, prior to 
recognition, is very difficult. Hence, in our system we 
segment the word into components each of which can be 
only part of an akshara. Ideally, we may want to split the 
word so that each segment corresponds to the base 
consonant or vowel modifier or consonant conjunct. 
Even this is not generally feasible because some of the 
vowel modifiers themselves do not correspond to a 
single connected component. Further, due to the 
structure of some of the consonant and vowel symbols, it 
was observed that, for getting consistent segmentation, it 
is easier to allow even some of the consonant symbols to 
be split into two or more parts while segmenting a word. 
Once a word is split using our segmentation algorithm, 
we label each piece (using a pattern recognition 
technique) and then combine the labels on neighboring 
segments to effect final recognition of aksharas. Due to 
the well defined graphical combination rules of the script, 

this step of combining labels of individual segments into 
aksharas is fairly simple[12].  
 
    Line and Word Segmentation: The 
segmentation[17],[18] Technique uses projection profile 
technique and zoning algorithm along with connected 
component analysis to segment the characters. The 
digitized image is processed to lines and words using 
appropriate horizontal and vertical projection profiles 
[1],[12],[15]. The projection profile gives valleys of zero 
height for these OFF pixels between the text lines. In the 
Fig. 6, a text document along with its horizontal 
histogram is shown. Segmentation of the image into 
separate lines is done at these valley points.    A vertical 
projection is applied to the image for word segmentation, 
as shown in the Fig. 7. The space between each word, 
which is sufficiently large compared to inter character 
space, is used to determine the word boundaries. With 
the vertical projection profile approach OFF pixels 
between each word give valleys with zero value, which 
indicate the word boundary. This information is used to 
separate the words from the text lines. 
  
   Character Segmentation: The words are then 
segmented into smaller parts and given to the classifier 
to recognize the characters For English and some other 
foreign languages the normal projection profile method 
is enough to segment the machine printed characters. For 
Kannada characters the projection profile approach alone 
will not give the desired output, as the characters in 
Kannada are composed by attaching the glyph of a 
consonant, the glyphs of vowel modifiers and the glyphs 
of the consonant conjuncts. 
 

 
Fig. 6  Line Segmentation by horizontal projection profile 

 

 
Fig. 7  Word Segmentation by vertical projection profile 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008 
 
48 

   From the recognition point of view, the characters have 
to be segmented into its constituents, i.e., the base 
consonant, the vowel modifier and the consonant 
conjunct. This is addressed by a two-stage approach. 
First, the zone level features (reference points) are 
extracted, in the coarse level and then in second stage, 
these reference points are used for connected component 
analysis in segmenting the characters.  
 

 
Fig. 8   Character Segmentation by vertical projection profile 

 
   Zoning is used to find the reference points, which is 
used to separate the top and bottom modifiers from the 
character. Two peak drops(Fig. 9) in the histogram 
values are used for dividing the text line into three zones, 
top zone, mid zone and bottom zone, which separates the 
modifier from the main character component. The top 
zone(Fig. 9) contains the vowel modifiers(VM) and 
sometimes part of the base consonant. The mid zone 
contains the consonant glyphs(C) and vowel modifiers. 
The vowel modifier glyphs may appear as either 
connected or disconnected components to the right of the 
base component. The bottom zone consists of glyphs for 
the consonant conjuncts(CC) and glyphs for some vowel 
modifiers. These glyphs generally appear disconnected 
from the base consonant and the vowel modifiers present 
in the mid zone. Zonal reference points are calculated for 
each line, once the line segmentation is done, and are 
used along with connected component analysis for the 
separation of components in the  characters(Fig. 10).  
Consonant conjuncts, which penetrate into the mid zone, 
multiple components in the consonant conjuncts and 
vowel modifier on the right side of the base consonant 
are separated by using the connected component 
analysis(Fig. 10). 
            
    

 
Fig. 9  Zones in a Kannada text line 

 

                                              Fig. 10  Separation of character 
components using zoning and connected component analysis 

 
   The character separation poses some problems due to 
the fact that the consonant conjuncts, which appear 
below the base consonant, appear frequently overlapped 
with the base consonant of next character in the 
word(Fig. 11).  Such false cases can be handled, 
heuristically, by using statistics of the character width, 
separation between character components in the mid 
zone and number of connected components.   
 
                 

 
Fig. 11  Consonant conjunct overlapping with the  base 

consonant of next character in the word 
 

 
   C.  Feature Extraction 
   We consider topological features and structural 
features for character recognition. We term these the 
principal features. The features are chosen with the 
following considerations: (a) Robustness, accuracy and 
simplicity of detection, (b) speed of computation, (c) 
independence of size and fonts, and (d) tree classifier 
design need[14]. 
   We considered a few structural and topological 
features for the initial classification of characters. These 
features are used to design a tree classifier where the 
decision at each node of the tree is taken on the basis of 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008 
 

49

the presence/absence of a particular feature. Structural 
features include the presence of shirorekha, vertical and 
horizontal strokes and their position.. The topological 
features used include existence of holes, their number 
and  position of holes with respect to character bounding 
box, ratio of hole height to character height etc. In 
addition, presence of isolated points, no. of zero 
crossings, aspect ratio and number of connected 
components are used as features in the recognition 
scheme. 
The features selected here are simple, linear in structure 
and hence quick and easy to detect. They are fairly 
robust to noise and quite stable with respect to font 
variation. The methods for detecting the stroke features 
are described below.  
‘Shirorekha’ corresponds to the presence of a horizontal 
line at the top of the image in consideration. Its presence 
is found by applying minimal bounding box on  the 
character component and counting the number of 
character pixels in the first row of the character 
component. If it is more than 3/4th of width of the 
character component, then it is having a shirorekha. 
Region descriptors function, ‘regionprops’ of MATLAB 
IPT, provide the necessary descriptors of the character 
component image. This includes Bounding box, Euler 
number, Image and Filled Image. These descriptors, 
along with the the connected component analysis, 
facilitates the calculation of number of holes, their 
position and size with respect to the size of character 
component.  
   Whether a side(bottom, left, right) of the character is 
convex or not is found by comparing the character pixels 
of  n(=1/4th  of character component height/width) rows 
from the side with that ‘conveximage’  descriptor of 
regionprops. A perfect matching character component is 
considered as a component having a convex shape on 
that side. ‘Zero crossings’ of a line with a character 
component is calculated by counting the number of zero 
to one change in the sequence of pixels in the specified 
line crossing the character component. Existence of 
isolated point in a particular hole is found by first 
extracting the required ‘hole’ region and then finding for 
holes in the inverted ‘hole’ image. A small vertical 
stroke below the ‘shirorekha’ is verified by the 
connected component analysis of  character component, 
after the removal of ‘shirorekha’.   
   In the second stage of classification, the direction code 
frequency of the character component is measured and is 
given to k-nearest neighbor[20] for final classification. 
Each character image is first thinned and then the 
minimal bounding box containing the numeral is divided 
into three equal horizontal and vertical  blocks(Fig. 13).  
In each of these blocks, the direction chain code[19] for 
each contour point is noted and the frequency of the 

direction codes is computed. Here we use chain code of 
eight directions(Fig. 12). Thus, in each block we get an 
array of eight integer values representing the frequencies 
and these frequency values together form a feature set. 
Thus, for 3+3 blocks, we get (3+3) X 8= 48 features. To 
normalize features, we divide each of the frequency 
values by the maximum possible frequency.  
 

 
Fig. 12. For a point P the direction codes for its eight 

neighboring points are shown. 
 

 

 
 

Fig. 13 Horizontal and Vertical blocks for calculating 
direction code frequency. 

 

IV. CLASSIFICATION 
   Classification of the characters is done in two 
stages[14]. In the first stage, the characters are grouped 
into small subsets by a feature based tree classifier. In 
the second stage, characters in each group are recognized 
using a nearest neighbor classifier. We adopted this 
hybrid approach instead of using only a tree classifier 
because it is nearly impossible to find a set of stroke 
features that are simple to compute, robust and reliable to 
detect, and are sufficient to classify a large number of 
basic and complex shaped compound characters. 
  The design of a tree classifier has three components: (1) 
a tree skeleton or hierarchical ordering of the class labels, 
(2) choice of features at each non- terminal node, and (3) 
the decision rule at each non-terminal node[14]. The 
developed tree is a binary tree where the number of 
descendants from a non-terminal node is two. While 
traversing the tree, only one feature is tested at each non-
terminal node. The selection of the feature at a particular 
non-terminal node is done by considering its impact on 
the length of the tree. If the set of patterns at a non-
terminal node can be sub-divided into two sub-groups by 
examining a feature so that the number of elements of 
one group is roughly equal to that of the other group, the 
resulting binary tree will have zones. Thus the possible 
classes for the segments in the top two zones would be 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008 
 
50 

the vowels, base consonants or vowel modifiers. Hence 
the total number of classes here should be 16 +35 + 16 = 
67. The bottom zone contains mostly consonant 
conjuncts and hence we should have another 35 classes.  
   The binary tree classifiers for the character 
components in mid and bottom zones are given in table I 
to table III.  At each non-leaf node, the presence of some 
stroke based feature is checked. The leaf nodes represent 
one to four unique character components. In the case of 
single character leaf node, the specific character is the 
classification result. However, in the case of multiple 
characters leaf node, the subsequent character 
recognition will be done by a nearest neighbor based on 
the direction code frequency feature. The mid zone 
character components are first checked for the presence 
of shirorekha.  If shirorekha is present, then tree 
classifier  of Table I is followed. Otherwise, the tree 
classifier represented in Table II is used.  In case of 
bottom zone components, the tree classifier of Table III 
is used. However, we may not always get a set of 
features to design such an optimal tree. A semi-optimal 
tree is generated out of the available features. For a given 
non-terminal node, we select a feature that best separates 
the group of patterns in the above sense.  
   Each character segment is divided into top, mid and 
bottom components based on the zoning reference points 
and they are used for recognition. Each of the 
components contains a vowel, a vowel modifier, a base 
consonant, consonant conjunct or a part of them. We use 
three different classifiers for classifying the segments in 
each of the three vertical zones. Thus the possible classes 
for the segments in the top two zones would be the 
vowels, base consonants or vowel modifiers. Hence the 
total number of classes here should be 16 +35 + 16 = 67. 
The bottom zone contains mostly consonant conjuncts 
and hence we should have another 35 classes.  
   The binary tree classifiers for the character 
components in mid and bottom zones are given in Table 
I to Table III.  At each non-leaf node, the presence of 
some stroke based feature is checked. The leaf nodes 
represent one to four unique character components. In 
the case of single character leaf node, the specific 
character is the classification result. However, in the case 
of multiple characters leaf node, the subsequent 
character recognition will be done by a nearest neighbor 
based on the direction code frequency feature. The mid 
zone character components are first checked for the 
presence of shirorekha.  If shirorekha is present, then 
tree classifier  of Table I is followed. Otherwise, the tree 
classifier represented in Table II is used.  In case of 
bottom zone components, the tree classifier of Table III 
is used.  
While traversing the tree, only one feature is tested at 
each non-terminal node. For example, with k as the 

input, first we check for shirorekha in the mid zone of 
k. Next, at successive non-terminal nodes(Table I), we 

check for the presence of holes, number of holes, 
whether the hole size is of character size or not, whether 
the hole touches the bottom line of character and finally 
whether the hole size is less than half the character size 
or not. When we reach the leaf node, since it contains 
only k, k becomes the  result of tree classifier. 
However, if the input is  j, the tree traversal(Table II) 
ends up with a leaf node containing four characters 

 j, N, b, ch. In such cases, we use nearest 
neighbor classifier in the second stage. Seventy percent 
of the data set, which cannot classified by binary tree 
classifier, is used for training and the remaining thirty 
percent for the testing. 
 

TABLE I   
DECISION TREE FOR VOWELS/CONSONANTS WITH 

SHIROREKHA 

 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008 
 

51

 
TABLE II   

DECISION TREE FOR VOWELS/CONSONANTS WITHOUT 
SHIROREKHA 

 
 
 

 

 

 

 

 

 

 

 

TABLE III  

DECISION TREE FOR BOTTOM MODIFIER 

 
   The possible top modifiers are listed in Fig. 14. As the 
list includes only four symbols, a nearest neighbor alone 
is used for the identification. Once again, we use 
direction code frequency as the feature set. Since the 
symbols are less complex, while extracting the features, 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008 
 
52 

we divide the modifier image into only two equal 
horizontal and vertical blocks. This reduces the 
dimension of the feature set to 4X8=32. 
   In most of the cases, the modifiers appear as a separate 
symbol(for instance, , ), either at the bottom or to 
the right of the base consonant. However, all the top 
modifiers(for instance, , ) and some of the right 
modifiers(for instance, ) appear connected to the 
base consonant. Because of zoning, the top modifiers 
will automatically get separated from the base consonant 
and facilitates the recognition. However, some extra 
effort is required to separate the touching right modifiers. 
One possible solution for this is based upon the statistics 
of the mid zone components in a text. We first calculate 
the average width of the mid zone character components. 
During recognition, if a mid zone component’s width is 
50% more than the average width and if the component 
has a shirorekha at least on the 50% of the component 
width starting from the right, then it is very likely that 

aa modifier is attached to the base consonant( , 
). 

Special symbols(Fig. 16) are recognized by their size 
with respect to average character size, at the first level, 
and then they are classified by nearest neighbor classifier, 

at the second level. This group also include H vowel 
modifier. Before entering vowel/consonant decision tree, 
the character component of mid zone should be verified 
for special symbols.  

V.  RESULTS AND DISCUSSION 
   Majority of the  Kannada characters are composed of a 
base consonant and a vowel modifier or/and consonant 
conjunct. Hence the recognition of characters is done in 
two stages. First the classification of character 
components is done, followed by combining the proper 
sequence of character components into a complete 
character using a lexicon[16]. The result generated by 
the classifier is used by the lexicon to take the decision 
to combine the character components. A simple lexicon 
based on dynamic finite state automata is used to support 
the recognition process. All possible modes of splitting 
of the characters is known and this information is 
encoded in a lexicon. The lexicon uses a look-up table to 
generate the ASCII text for each character. The ASCII 
string generated by the Lexicon is supplied to the 
Kannada editor. For a given series of character 
components the Lexicon is searched which is able to 
retrieve a list of N-best combinations that match the 
correct character. 
   The main difficulty faced with Kannada character 
recognition is the non-availability of a standard data set. 
The data set used in this work has been prepared from 

the available  fonts  Baraha  multilingual editor. The 
fonts used  
   

 
 

Fig. 17 A sample Kannada Data Set with multiple fonts  
 

include BRH Kannada, BRH Kannada RN, BRH 
Kannada Extra, BRH Vijaya, BRH Kailasam, and BRH 

Sirigannada.  
A sample set  with  multiple  fonts  is given  Fig.3.17.  
Multiple  pages  of  Kannada  text  with  a combination 
of multiple fonts and size are prepared and scanned 
through a flat bed scanner at 300 DPI and  binarized. It 
includes a total of 8400 characters. Effort is made to 
include every possible character component in the 
sample data set. The results of various stages of the 
system are summarized below. 
   Line segmentation: Our system identifies individual 
text lines with an accuracy of 100%. Occasionally, when 
two adjacent text lines are close to each other, the lower 

zone(e.g.,  of the upper line has some overlap 

with the upper zone (e.g., )of the lower line. In such 
situations, there is no clear valley between the two lines 
in the projection profile, and our system fails to detect 
the boundary between the two lines. Such cases are 
handled by using the statistics of the text. Whenever the 
gap between successive valley points  of zero height, in 
the projection profile, is an abnormal value, we use the 
average height of different lines in the text as a reference 
value for segmentation.    
   Word segmentation: The overall word segmentation 
accuracy of the system is 98.8%. The threshold value, 
chosen for the inter-word gap based on the statistics of 
the text, works well in most cases. However, because of 
non-uniform printing, some words are printed closer 
together and lead to word segmentation error. 
   Character segmentation: The character segmentation 
accuracy of the system is 97.6%. The proposed method 
for separating overlapping characters(Fig. 10) based on 
the text statistics is generally successful.  
   Character recognition: On average, the system 
recognizes characters with an accuracy of about 92.68%., 
i.e., the overall error rate is 7.32%.  With respect to 
different category of character components, recognition 
rate of the system is 92.32% for vowels, 91.41% for 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008 
 

53

consonants 94.67% for vowel modifiers and 89.64% for 
consonant conjuncts. A comparison of the proposed 
method with the contemporary work is given in Table IV.  

VI CONCLUSION 
An   automatic recognition  of  printed  Kannada   script  
employing   two  stage  classifier  based on  structural 
and 

 
TABLE IV    

COMPARISON OF PROPOSED METHOD WITH THE 
CONTEMPORARY WORK 

 
 
 

topological features is implemented. The result generated 
by the classifier is used by the lexicon to take the 
decision to combine the character components. Binary 
tree classifier is used in the first stage. If a leaf node of 
the tree contains only one character component, then that 
is the classification result. However, if it represents a 
group of character components, then the final 
classification is done by a nearest neighbor classifier in 
the second stage. The system is tested with the data set 
containing 8400 characters of different font and size. On 
average, the system recognizes characters with an 
accuracy of about 92.68%., i.e., the overall error rate is 
7.32%.  With respect to different category of character 
components, recognition rate of the system is 92.32% for 
vowels, 91.41% for consonants 94.67% for vowel 
modifiers and 89.64% for consonant conjuncts.  
 

REFERENCES 
[1] U Pal, B B Choudhuri: Indian Script Character Recognition: A 

Survey. Pattern Recognition, Vol. 37,pp. 1887-1899, 2004   
[2] Technology Development for Indian Languages: Kannada Script. 

http://tdil.mit.gov.in/ 
[3] R. Plamondon and S. N. Srihari, “On-Line and Off-Line 

Handwriting Recognition: A Comprehensive Survey”, IEEE 

Transactions on Pattern Analysis and  Machine Intelligence, 22, 
2000, pp. 63- 84. 

[4] S. Mori, C. Y. Suen and K. Yamamoto, “Historical Overview of 
OCR Research and Development”, Proceedings of the IEEE, 80, 
1992, pp. 1029-1058. 

[5] S. N. Srihari and S. W. Lam, “Character Recognition”, Technical 
Report, 1995, CEDAR-TR-95-1. 

[6] L. O’ Gorman, R. Kasturi, “Document Image Analysis”, IEEE 
Computer Society Press, Los Alamitos,  CA, 1995. 

[7] B. B. Chaudhuri, U. Pal, “A complete printed Bangla OCR 
system’, Pattern Recognition 31 (1998) 531– 549. 

[8]  V.K. Govindan, A.P. Shivaprasad, “Character recognition— a 
survey”, Pattern Recognition 23 (1990)  671–683. 

[9] S. Wu, P. Shi, “Unconstrained hand written numeral recognition 
using Hausdor8 distance and multi- layer neural network 
classifier”, Proceedings of the Fifth International Conference on 
Document  Analysis and Recognition, 1999, pp. 249–252.  

[10] S.A. Mahmoud, ‘Arabic character recognition using Fourier 
descriptors and character contour   encoding’, Pattern 
Recognition 27 (1994) 815–824. 

[11]  Wang, J.M. Mendel, “A fuzzy approach to handwritten rotation 
invariant character recognition’. Proceeding of International 
Conference on ASSP, 1992, pp. 145–148.  

[12] T V Ashwin, P S Sastry: A font and size-independent OCR 
system for printed Kannada documents using support vector 
machine. Sadhana, vol. 27, pp. 35-38, Feb. 2002 

[13] R.S. Rao, R.D. Sudhaker Samuel, “On-line character recognition 
for handwritten Kannada characters   using Wavelet features and 
Neural classifier”, IETE J. Res. 46 (2000) 387–392. 

[14]   B.B. Chaudhuri, U. Pal, M. Mitra, “Automatic Recognition of 
Printed Oriya Script”, Sadhana 27, 2002,  23–34. 

[15] U Pal and Anirban Sarkar: Recognition of Printed Urdu Script. In 
the proceedings of Seventh International Conference on 
Document Analysis and Recognition (ICDAR 2003) 

[16] E Kavallieratou, K Sgarbas, N Fakotakis and G Kokkinakis: 
Handwritten Word Recognition based on Structural 
Characteristics and Lexical support. In the proceedings of 
Seventh International Conference on Document Analysis and 
Recognition (ICDAR 2003) 

[17] U Pal and Sagarika Datta: Segmentation of Bangla Unconstrained 
Handwritten Text. In Proceedings of the Seventh International 
Conference on Document Analysis and Recognition (ICDAR 
2003), Edinburgh, Scotland 

[18] Shuyan Zhao, Zheru Chi, Penfei Shi and Hong Yan: Two-Stage 
Segmentation of Unconstrained Handwritten Chinese Characters, 
Pattern Recognition. Vol. 36, pp. 145- 156, November 2001 

[19] N. Sharma, U. Pal, and F. Kimura, “Recognition of Handwritten 
Kannada Numerals”, Proc, of IEEE-ICIT 2006. 

[20] Cover, T.M., Hart, P.E. “Nearest neighbor pattern classification”, 
IEEE Trans. Inform. Theory, IT-13(1):21–27, 1967. 

 
 

 


